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Abstract
Some recent works in conditional planning have proposed reachability heuristics to im-

prove planner scalability, but many lack a formal description of the properties of their dis-
tance estimates. To place previous work in context and extend work on heuristics for condi-
tional planning, we provide a formal basis for distance estimates between belief states. Our
discussion surrounds a definition for the distance between belief states that relies on ag-
gregating underlying state distance measures. We analyze several techniques to aggregate
state distances and their associated properties. Many existing heuristics exhibit a subset of
the properties, but in order to provide a standardized comparison we present several gen-
eralizations of planning graph heuristics that are used in a single planner. We compliment
our belief state distance estimate framework by also investigating efficient planning graph
data structures that incorporate BDDs to compute the most effective heuristics.

We developed two planners to serve as test-beds for our investigation. The first,
CAltAlt, is a conformant regression planner that uses A* search. The second, POND,
is a conditional progression planner that uses AO* search. We show the relative effective-
ness of our heuristic techniques within these planners. We also compare the performance
of these planners with several state of the art approaches in conditional planning.

1. Introduction

Ever since CGP [Smith and Weld, 1998] and SGP [Weld et al., 1998] a series of planners
have been developed for tackling conformant and contingent planning problems – includ-
ing GPT [Bonet and Geffner, 2000], C-Plan [Castellini et al., 2001], PKSPlan [Bacchus,
2002], Frag-Plan [Kurien et al., 2002], MBP [Bertoli et al., 2001a], KACMBP [Bertoli and
Cimatti, 2002], CFF [Brafman and Hoffmann, 2004], and YKA [Rintanen, 2003]. Several

c© AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



BRYCE, KAMBHAMPATI, & SMITH

of these planners are extensions of heuristic state search planners that search in the space of
uniform probability “belief states” (where a belief state is a set of states, one of which the
agent “believes” it is currently in). Although heuristic search planners are currently among
the best, the issue of what the heuristics estimate has not yet been adequately investigated.

Intuitively, it can be argued that the heuristic merit of a belief state depends on at least
two factors–the size of the belief state (i.e., the uncertainty in the current state), and the
distance of the individual states in the belief state from a destination belief state. The
question of course is how to compute these measures and which are most effective. We
argue that many existing works do not adequately address this question. Many approaches
estimate belief state distances in terms of individual state to state distances between states
in two belief states, but either lack effective state to state distances or ways to aggregate the
state distances. For instance the MBP planner [Bertoli et al., 2001a] measures the number
of states in the current belief, assuming each state distance has unit cost, is independent,
and using a summation. The GPT planner [Bonet and Geffner, 2000] measures the state to
state distances with a reachability heuristic and takes the max distance, assuming the states
of the belief positively interact.

We evaluate many of these different approaches to estimating belief state distance in
terms of state to state distances. The basis of our investigation is in adapting classical
planning reachability heuristics to measure state distances and developing state distance
aggregation techniques to measure interaction between plans for states in a belief. We
take three fundamental approaches to measure the distance between two belief states. The
first approach does not involve aggregating state distance measures, rather we approximate
the beliefs with two states and use a classical planning graph to make a state distance
measure between the states. The second retains the distinction between individual states
in the beliefs and using multiple planning graphs (akin to CGP [Smith and Weld, 1998])
computes many state distance measures which are then aggregated. The third employs
a new planning graph generalization, called the Labelled Uncertainty Graph (LUG), that
blends the first two to measure a single distance between two belief states. With each of
these techniques we will discuss the types of heuristics that we can compute but focus on
relaxed plans. We present several relaxed plans that differ in terms of how they employ
state distance aggregation to make stronger assumptions about state independence, positive
interaction, and negative interaction.

Our motivation for the three techniques for measuring belief state distances is to, as in
the first, try a minimal extension to classical planning heuristics to see if they will work for
us. Noticing that our use of classical planning heuristics ignores distinctions between states
in a belief and may provide uninformed heuristics, we move to the second approach where
we possibly build exponentially many more planning graphs to get a better heuristic. With
the multiple planning graphs we will extract a heuristic from each graph and aggregate them
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to get the belief state distance measure. If we assume the states of a belief are independent,
we can aggregate the measures with a summation. Or, if we assume they positively interact
we can use a maximization. However, as we will show, relaxed plans give us a unique
opportunity to measure both positive interaction and independence among the states by
essentially taking the union of relaxed plans. Moreover, mutexes play a role in measuring
negative interactions between states. Despite the utility in having robust ways to aggregate
state distances, we are still faced with the exponential blow up in the number of planning
graphs needed. Thus, our third approach seeks to retain the ability to measure interaction
of state distances but avoid computing multiple graphs and extracting heuristics from each.
The idea is to condense the symbolically represent multiple planning graphs in a single
planning graph, called a Labelled Uncertainty Graph (LUG). Loosely speaking, this single
graph unions the causal support information present in the multiple graphs and pushes the
disjunction, describing sets of possible worlds (i.e. initial literal layers), into “labels”. The
planning graph vertices are the same as those present in multiple graphs, but redundant
representation is avoided. For instance an action that was present in all of the multiple
planning graphs would be present only once in the LUG and labelled to indicate that it is
applicable in a planning graph projection from each possible world. We will describe how
to extract heuristics from the LUG that make implicit assumptions about state interaction
without explicitly aggregating several state distances.

An issue in evaluating the effectiveness of heuristic techniques is the many architectural
differences between planners that use the heuristics. It is quite hard to pinpoint the global
effect of the assumptions underlying their heuristics on performance. For example, GPT is
outperformed by MBP–but it is questionable as to whether the credit for this efficiency is
attributable to the differences in heuristics, or differences in search engines (MBP uses a
BDD-based search). Our interest in this paper is to systematically evaluate a spectrum of
approaches for computing heuristics for belief space planning. Thus we have implemented
heuristics similar to GPT and MBP and use them to compare against our new heuristics
developed around the notion of overlap (multiple world positive interaction and indepen-
dence). We implemented the heuristics within two planners, the Conformant-AltAlt plan-
ner (CAltAlt) and the Partially-Observable Non-Deterministic planner (POND).1

We focus our attention on finding strong plans (i.e. plans the succeed with probability
1) given an uncertain initial state (with uniform probability over possible states). Sensing
actions give partial observations, causative actions have deterministic conditional effects,
all actions have associated costs, and the model uses a factored representation.

1. POND is an acronym that includes “non-deterministic” and the planner does handle search with non-
deterministic actions, but we refrain from evaluating problems with non-deterministic actions in this
work.
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Although our main interest in this paper is to evaluate the relative advantages of a
spectrum of belief space planning heuristics in a normalized setting, we also compare the
best heuristics from this work to existing conformant and contingent planners. Our em-
pirical studies show that planning graph based heuristics provide effective guidance com-
pared to cardinality heuristics as well as the reachability heuristic used by GPT and CFF,
and our planners are competitive with BDD-based planners such as MBP and YKA, and
GraphPlan-based ones such as CGP and SGP. We also notice that our planners gain scala-
bility with our heuristics and do not give up reasonable solution quality, a property unlike
several of the planners we compare to.

The rest of this paper is organized as follows. We present our work by first explaining
the state and action representation used within CAltAlt and POND, then discuss appro-
priate properties of heuristic measures for belief space planning, followed by the set of
heuristics used for search control, empirical evaluation, related research, future work, and
concluding remarks.

2. Belief Space Planners

Our planning formulation uses regression search to find strong conformant plans and pro-
gression search to find strong conformant and conditional plans. A strong plan guarantees
that after a finite number of actions executed from any of the many possible initial states, all
resulting states will satisfy the goals. Conformant plans are a special case where the plan is
equivalent to a simple sequence, as in classical planning. Conditional plans are a more gen-
eral case where the plan is structured as a graph because they include sensory actions. In
this presentation, we restrict conditional plans to DAGs, but there is no conceptual reason
why they cannot be general graphs like policies. Our plan quality metric is the maximum
plan path length – both causative actions and sensory action contribute to the length of a
path, and sensory actions contribute to multiple paths.

We formulate search in the space of belief states, a technique described by Bonet and
Geffner [2000]. The planning problem P is defined as the tuple 〈D,BSI , BSG〉, where D
is a domain description, BSI is the initial belief state, and BSG is the goal belief state. The
domain D is a tuple 〈F,A〉, where F is a set of all fluents and A is a set of actions.

Logical Formula Representation: We make use of logical formulas over F extensively
in our approach to represent belief states, actions, and LUG labels, so we first explain a
few conventions. We refer to the set of models of a formula f as M(f). We consider the
disjunctive normal form of a logical formula f , ξ̂(f), and the conjunctive normal form of f ,
κ(f). The DNF is seen as a disjunction of “constituents” Ŝ each of which is a conjunction
of literals. Alternatively the CNF is seen as a conjunction of “clauses” C each of which is
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a disjunction of literals.2 We find it useful to think of DNF and CNF represented as sets –
a disjunctive set of constituents or a conjunctive set of clauses. We also refer the complete
representation ξ(f) of a formula f as a DNF where every constituent – or in this case state
S – is a model of f .

Belief State Representation: A world state, S, is represented as a complete interpretation
over fluents. We also refer to states as possible worlds. A belief state BS is a set of states
and is symbolically represented as a propositional formula over F . A state S is in the set
of states represented by a belief state BS if S ∈ M(BS).

We use the bomb and toilet with clogging and sensing problem, BTCS, as a running
example for this paper.3 BTCS is a problem that includes two packages, one of which
contains a bomb, and there is also a toilet in which we can dunk packages to defuse poten-
tial bombs. The goal is to disarm the bomb and the only allowable actions are dunking a
package in the toilet (DunkP1, DunkP2), flushing the toilet after it becomes clogged from
dunking (Flush), and using a metal-detector to sense if a package contains the bomb (De-
tectMetal). The fluents encoding the problem denote that the bomb is armed (arm) or not,
the bomb is in a package (inP1, inP2) or not, and that the toilet is clogged (clog) or not.
We also consider a conformant variation on BTCS, called BTC, where there is no sensory
action.

The belief state representation of BTCS’s initial condition, in clausal representation is:
arm ∧¬clog ∧ (inP1 ∨ inP2) ∧ (¬inP1 ∨¬inP2), and constituent representation is: ξ̂(BSI)

= (arm ∧¬ clog ∧ inP1 ∧¬inP2) ∨ (arm ∧¬ clog ∧¬inP1 ∧ inP2). The goal in BTCS
has the clausal representation: κ(BSG) = ¬arm, and constituent representation: ξ̂(BSG)

= ¬arm. However, the goal has the complete representation: ξ(BSG) = (¬arm ∧ clog ∧
inP1 ∧¬inP2) ∨ (¬arm ∧ clog ∧¬inP1 ∧ inP2) ∨ (¬arm ∧¬clog ∧ inP1 ∧¬inP2) ∨ (¬arm
∧¬clog ∧¬inP1 ∧ inP2) ∨ (¬arm ∧ clog ∧¬inP1 ∧¬inP2) ∨ (¬arm ∧ clog ∧ inP1 ∧ inP2)
∨ (¬arm ∧¬clog ∧¬inP1 ∧¬inP2) ∨ (¬arm ∧¬clog ∧ inP1 ∧ inP2).

Action Representation: We represent actions as having strictly causative or observational
effects, the former termed as causative actions, the latter termed as sensory actions. All
actions a are described in terms of an execution precondition ρe(a), and a set of effects,
Φ(a). The execution precondition, ρe(a), is a conjunction of literals that must hold for the
action to be executable.

Causative actions have a set of conditional effects where each conditional effect ϕj(a)

is of the form ρj(a) =⇒ εj(a), where the antecedent ρj and consequent ϕj(a) are both

2. It is easy to see that M(f) and ξ̂(f) are readily related. Specifically each constituent contains k of the
|F | literals, corresponding to 2|F |−k models.

3. We are aware of the negative publicity associated with the B&T problems and we do in fact handle more
interesting problems with difficult reachability and uncertainty (e.g. Logistics and Rovers), but to simplify
our discussion we choose this small problem.
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a conjunction of literals. We handle disjunction in ρe(a) or a ρj(a) by replicating the re-
spective action or effect with different conditions, so with out loss of generality we assume
conjunctive preconditions. However, we cannot split disjunction in the effects because the
effect would be non-deterministic. Hence we do not allow disjunction in effects thereby
restricting to deterministic effects. By convention the unconditional effects are described
as ρ0(a) = � and a given ε0(a).

Sensory actions have a set Φ(a) = {o0(a), ..., om(a)} of observational effect formulas.
Each observational effect formula, oj(a), defines the properties of an outcome of the sensor.
We do not observe each oj(a) to be true or false, rather we observe each oj(a) to be true
(e.g. observing the truth of a fluent requires two observational effect formulas).

The causative and sensory actions for the example BTCS problem are:
DunkP1: 〈ρe = ¬clog, Φ = {ϕ0 = � =⇒ clog, ϕ0 = inP1 =⇒ ¬arm}〉
DunkP2: 〈ρe = ¬clog, Φ = {ϕ0 = � =⇒ clog, ϕ0 = inP2 =⇒ ¬arm}〉
Flush: 〈ρe = �, Φ = {ϕ0 = � =⇒ ¬clog}〉
DetectMetal: 〈ρe = �,Φ = {o0 = inP1, o1 = ¬inP1}〉

2.1 Regression

We perform regression in the CAltAlt planner to find conformant plans by starting with the
goal belief state and regressing it non-deterministically over all relevant actions. An action
is relevant for regressing a belief state if (i) its unconditional effect is not inconsistent with
the belief state and (ii) at least one effect consequent contains a literal that is present in a
constituent of the belief state.

Following Pednault [1987], regressing a belief state BSi over an action a, with con-
ditional effects, involves finding the execution, causation, and preservation formulas. We
define regression in terms of clausal representation, but it can be generalized for arbitrary
formulas. The regression of a belief state is a conjunction of the regression of clauses in
κ(BSi). Formally, the result BSi′ of regressing the belief state BSi over the action a is
defined as:4

BSi′ = Regress(BSi, a) = Π(a) ∧

 ∧

C∈κ(BSi)

∨
l∈C

(Σ(a, l) ∧ IP (a, l))




where the
Execution formula (Π(a)) is the execution precondition ρe(a). This is what must hold in
BSi′ for a to have been applicable.

4. Note that BSi′ may not be in clausal form after regression (especially when an action has multiple con-
ditional effects).
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Causation formula (Σ(a, l)) for a literal l w.r.t all effects ϕj(a) of an action a is defined
as the weakest formula that must hold in the state before a such that l holds in BSi. The
intuitive meaning is that l already held in BSi′ , or the antecedent ρj(a) must have held in
BSi′ to make l hold in BSi. Formally Σ(a, l) is defined as:

Σ(a, l) = l ∨
∨

i:l∈εi(a)

ρi(a)

Preservation formula (IP (a, l)) of a literal l w.r.t. all effects ϕj(a) of action a is defined
as the formula that must be true before a such that l is not violated by any effect εj(a). The
intuitive meaning is that the antecedent of every effect that is inconsistent with l could not
have held inBSi′ . We use � so that the preservation formula is not empty should no effects
conflict with l. Formally IP (a, l) is defined as:

IP (a, l) = � ∧
∧

i:¬l∈εi(a)

¬ρi(a)

2.2 CAltAlt
The CAltAlt planner uses the regression operator to generate children in A* search. Regres-
sion terminates when search node expansion generates a belief state BSi which is entailed
by the initial belief state BSI . The plan is the sequence of actions regressed from BSG to
obtain BSI .

For example, in the BTC problem, Figure 1, we have: BS2 =Regress(BSG, DunkP1)
= ¬clog ∧ (¬arm ∨ inP1). The first clause is the execution formula and the second clause
is the causation formula for the conditional effect of DunkP1 and ¬arm.

Regressing BS2 with Flush gives: BS4 = Regress(BS2, Flush) = (¬arm ∨ inP1). For
BS4, the execution precondition of Flush is �, the causation formula is � ∨ ¬clog = �
and (¬arm ∨ inP1) comes through persistence in the causation formula.

Finally, BS9 = Regress(BS4, DunkP2) = ¬clog ∧ (¬arm ∨ inP1 ∨ inP2).
From our example, we terminate at BS9 because BSI |= BS9. The plan is DunkP2,

Flush, DunkP1.

2.3 Progression

In progression we can handle both causative and sensory actions, so in general, progressing
an action a over a belief state BS generates a set of successor belief states B. There are
three distinct cases in progression, the set of resulting belief states is 1) empty when the
action is not applicable to BS (BS �|= ρe(a)), 2) a single belief state if a is a causative
action, or 3) possibly several belief states if a is a sensory action.
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BSG

BS2

BS4

BS9

DunkP1

Flush

BS1

Flush

BS3

DunkP2

BS5

DunkP1

BS6

DunkP2

BS7

Flush

BS8

DunkP1 DunkP2

Figure 1: Illustration of the regression search path for a conformant plan in theBTC prob-
lem.

Progression of a belief state BS over a causative action a is best understood as the
union of the result of applying a to each model of BS but we in fact implement it as BDD
images, as in MBP [Bertoli et al., 2001a]. Formally, progression of a causative action a
over a belief state BSi results in a set of states B, containing a single state BSi′ . If the
action is applicable, the resulting belief is the disjunction of progression of each state in
BSi over a:

B = {BSi′} = Progressc(BSi, a) =




⊥ : BSi �|= ρe(a)∨
S∈M(BSi)

Progressc(S, a) : otherwise

The progression of an action a over a state S is the conjunction of every literal that
persists (no applicable effect consequent contains the literal) and every literal that is given
as an effect (an applicable effect consequent contains the literal).

S ′ = Progressc(S, a) =
∧

l:l∈S and
¬∃j S|=ρj(a) and

l∈εj(a)

l ∧
∧

l:∃j S|=ρj(a) and

l∈εj(a)

l

The case when an action is sensory is efficient for progression because we obtain a set
of successors B by individually taking the conjunction of each observational effect oj(a)
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with BS. The progression of a sensory action a over a belief state BSi results in a set B of
belief states, defined as:

B = Progresss(BSi, a) =

{ ⊥ : BSi �|= ρe(a)

{BS ′|BS ′ = oj(a) ∧BSi} : otherwise

While we separate causative and sensory actions, it is possible to extend our action
representation to have both types causative and observational effects. In which case, the
progression would apply causative effects followed by observational effects to return a set
B =Progresss(Progressc(BSi, a), a).

2.4 POND

We use top down AO* search [Nilsson, 1980], in the POND planner to generate con-
formant and conditional plans. In the search graph, the nodes are belief states and the
hyper-edges are actions. We need AO* because the application of a sensing action to a
belief state in essence partitions the belief state. We use hyper-edges for actions because
sensory actions have several outcomes, all if any of which must be included in a solution.

The AO* search consists of two repeated steps, expand the current partial solution, and
then revise the current partial solution. Search ends when every leaf node of the current
solution is a belief state that satisfies the goal belief and no better solution exists (given our
heuristic function). Expansion involves following the current solution to an unexpanded
leaf node and generating its children. Revision is essentially a dynamic programming up-
date at each node in the current solution that selects a best hyper-edge (action). The update
assigns the action with minimum cost to start the best solution rooted at the given node.
The cost of a node is the cost of its best action plus the average cost of its children (the
nodes connected through the hyper-edge). When expanding a leaf node, the children of all
applied actions are given a heuristic value to indicate their estimated cost.

The main differences between our formulation of AO* and that of Nilsson [1980] are
that we do not allow cycles in the search graph, we update the costs of nodes with an
average rather than a sum, and use a weighted h-value. The first difference is to ensure that
plans are strong (there are a finite number of steps to the goal), the second is to guide search
toward plans with lower average path cost, rather than a best worst-case execution length,
and the third is to bias our search to trust the heuristic function. The reasons we define our
plan quality metric differently than the metric our search tries to minimize are first that it is
easier to compare to other competing planners because they measure the same plan quality
metric, and second that search tends to be more efficient using the average instead of the
max cost of an action’s children.
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B7B6B5B4

B2

BSI

BS11 BS21 BS22 BS31

B1 B3

BS41 BS51 BS61 BS71

DunkP1 Detect
Metal DunkP2

DunkP1 DunkP1DunkP2 DunkP2

inP1 :inP1

Figure 2: Illustration of progression search for a conditional plan in the BTCS problem.

As an example of search in POND, consider the BTCS example (Figure 2). Applying
actions to the initial belief state, we get: B1 = {BS11} = Progress(BSI , DunkP1) =
{(inP1 ∧¬inP2 ∧ clog ∧¬arm) ∨ (¬inP1 ∧ inP2 ∧ clog ∧ arm)}, B2 = {BS21, BS22}
= Progress(BSI ,DetectMetal) = {inP1 ∧¬inP2 ∧¬clog ∧ arm, ¬inP1 ∧ inP2 ∧¬clog ∧
arm}, and B3 = {BS31} = Progress(BSI , DunkP2) = {(inP1 ∧¬inP2 ∧ clog ∧ arm) ∨
(¬inP1 ∧ inP2 ∧ clog ∧¬arm)}.

Say we expand BS21 and get B4 = {BS41} =Progress(BS21, DunkP1) = {inP1
∧¬inP2 ∧ clog ∧¬arm}, which is a goal state, and expand BS22 and get B6 = {BS61} =
Progress(BS22, DunkP2) = {inP1 ∧¬inP2 ∧ clog ∧¬arm}, which is also goal state. We
terminate here because this is the lowest cost plan we can find and all leaf nodes satisfy the
goal. Our plan is shown in bold in Figure 2.

3. Belief State Distance

In both the CAltAlt and POND planners we need to guide search node expansion with
heuristics that estimate the plan distance between a source and destination belief state. The
source belief is always a search node, but the destination depends on our search direction
(i.e. the initial belief in regression or the goal in progression). In either case, the distance
estimate must capture how many actions are needed to transition every state in the earlier
belief state to one state in the later belief state (e.g. each initial state must reach one goal
state). As such, when estimating state to state distances, we optimistically assume that each
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BS3

BS1

BS2 20

40

30

15

5

10

Figure 3: Conformant Plan Distance Estimation in Belief Space

of the earlier states can reach the closest of the later states (e.g. each initial state can reach
its closest goal state).

Our first idea for measuring belief state distance does not measure individual state to
state distances to find an aggregate distance measure, rather it aggregates the states in the
two beliefs to find two approximate states. We form an approximate state by taking the
union of the literals needed to express the prime implicates of the belief state formula.
While this approximate state is quite possibly inconsistent, many classical planning dis-
tance measures are still applicable, and we assume these are understood. We now turn to
an issue that is less understood – how to aggregate state distance measures.

Consider the example in Figure 3; there are three belief states BS1 (containing two
states), BS2 (containing one state), and BS3 (containing two states). The goal belief is
BS3, and the two progression search nodes are BS1 and BS2. We want to expand the
search node with the smallest distance to the goal belief. The distances to estimate are
between the source and destination belief statesBS1 andBS3 (denoted by the dark, dashed
line) and BS2 and BS3 (denoted by the dark, solid line). We’ll assume for now that we
have estimates of state distance measures (denoted by the light dashed and solid lines with
numbers).
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There is a range of options for taking the state distances and aggregating them into a
belief state distance:

• Cardinality of Belief States: Ignore state to state distances and count the number of
states in the source belief state. This measure is akin to assuming that state to state
distances are of unit distance and that making the transitions between the source
and destination states is done independently without interaction. In our example the
distance between BS1 and BS3 is two (because the two states in BS1 need to make
a transition), and the distance between BS2 and BS3 is one (because the one state in
BS2 needs to make a transition). The MBP family of planners [Bertoli et al., 2001a]
use variations on the cardinality of belief states as belief state distance estimates.

• Positive Interaction of States: Use state to state distances, but assume that making
the transitions between source states and destination states positively interact. In our
example there are two states in BS1, each with different distances to the states of
BS3. We make an optimistic assumption that we can transition each source state in
BS1 to the closest destination state in BS3, allowing us to say the first state con-
tributes 15 and the second state contributes 5 to the distance between BS1 and BS3.
The final distance estimate for BS1 to BS3 is 15 because we take a maximum (as
is common when assuming positive interaction) over the state to state distance esti-
mates. Likewise, forBS2 we get 20 as the distance estimate because the state inBS2

will optimistically reach the first state in BS3. The GPT planner [Bonet and Geffner,
2000] makes the positive interaction assumption in its belief state distance estimates.

• Independence of States: Use state to state distances, but assume the transitions be-
tween source states to destination states are independent. Again, like positive in-
teraction, we make the optimistic assumption about transitioning to the closest des-
tination state, but when aggregating the distance estimates for the source states we
take a summation rather than maximization. In our example, we would estimate the
distance from BS1 to BS3 as 5 + 15 = 20, and from BS2 to BS3 as 20 also.

• Overlap of States: Use state to state distances, but account for positive interaction
and independence. Assuming state to state distances are measured in terms of actual
action sequences, we can analyze the actions that are common and distinct among the
state to state transitions (i.e. measure overlap). For instance, if one sequence contains
action a1, we count a1 once, but if many sequences contain action a2 at relatively the
same time, then we can count a2 only once. In our example, we could find that the
distance from BS1 to BS3 is somewhere between 15 and 20, and for the distance
from BS2 to BS3 as 20 (because there is only one state to state transition).
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• Negative Interaction of States: Use state to state distances, but account for actions
that may conflict in making different state to state transitions. Here one could make
use of “cross-world” mutexes [Smith and Weld, 1998] to determine that executing
one action in a specific state to state transition is mutex with an action used in another
state to state transition. In our example, we may find that the distance between BS1

to BS3 is actually infinity if it is impossible to co-transition the states in BS1 to a
state in BS3.

The above techniques for belief state distance estimation in terms of state distances
provide the basis for our use of multiple planning graphs. We will show in the empirical
evaluation that these measures affect planner performance very differently across standard
conformant and conditional planning domains. While it can be quite costly to compute
several state distance measures, understanding them within the context of multiple planning
graphs allows us to move toward a much cheaper implicit representation in our third idea,
the LUG. We proceed to describe extracting belief state distance measures from planning
graphs next.

4. Heuristics

Planning graphs serve as the basis for our belief state distance estimation. Planning graphs
were initially introduced in GraphPlan [Blum and Furst, 1995] for representing an opti-
mistic, compressed version of the state space progression. The compression lies in union-
ing the literals from every state at subsequent steps from the initial state. The optimism
relates to underestimating how many steps it takes to use actions to support sets of literals
by tracking only a subset of the infeasible tuples of literals. GraphPlan searches the plan-
ning graph once the compressed progression (or planning graph) achieves the goal literals
in at a step with no two goal literals marked infeasible. The search tries to find actions
to support the top level goal literals, then find actions to support those action precondi-
tions and so on until reaching the first step. The basic idea behind using planning graphs
for search heuristics is that we can find the first step of a planning graph where a literal
in a state appears; this step is a lower bound on the number of actions that are needed to
achieve a state with the literal. There are also techniques for estimating the number of ac-
tions required to achieve sets of literals. The planning graphs serve as ways to estimate the
reachability of state literals and discriminate between the “goodness” of different search
states. This work generalizes such literal estimations to belief space search by considering
both GraphPlan, CGP style planning graphs, and a new generalization of planning graphs,
called the LUG.

Planners such as CGP [Smith and Weld, 1998] and SGP [Weld et al., 1998] adapt the
GraphPlan idea of compressing the search space with a planning graph by using multiple
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Figure 4: Taxonomy of heuristics with respect planning graph type and states cost aggre-
gation.

planning graphs, one for each possible world in the initial belief. CGP and SGP search
on these planning graphs, similar to GraphPlan, to find conformant and conditional plans.
The work in this paper seeks to apply the idea of extracting search heuristics from planning
graphs, previously used in state space search [Nguyen et al., 2002] to belief space search.

This section proceeds by describing four sets of heuristics to estimate belief state dis-
tanceNG,SG,MG, and LUG. NG heuristics are techniques existing in the literature that
are not based on planning graphs, SG heuristics are techniques based on a single classical
planning graph, MG heuristics are techniques based on multiple planning graphs (similar
to those used in CGP) and LUG heuristics use a new labelled planning graph. The LUG
combines the advantages of SG and MG to reduce the representation size and maintain
informedness. Note, we do not include observations in any of the planning graph structures
as SGP would, however we do include this feature for future work. The conditional plan-
ning formulation directly uses the planning graph heuristics by ignoring observations, and
our results show that this still gives good performance.

In Figure 4 we present a taxonomy of distance measures for belief space. The taxon-
omy also includes related planners, whose distance measures will be characterized in this
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section. The figure shows how different substrates (horizontal axis) can be used to compute
belief state distance by aggregating state to state distances under various assumptions (ver-
tical axis). While there are a wealth of different heuristics one can compute using planning
graphs, we concentrate on relaxed plans because they have proven the most effective in
classical planning and our previous studies [Bryce and Kambhampati, 2004]. We provide
additional descriptions of other heuristics like max, sum, and level in Appendix A.

To illustrate the computation of each heuristic, we use an example derived from BTC
called Courteous BTC (CBTC) where a courteous package dunker has to disarm the bomb
and leave the toilet unclogged, but some discourteous person has left the toilet clogged.
The initial belief state of CBTC in clausal representation is arm ∧ clog ∧ (inP1 ∨ inP2)
∧ (¬inP1 ∨¬inP2), and the goal is ¬clog ∧¬arm. The optimal action sequences to reach
BSG from BSI are: Flush, DunkP1, Flush, DunkP2, Flush, and Flush, DunkP2, Flush,
DunkP1, Flush, thus the optimal heuristic estimate for the distance between BSI and BSG,
in regression, is h∗(BSG) = 5 because in either plan there are five actions.

We use planning graphs for both progression and regression search. In regression search
the heuristic estimates the cost of the current belief state w.r.t. the initial belief state and in
progression search the heuristic estimates the cost of the goal belief state w.r.t. the current
belief state. Thus, in regression search the planning graph(s) are built (projected) once from
the possible worlds of the initial belief state, but in progression search they need to be built
at each search node. We introduce a notation BSi to denote the belief state for which we
find a heuristic measure, and BSP to denote the belief state that is used to construct the
initial layer of the planning graph(s). In the following subsections we describe computing
heuristics for regression, but they are generalized for progression by changing BSi and
BSP appropriately.

We proceed by describing the various substrates used for computing belief space dis-
tance estimates. Within each we describe the prospects for various types of world aggrega-
tion. In addition to our heuristics, we mention related work in the relevant areas.

4.1 Non Planning Graph-based Heuristics (NG)

We group many heuristics and planners into the NG group because they are not using SG,
MG, or LUG planning graphs. Sufficed to say, just because we mention them in this group,
it does not mean they are not using planning graphs in some other form.

No Aggregation: Breadth first search uses a simple heuristic, h0 where the heuristic value
is set to zero. We mention this heuristic so that we can gauge the effectiveness of our search
substrates relative to improvements gained through using heuristics.

Positive Interaction Aggregation: The GPT planner [Bonet and Geffner, 2000] measures
belief state distance as the max state to state distance of states in the source and destination
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belief states assuming optimistic reachability as mentioned in Section 3. GPT measures
state distances exactly, in terms of the minimum number of transitions in the state space.
Taking the max state to state distance is akin to assuming positive interaction of states in
the current belief.

Independence Aggregation: The MBP planner [Bertoli et al., 2001a] and our comparable
hcard heuristic measure belief state distance by assuming every state to state distance is one,
and taking the sum of the state distances (i.e. counting the number of states in a belief).
This measure can be useful in regression because goal belief states are partially specified
and contain many states consistent with a goal formula and many of the states consistent
with the goal formula are not reachable from the initial belief. Throughout regression,
many of the unreachable states are removed from successor belief states because they are
inconsistent with the preconditions of a regressed action. Thus, belief states can reduce in
size during regression and their cardinality may indicate they are closer to the initial belief.
Cardinality is also useful in progression because as belief states become smaller, the agent
has more knowledge and it can be easier to reach a goal state.

In CBTC, hcard(BSG) = 4 because BSG has four states consistent with it. Notice, this
may be uninformed for BSG because some of the states in ξ(BSG) are not reachable, like
inP1 ∧ inP2 ∧¬clog ∧¬arm. Counting unreachable states may overestimate the distance
estimate because we do not need to plan for them. In general, aside from counting unreach-
able states, cardinality does not accurately reflect distance measures – consider the extreme
case of having complete state information and assigning each state a distance of one.

Overlap Aggregation: Rintanen [2004] describes n-Distances which generalize the belief
state distance measure in GPT to consider the max n-tuple state distance. It measures for
each n-sized tuple of states in a belief the length of the actual plan to transition the n-tuple
to the destination belief. Then the max n-tuple distance is taken as the distance measure.

The CFF planner [Brafman and Hoffmann, 2004] searches forward in the space of
implicit belief states by representing the known (entailed) facts of a belief state together
with the action history. CFF projects a planning graph from their implicit belief state to
reach the goal and backwards toward the initial belief. The reason CFF must do this is
because they use an implicit belief and need information from the initial belief state to
capture all uncertainty. A relaxation that CFF uses is to ignore all but one antecedent literal
in conditional effects to keep their relaxed plan reasoning tractable. The CFF relaxed plan
represents supporting the goal from every state in the initial belief state and does capture
overlap.
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Figure 5: Single planning graph for CBTC, with relaxed plan components in bold. Mu-
texes omitted.

4.2 Single Graph Heuristics (SG)

The simplest approach for using planning graphs for belief space planning heuristics is to
use a “classical” planning graph. We take all the literals in all models of the projected belief
state and insert each literal into the initial layer of the planning graph, ignoring possible
worlds. For example, in CBTC assuming regression search with BSP = BSI , the initial
level of the planning graph is {arm, clog, inP1, inP2, ¬inP1, ¬inP2} (see Figure 5).

Graph construction is identical to classical planning graphs (including mutex propa-
gation) and stops when two subsequent literal layers are identical (level off). We use the
planning graph formalism used in IPP [Koehler, 1999] to allow for explicit representation
of conditional effects, meaning there is a literal layer Lk, an action layer Ak, and an effect
layer Ek in each level k. While the planning graph contains effect layers, for clarity we do
not represent it explicitly in the figure. A literal is in Lk if it persists from the previous
literal layer Lk−1, or an effect from the previous effect layer Ek−1 contains the literal in its
consequent. An action is in the action layer Ak if every one of its execution precondition
literals is in Lk. An effect is in the effect layer Ek if its associated action is in the action
layer Ak and every one of its antecedent literals is in Lk. Using conditional effects in the
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planning graph avoids factoring an action with conditional effects into a possibly exponen-
tial number of non-conditional actions, but adds an extra planning graph layer per level.
Once our graph is built, we can extract heuristics.

No Aggregation: Relaxed plans within a single planning graph are able to measure, under
the most optimistic assumptions, the distance between two beliefs. Since the single graph
has an initial literal layer of all literals in a belief, the relaxed plan represents a distance
between a state (comprised of a subset of the initial layer literals) and a state (comprised
of the literals in a constituent of our belief state). In relaxed plans we cannot ensure that
any given subset of the initial layer literals is used to support the actions in the relaxed plan
because the actions are selected based on their supporting the goal or a subgoal (precondi-
tion). The classical relaxed plan heuristic hSG

RP finds a set of (possibly interfering) actions
to support the goal, using a subset of the initial layer literals as support. The relaxed plan
is a levelled subgraph of the planning graph, of the form { ARP

0 , ERP
0 , LRP

1 , ..., ARP
b−1, ERP

b−1,
LRP

b }. Each of the layers contains a subset of the vertices in the corresponding layer of the
planning graph.

More formally, we find the relaxed plan to support the constituent Ŝ ∈ ξ̂(BSi) that
is reached earliest in the graph (as found by the hSG

level(BSi) heuristic in Appendix A).
Briefly, hSG

level(BSi) returns the first level b where a constituent of BSi has all it literals are
in Lb and none are marked pair wise mutex. We start extraction at the level b, by defining
LRP

b as the literals in the constituent used in the level heuristic. For each literal LRP
b , we

select a supporting effect (ignoring mutexes) from Eb−1 to form the subset ERP
b−1. We prefer

persistence of literals to effects in supporting literals. Once a supporting set of effects is
found, we create ARP

b−1 as all actions with an effect in ERP
b−1. Then the needed preconditions

for the actions and antecedents for chosen effects in ARP
b−1 and ERP

b−1 are added to the list
of literals to support from LRP

b−2. Then, we find support with effects at level b − 2. The
algorithm repeats until we find the needed actions from A0. A relaxed plan’s value is the
sum of the number of actions in each action layer. A literal persistence, denoted by a
subscript “p”, is treated as an action in the planning graph, but in relaxed plan we do not
include it in the final computation of | ARP

j |. The single graph relaxed plan heuristic is
computed as,

hSG
RP (BSi) =

b−1∑
j=0

| ARP
j |

While we are using all literals in the source belief state as the initial layer of the planning
graph, we are only extracting the relaxed plan for the literals appearing in a constituent of
the destination belief state. Thus, we approximate two states and use the single planning
graph relaxed plan to measure their state to state distance.

For the CBTC problem we find a relaxed plan, as shown in Figure 5 as the bolded edges
and nodes. We found that ¬arm and ¬clog are non mutex at level two, then use persistence
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to support ¬clog and DunkP1 to support ¬arm in LRP
2 . In LRP

1 we use persistence for inP1,
and Flush for ¬clog. Thus, hSG

RP (BSG) = 2 because the relaxed plan is:
ARP

0 = {inP1p, Flush},
ERP

0 = {ϕ0(inP1p), ϕ0(Flush)},
LRP

1 = {inP1,¬clog},
ARP

1 = {¬clogp, DunkP1},
ERP

1 = {ϕ0(¬clogp), ϕ1(DunkP1)},
LRP

2 = {¬arm,¬clog}
The relaxed plan does not use both DunkP2 and DunkP1 to support ¬arm. Notice that

¬arm is not supported in all worlds (i.e. it is not supported when the state where inP2 holds
is our initial state). Our initial layer threw away knowledge of inP1 and inP2 holding in
different worlds, and the relaxed plan extraction ignored that ¬arm needs to be supported in
all worlds. A single, unmodified classical planning graph cannot capture support from all
possible worlds – hence there is no explicit aggregation over distance measures for states.
Rather we approximate belief states with states, so we can get a distance measure.

Positive Interaction Aggregation: Individual state to state distances can not be computed
on the single planning graph because all notion of which state in BSP is used for the
estimate is lost we form the initial layer.

Independence Aggregation: See Positive Interaction Aggregation.

Overlap Aggregation: See Positive Interaction Aggregation.

4.3 Multiple Graph Heuristics (MG)

Single graph heuristics are usually uninformed because the projected belief stateBSP often
corresponds to multiple possible states. The lack of accuracy is because single graphs are
not able to capture propagation of specific possible world support information. Consider
the CBTC problem where the projected belief state is BSI and we are using a single graph.
If DunkP1 were the only action we would say that ¬arm and ¬clog can be reached at a cost
of two, but in fact the cost is infinite (since there is no DunkP2 to support ¬arm from all
possible worlds), and there is no strong plan.

To account for lack of support in all possible worlds and sharpen the heuristic estimate,
a set of planning graphs Γ is considered. Each γ ∈ Γ is a single graph, like previously
discussed. However, we can prevent loss of possible world distinctions by constructing the
initial layer Lγ

0 of each graph γ with a different state S ∈ ξ(BSP ). With multiple graphs,
the heuristic value of a belief state is computed in terms of all the graphs. Unlike single
graphs, we can compute different world aggregation measures with the multiple planning
graphs. The idea is to compute a heuristic on each graph and then combine the heuristics
to get a belief state distance.
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Figure 6: Multiple planning graphs for CBTC, with relaxed plan components bolded. Mu-
texes omitted.

These multiple graphs are similar to the graphs used by CGP [Smith and Weld, 1998],
but lack the more general cross-world mutexes. Mutexes are only computed within each
graph, i.e. only same-world mutexes are computed.

To illustrate using multiple graphs, consider regression search in CBTC. We will build
two graphs (Figure 6) for the projected BSI . They have the respective initial literal layers:

L1
0 = {arm, clog, inP1, ¬inP2}

L2
0 = {arm, clog, ¬inP2, inP2}

In the graph for the first possible world, S1, ¬arm comes in only through DunkP1 at
level 2. In the graph for the second world, S2, ¬arm comes in only through DunkP2 at
level 2. Thus, the multiple graphs show which actions in the different worlds contribute to
support the same fact.

There are several ways to compute the achievement cost of a belief state with multiple
graphs, as follows.

No Aggregation: A single planning graph is sufficient if there is no state aggregation being
measured.
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Positive Interaction Aggregation: Similar to GPT, we can use the worst-case world to
represent the cost of the belief state by using the hMG

m−RP heuristic. With this heuristic we
account for the number of actions used in a given world, but assume positive interaction in
all worlds.

The hMG
m−RP heuristic is computed by finding a relaxed planRPγ on each planning graph

γ ∈ Γ, exactly as done on the single graph with hSG
RP . The difference is that unlike the single

graph relaxed plan, the initial levels of the planning graphs are states, so each relaxed plan
will reflect all the support needed in the world corresponding to γ.

Formally

hMG
m−RP (BSi) = max

γ∈Γ

(
bγ−1∑
j=0

| ARPγ

j |
)

where bγ is the level of γ where a constituent of BSG was first reachable.
For CBTC, computing hMG

m−RP (BSG) (Figure 6) finds RP 1 =

ARP1
0 = {inP1p, Flush},

ERP1
0 = {ϕ0(inP1p), ϕ0(Flush)},

LRP1
1 = {inP1,¬clog},

ARP1
1 = {¬clogp, DunkP1},

ERP1
1 = {ϕ0(¬clogp), ϕ1(DunkP1)},

LRP1
2 = {¬arm,¬clog}

and RP 2 =

ARP2
0 = {inP2p, Flush},

ERP2
0 = {ϕ0(inP2p), ϕ0(Flush)},

LRP2
1 = {inP2,¬clog},

ARP2
1 = {¬clogp, DunkP2},

ERP2
1 = {ϕ0(¬clogp), ϕ1(DunkP2)},

LRP2
2 = {¬arm,¬clog}

Taking the max of the two relaxed plan values gives hMG
m−RP (BSG) = 2.

Independence Aggregation: We can use the hMG
s−RP heuristic to assume independence

among the worlds in our belief. We extract relaxed plans exactly as described in the pre-
vious heuristic and simply use a summation rather than maximization of the relaxed plan
costs. Formally

hMG
s−RP (BSi) =

∑
γ∈Γ

(
bγ−1∑
j=0

| ARPγ

j |
)

where bγ is the level of γ where a constituent of BSG was first reachable.
For CBTC, if computing hMG

s−RP (BSG) (Figure 6), we find the same relaxed plans as in
hMG
m−RP (BSG), but sum their values to get 2 + 2 = 4 as our heuristic.
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State Overlap Aggregation: We notice that in the two previous heuristics we are taking a
maximization and not accounting for some actions, or taking a summation and accounting
for extra actions. We present the hMG

RPU heuristic to balance the measure between positive
interaction and independence of worlds. Examining the relaxed plans computed by the two
previous heuristics for the CBTC example, we see that the relaxed plans extracted from
each graph have some overlap. Notice, that both ARP1

0 and ARP2
0 contain a Flush action

irrespective of which package the bomb is in – showing some positive interaction. Also,
ARP1

1 contains DunkP1, and ARP2
1 contains DunkP2 – showing some independence. If we

take the layer-wise union of the two relaxed plans, we would get a unioned relaxed plan
RPU =

ARPU
0 = {inP1p, Flush},

ERPU
0 = {ϕ0(inP1p), ϕ0(inP2p), ϕ0(Flush)},

LRPU
1 = {inP1, inP2,¬clog},

ARPU
1 = {¬clogp, DunkP1, DunkP2},

ERPU
1 = {ϕ0(¬clogp), ϕ1(DunkP1), ϕ1(DunkP2)},

LRPU
2 = {¬arm,¬clog}

This relaxed plans accounts for the actions that are the same between possible worlds
and the actions that differ.

In order to get the union relaxed plan, we extract relaxed plans from each γ ∈ Γ, as in
the two previous heuristics. Then, starting from the last level and repeating for each level,
we union the sets of actions for each relaxed plan at each level into another relaxed plan.
The relaxed plans are right-aligned, hence the unioning of steps proceeds from the last
layer of each relaxed plan to create the last layer of the RPU relaxed plan, then the second
to last layer for each relaxed plan is unioned and so on. The sum of the numbers of actions
of each action level in the unioned relaxed plan is used as the heuristic value. Formally

hMG
RPU(BSi) =

b−1∑
j=0

| ARPU
j |

where b is the greatest level bγ where a constituent of BSG was first reachable.
For CBTC, we just found RPU , so counting the number of actions gives us a heuristic

value of hMG
RPU(BSG) = 3.

4.4 Labelled Uncertainty Graph Heuristics (LUG)

The multiple graph technique has the advantage of heuristics that can aggregate the costs
of multiple worlds, but the disadvantages of computing some redundant information in
different graphs (c.f. Figure 6) and using every graph to compute heuristics (c.f hMG

RPU ).
Our next approach addresses these limitations by condensing the multiple planning graphs
to a single planning graph, called a labelled uncertainty graph (LUG). The idea is to
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implicitly represent multiple planning graphs by collapsing the graph connectivity into one
planning graph, but use annotations, called labels (!), to retain information about multiple
worlds. While we could construct the LUG by generating each of the multiple graphs and
taking their union, instead we define a direct construction procedure. We start similar to
the single planning graph by constructing an initial layer of all literals in our source belief.
The difference with the LUG is that we can prevent loss of information about multiple
worlds by recording in a label for each literal which of the worlds is relevant. As we
will discuss, we use a few simple techniques to propagate the labels through actions and
effects to label subsequent literal layers. Label propagation relies on expressing labels as
propositional formulas and using standard propositional logic operations. The end product
is single planning graph with labels on all graph elements; labels denote in which of the
explicit multiple graphs (if we were to build them) a graph element is reached.

We are trading planning graph structure space for label storage space. Our choice of
BDDs to represent labels helps lower the storage requirements on labels. The worst-case
complexity of the LUG is equivalent to the MG representation. The LUG’s complexity
savings is not realized when the projected possible worlds and the relevant actions for
each are completely disjoint; however, this does not often appear in practice. The space
savings comes in through two aspects: (1) redundant representation of actions and literals
is avoided, and (2) labels that facilitate non-redundant representation are stored as BDDs.
A nice feature of BDDs in the package we use [Brace et al., 1990] is that they efficiently
represent many BDDs in a shared BDD that leverages common substructure. Hence, in
practice the LUG contains the same information asMG with much lower construction and
usage costs.

In this section we present how to construct the LUG without mutexes, then describe
how to introduce mutexes, and finally discuss how to extract relaxed plans.

4.4.1 LABEL PROPAGATION

The LUG is based on the IPP [Koehler, 1999] planning graph, where a planning graph
level has an the action layer, effect layer, and literal layer. The extension is to add labels to
the elements of the action A, effect relation E , and literal L layers. We denote the label of
a graph element in level k as !k(.). We can build the LUG for any belief state BSP . We
illustrate the case where BSP = BSI from the CBTC example.

A label is a formula describing a set of states from which a graph element is (optimisti-
cally) reachable. We say a literal l is reachable from a set of states, described by BSi, after
k steps, if BSi |= BSP and BSi |= !k(l). There are also times where we would like to
know if a propositional formula (e.g. an execution precondition) is reachable from BSi.
For this, we introduce notation for extended labels !∗k(f) of formulae f . We say that any
propositional formula f is reachable from BSi after k steps if BSi |= !∗k(f). Since we only
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Figure 7: LUG for CBTC, with no mutexes. The relaxed plan for hLUG
RP is shown in bold.

have labels for literals, we substitute the labels of literals for the literals in a formula to get
the extended label of the formula. The extended label of a propositional formula f at level
k, is defined:

!∗k(f ∧ f ′) = !∗k(f) ∧ !∗k(f ′),
!∗k(f ∨ f ′) = !∗k(f) ∨ !∗k(f ′),
!∗k(¬(f ∧ f ′)) = !∗k(¬f ∨ ¬f ′),
!∗k(¬(f ∨ f ′)) = !∗k(¬f ∧ ¬f ′),

!∗k(�) = BSP ,

!∗k(⊥) =⊥,
!∗k(l) = !k(l)

If we build the LUG for CBTC, using BSP = BSI , we could say that BSG is reach-
able from BSI after two steps if the literal layer L2 contains ¬arm and ¬clog, and BSI |=
!∗2(¬arm∧¬clog), meaning that the models of worlds where ¬arm∧¬clog holds after two
steps are a superset of the worlds in our current belief. To capture this intuition in labelling,
the propagation of labels must reflect that (i) actions and effects are applicable in the pos-
sible worlds for which their conditions are reachable and (ii) a literal is reachable in all
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possible worlds where it is given as an effect. The construction involves defining an initial
literal layer and an inductive step to define a level.

Initial Literal Layer: The LUG has an initial layer consisting of every literal with a non
false (⊥) label. In the initial layer the label !0(l) of each literal l is identical to l ∧ BSP ,
representing the states of BSP in which l holds.

The labels for the initial layer literals are propagated through actions and effects to label
the next literal layer, as we will describe shortly. We continue propagation until no label of
any literal changes between layers, a condition referred to as level off.

The LUG for CBTC, Figure 7 (shown in without labels), using BSP =BSI has the
initial literal layer:

L0 = {!0(¬inP2) = !0(inP1) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),
!0(¬inP1) = !0(inP2) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!0(clog) = !0(arm) = BSP}
Notice that inP1 and inP2 have labels indicating the respective initial states in which

they hold, and clog and arm have BSP as their label because they hold in all states in BSP .

Action Layer: Once the previous literal layer Lk is computed, we find the action layer Ak.
Ak contains causative actions from the action set A, plus literal persistence. Persistence for
a literal l, denoted by lp, is represented as an action where ρe(lp) = ε0(lp) = l. An action
is included in Ak if its label is non empty (i.e. !k(a) �=⊥). The label of an action at level k,
is equivalent to the extended label of its execution precondition:

!k(a) = !∗k(ρ
e(a))

The zeroth action layer for CBTC, is:

A0 = {!0(Flush) = BSP ,

!0(¬inP2p) = !0(inP1p) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),
!0(¬inP1p) = !0(inP2p) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!0(clogp) = !0(armp) = BSP}
The literal persistences have labels identical to the label of the corresponding literal

from the previous literal layer. The Flush action has BSP as its label because it is always
applicable.

Effect Layer: The effect layer Ek depends both on the literal layer Lk and action layer Ak.
Ek contains an effect ϕj(a) if the effect has a non empty label (i.e. !k(ϕj(a)) �=⊥). Because
both the action and an effect must be applicable in the same work, the label of the effect at
level k is the conjunction of the label of the associated action with the extended label of the
antecedent:
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!k(ϕ
j) = !k(a) ∧ !∗k(ρj(a))

The zeroth effect layer for CBTC, is:

E0 = {!0(ϕ0(Flush)) = BSP

!0(ϕ
0(¬inP2p)) = !0(ϕ

0(inP1p)) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),
!0(ϕ

0(¬inP1p)) = !0(ϕ
0(inP2p)) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!0(ϕ
0(clogp)) = !0(ϕ

0(armp)) = BSP}
Again, like the action layer, the unconditional effect of each literal persistence has a

label identical to the corresponding literal in the previous literal layer. The unconditional
effect of Flush has a label identical to the label of Flush.

Literal Layer: The literal layer Lk depends on the previous effect layer Ek−1, and contains
only literals with non empty labels (i.e. !k(l) �=⊥). An effect ϕj(a) ∈ Ek−1 contributes to
the label of a literal l when the effect consequent contains the literal l. The label of a literal
is the disjunction of the labels of each effect from the previous effect layer that gives the
literal:

!k(l) =
∨

ϕj(a):l∈εj(a),
ϕj(a)∈Ek−1

!k−1(ϕ
j(a))

The first literal layer for CBTC is:

L1 = {!1(¬inP2) = !1(inP1) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),
!1(¬inP1) = !1(inP2) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!1(¬clog) = !1(clog) = !1(arm) = BSP}
This literal layer is identical the initial literal layer, except that ¬clog goes from having

a false label ⊥ (i.e. not existing in the layer) to having the label BSP .

We continue to the level one action layer:

A1 = {!1(DunkP1) = !1(DunkP2) = !1(Flush) = BSP ,

!1(¬inP2p) = !1(inP1p) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),
!1(¬inP1p) = !1(inP2p) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!1(clogp) = !1(armp) = BSP}
This action layer is identical to the level zero action layer, but adds both Dunk actions

because they are now executable due to ¬clog, and the persistence for ¬clog. Each Dunk
action gets a label identical to their execution precondition label.
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Followed by the level one effect layer:

E1 = {!1(ϕ0(DunkP1)) = !1(ϕ
0(DunkP2)) = !1(ϕ

0(Flush)) = BSP

!1(ϕ
1(¬DunkP1)) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),

!1(ϕ
1(¬DunkP2)) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!1(ϕ
0(¬inP2p)) = !1(ϕ

0(inP1p)) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),
!1(ϕ

0(¬inP1p)) = !1(ϕ
0(inP2p)) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!1(ϕ
0(clogp)) = !1(ϕ

0(armp)) = BSP}
The conditional effects of the Dunk actions in CBTC (Figure 7) have labels that indicate

the possible worlds in which they will give ¬arm because their antecedents do not hold in
all possible worlds. For example, the conditional effect ϕ1(DunkP1) has the label found by
taking the conjunction of the action’s label BSP with the antecedent’s label (arm∧ clog∧
inP1 ∧ ¬inP2).

Finally, the level two literal layer:

L2 = {!2(¬inP2) = !2(inP1) = (arm ∧ clog ∧ inP1 ∧ ¬inP2),
!2(¬inP1) = !2(inP2) = (arm ∧ clog ∧ ¬inP1 ∧ inP2),

!2(¬clog) = !2(clog) = !2(arm) = !2(¬arm) = BSP}
The labels of the literals for level 2 of CBTC, Figure 7, indicate that ¬arm is reachable

because its label is entailed byBSI . The label of ¬arm is found by taking the disjunction of
the labels of effects that give it, namely, (arm∧clog∧inP1∧¬inP2) from the conditional
effect of DunkP1 and (arm∧clog∧¬inP1∧inP2) from the conditional effect of DunkP2,
which reduces to BSP . Construction could stop here because BSP entails the label of the
goal !∗k(¬arm∧¬clog)= !k(¬arm)∧ !k(¬clog) = BSP ∧BSP = BSP . However, level off
occurs at the next level because there is no change in the labels of the literals.

When level off occurs at level three in our example, we can say that for any BSi, where
BSi |= BSP , that a formula f is reachable in k steps if ∃kBSi |= !∗k(f). If no such level
k exists, then f is not reachable from BSi. If there is some level k, where f is reachable
fromBSi, then the first such k is a lower bound on the number of parallel plan steps needed
to reach f from BSi. This lower bound is similar to the classical planning max heuristic
[Nguyen et al., 2002]. We can provide a more informed heuristic by extracting a relaxed
plan to support f with respect to BSi, described shortly.

Same World Labelled Mutexes There are several types of mutexes that can be found
within the LUG. To start with, we only concentrate on those that can evolve in a single
possible world because same-world mutexes are more effective as well as relatively easy
to understand. We extend the mutex propagation that was used in the multiple graphs
so that the mutexes are on one planning graph. The savings of computing on the LUG
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instead of multiple graphs is that we can reduce computation when a mutex exits in several
worlds. In Appendix B we describe how to handle cross-world mutexes, despite their lack
of effectiveness in the experiments we conducted. Cross world mutexes extend the LUG
to compute the same set of mutexes found by CGP [Smith and Weld, 1998].

Same-world mutexes can be represented with a single label, !̂k(x1, x2), between two
elements (actions, effect, or literals). The mutex holds between elements x1 and x2 in all
worlds S where S |= !̂k(x1, x2). If the elements are not mutex in any world, we can assume
the label of a mutex between them is empty ⊥. We discuss how the labelled mutexes are
discovered and propagated for actions, effect relations, and literals.

When using mutexes, we can refine what it means for a formula f to be reachable from
a set of worlds BSP . We must ensure that for every state in the source belief BSP , there
exists a state of f that is reachable. A state S ′ of f is reachable from a state S ofBSP when
there are no two literals in S′ that are mutex in world S and BSP |= !∗k(S).

In each of the action, effect, and literal layers there are multiple ways for the same pair
of elements to become mutex (e.g. interference or competing needs). Thus, the mutex label
for a pair is disjunction of all labelled mutexes found for the pair by some means.

Action Mutexes Âk: The same world action mutexes at a level k are a set of labelled pairs
of actions. Each pair is labelled with a formula that indicates the set of possible worlds
where the actions are mutex. The possible reasons for mutex actions are interference and
competing needs.

• Interference Two actions a, a′ interfere if (1) the unconditional effect consequent
ε0(a) of one is inconsistent with either the (a) execution precondition ρe(a′) or (b)
unconditional effect consequent ε0(a′) of the other, or (2) the execution preconditions
ρe(a), ρe(a′) are inconsistent. The mutex will exist in all possible world projections
!̂k(a, a

′) = BSP . Formally, a and a′ interfere if:

(1a) ε0(a) ∧ ρe(a′) =⊥
(1b) ε0(a) ∧ ε0(a′) =⊥
(2) ρe(a) ∧ ρe(a′) =⊥

• Competing Needs Two actions a, a′ have competing needs in a world when a pair of
literals from their execution preconditions are mutex in the world. The worlds where
a and a′ are mutex because of competing needs are described by:

⊥ ∨
∨

l∈ρj(a),l′∈ρj(a′)

!k(l, l
′) ∧ !k(a) ∧ !k(a′)

In the above formula we find that there are no worlds where the actions are mutex
(⊥) or for all pairs of preconditions (l ∈ ρe(a), l′ ∈ ρe(a′)) the worlds where the
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preconditions are mutex and both actions are reachable (!k(l, l′) ∧ !k(a) ∧ !k(a′)),
there exists a mutex between the actions.

Effect Mutexes Êk: The effect mutexes are a set of labelled pairs of effects. Each pair
is labelled with a formula that indicates the set of possible worlds where the effects are
mutex. The possible reasons for mutex effects are associated action mutexes, interference,
competing needs, or induced effects.

• Mutex Actions Two effects ϕi(a) ∈ Φ(a), ϕj(a′) ∈ Φ(a′) of different actions a, a′

are mutex in all worlds where their associated actions are mutex, !̂k(a, a′).

• Interference Like actions, two effects interfere if (1) the consequent of one effect
εi(a) and (a) antecedent ρj(a′) or (b) consequent εj(a′) of the other are inconsis-
tent, or (2) the antecedents ρi(a), ρj(a′) are inconsistent. The mutex will exist in all
possible world projections, so the label of the mutex is !̂k(ϕi(a), ϕj(a′)) = BSP .
Formally, ϕi(a) and ϕj(a′) interfere if:

(1a) εi(a) ∧ ρj(a′) |=⊥
(1b) εi(a) ∧ εj(a′) |=⊥
(2) ρi(a) ∧ ρj(a′) |=⊥

• Competing Needs Like actions, two effects have competing needs in a world when a
pair of literals from their antecedents are mutex in a world. The possibly empty label
of a mutex between ϕi(a) and ϕj(a′) is in worlds:

⊥ ∨
∨

l∈ρj(a),l′∈ρj(a′)

!k(l, l
′) ∧ !k(ϕj(a)) ∧ !k(ϕj(a′))

In the above formula we find that there are no worlds where the effects are mutex (⊥)
or for all pairs of preconditions (l ∈ ρi(a), l′ ∈ ρj(a′)) the worlds where the precon-
ditions are mutex and both actions are reachable (!k(l, l′) ∧ !k(ϕi(a)) ∧ !k(ϕj(a′)))
there exists a mutex between the actions.

• Induced An induced effect of an effect is an effect of the same action that may
execute at the same time. An effect is induced by another in the possible worlds
where they are both reachable. For example, the conditional effect of an action al-
ways induces the unconditional effect of the action. Two effects of different actions
are mutex because of induced effects when an action has two effects where one is
(i) mutex with the effect of another action, and (ii) the effects of the action can be
executed together (i.e. induce each other).
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Figure 8: Effect ϕi(a) induces effect ϕj(a). ϕi(a) is mutex with ϕh(a′), so ϕj(a) is in-
duced mutex with ϕh(a′).

The induced mutex is between (a) the effect mutex with the inducing effect and (b)
the induced effect. The label of the mutex is the conjunction of the label of the effect
that is mutex with the inducing effect, the label of the inducing effect and the label of
the induced effect. If ϕi(a) is mutex with ϕh(a′) in the possible worlds described by
!̂k(ϕ

i(a), ϕh(a′)), and ϕi(a) induces effect ϕj(a) in the possible worlds described by
!k(ϕ

i(a)) ∧ !k(ϕj(a)), then there is an induced mutex between ϕj(a) and ϕh(a′) for
all possible worlds specified by !k(ϕi(a))∧ !k(ϕj(a))∧ !̂k(ϕi(a), ϕh(a′)) (see Figure
8). For additional discussion of the methodology behind induced mutexes see [Smith
and Weld, 1998].

An example of a same-world induced effect mutex is shown in Figure 8. Literal p
holds in possible worlds S1 and S2 (denoted by label !), q holds in possible worlds
S1 and S3 (denoted by label !′), and r holds in worlds S1 and S4 (denoted by !′′).
Literals p and q are mutex in possible world S1. The effect ϕi(a) of a induces ϕj(a)

in possible world S1, ϕi(a) is mutex with effect ϕh(a′) in possible world S1 because
of the mutex between p and q, and ϕj(a) becomes induced mutex with ϕh(a′) in
possible world S1.
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Literal Mutexes L̂k: The literal mutexes are a set of labelled pairs of literals. Each pair
is labelled with a formula that indicates the set of possible worlds where the literals are
mutex. The only reason for mutex literals is inconsistent support.

• Inconsistent Support Two literals have inconsistent support in a possible world at
level k when there are no two non-mutex effects that support both literals in the
world. The label of the literal mutex at level k is a disjunction of all worlds where
they have inconsistent support. The worlds for a possibly empty inconsistent support
mutex between l and l′ are:

⊥ ∨
∨

S:∀ϕi(a),ϕj(a′)∈Ek−1,

where l∈εi(a),l′∈εj(a′),
S|= ̂k−1(ϕ

i(a),ϕj(a′))

S

The meaning of the above formula is that the literals are mutex in all worlds S where
all pairs of effects that support the literals in S are mutex in S.

4.4.2 LUG HEURISTICS

The heuristics computed on the LUG can capture measures similar to the MG heuristics,
but there exists a new opportunity to leverage labels to make some more efficient.

No Aggregation: A single planning is sufficient if there is no state aggregation being
measured.

Positive Interaction Aggregation: Unlike MG heuristics, we do not compute positive
interaction based relaxed plans on the LUG. The MG approach to measure positive in-
teraction across each state in a belief is using multiple relaxed plans and taking their max
value. To get the same measure on the LUG we would still need to extract multiple relaxed
plans, the situation we are trying to avoid by using the LUG. While the graph construc-
tion overhead may be lowered by using the LUG, the heuristic computation could take too
long. Hence, we do not compute relaxed plans on the LUG to measure positive interaction
alone, but we do compute relaxed plans that measure overlap (which measures positive
interaction).

Independence Aggregation: Like positive interaction aggregation, we need a relaxed plan
for every state in the projected belief to find the sum of the costs. Hence, we do not use any
relaxed plans that assume world independence.

State Overlap Aggregation: Relaxed plans extracted from the LUG to get the hLUG
RP

heuristic resemble the unioned relaxed plan in the hMG
RPU heuristic. Recall that the hMG

RPU

heuristic extracts a relaxed plan from each of the multiple planning graphs (one for each
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possible world) and unions the set of actions chosen at each step in each of the relaxed
plans. The LUG relaxed plan heuristic is similar in that it counts actions that have positive
interaction in multiple worlds only once and accounts for independent actions that are used
in subsets of the possible worlds. The advantage of hLUG

RP is that we find these actions with
a single pass on one planning graph.

We are trading the cost of computing multiple relaxed plans for the cost of manipulating
LUG labels to determine what lines of causal support are used in what worlds. In the
relaxed plan we want to support the goal with every state in BSP , but in doing so we need
to track which states in BSP use which paths in the planning graph. A subgoal may have
several different (and possibly overlapping) paths from the worlds in BSP .

The LUG relaxed plans are labelled subgraphs of a LUG, represented as a set of layers:
{ARP

0 , ERP
0 ,LRP

1 , ..., ARP
b−1, ERP

b−1, LRP
b }, where ARP

r is a set of labelled actions, ERP
r is a

set of labelled effects, and LRP
r+1 is a set of labelled clauses. The components of the relaxed

plan are labelled to indicate the worlds of BSP where they are chosen for support. The
relaxed plan is extracted from the level b = hLUG

level (BSi) (i.e., the first level where BSi is
reachable, also described in Appendix A).

Please note that we are extracting the relaxed plan for BSi in terms of clauses, and not
literals, which is different that the SG and MG versions of relaxed plans. Previously we
found the constituent of BSi that was first reached on a planning graph and now we do
not commit to any one constituent. Our rationale is that we were possibly using different
constituents in each of the multiple graphs, and in this condensed version of the multiple
graphs we still want to be able to support different constituents of the BSi in different
worlds. We could also use the constituent representation of BSi in defining the layers of
the relaxed plan, but choose the clausal representation of BSi instead because we know
that we have to support each clause, however with constituents we know we only need to
support one (but we don’t need to know which one).

The relaxed plan, shown in bold in Figure 7, for BSI to reach BSG in CBTC is:
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{ARP
0 = {!RP

0 (inP1p) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),
!RP
0 (inP2p) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2),

!RP
0 (Flush) = BSP},

ERP
0 = {!RP

0 (ϕ0(inP1p)) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),
!RP
0 (ϕ0(inP2p)) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2),

!RP
0 (ϕ0(Flush)) = BSP},

LRP
1 = {!RP

1 (inP1) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),
!RP
1 (inP2) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2),

!RP
1 (¬clog) = BSP},

ARP
1 = {!RP

1 (DunkP1) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),
!RP
1 (DunkP2) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2),

!RP
1 (¬clogp) = BSP},

ERP
1 = {!RP

1 (ϕ1(DunkP1)) = (arm ∧ ¬clog ∧ inP1 ∧ ¬inP2),
!RP
1 (ϕ1(DunkP2)) = (arm ∧ ¬clog ∧ ¬inP1 ∧ inP2),

!RP
1 (ϕ0(¬clogp)) = BSP},

LRP
2 = {!RP

2 (¬arm) = BSP ,

!RP
2 (¬clog) = BSP}}

We start by forming LRP
2 with the clauses in κ(BSG), namely ¬arm and ¬clog; we

label the clauses with BSP because they need to be supported by all states in our belief.
Next, we support each clause in LRP

2 with the relevant effects from E1 to form ERP
1 . For

¬clog we use persistence because it supports ¬clog in all worlds described by BSP (this
is an example of positive interaction of worlds). For ¬arm the relevant effects are the
respective ϕ1 from each Dunk action. We choose both effects to support ¬arm because
we need to support ¬arm in all worlds of BSP , and each effect gives support in only one
world (this is an example of independence of worlds). We then insert the actions associated
with each chosen effect into ARP

1 with the appropriate label indicating the worlds it was
needed, which in general is less worlds than it is reachable (i.e. it is always the case that
!RP
r (.) |= !r(.)). Next we form LRP

1 with the execution preconditions of actions in ARP
1

and antecedents of effects in ERP
1 , which are ¬clog, inP1, and inP2, labelled with all worlds

where an action or effect needed them. In the same fashion as level two, we support the
literals at level one, using persistence for inP1 and inP2, and Flush for ¬clog. We stop here,
because we have supported all clauses at level one.

For the general case, extraction starts at the level b where BSi is first reachable from
BSP . The first relaxed plan layers we construct are ARP

b−1, ERP
b−1,LRP

b , where LRP
b contains

all clauses C ∈ κ(BSi), labelled as !RP
k (C) = BSP .

For each level r, 1 ≤ r ≤ b, we support each clause in LRP
r by choosing relevant effects

from Er−1 to form ERP
r−1. An effect ϕj(a) is relevant if it is reachable in some of the worlds
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where we need to support C (i.e. !r−1(ϕ
j(a)) ∧ !RP

r (C) �=⊥) and the consequent gives a
literal l ∈ C. For each clause, we have to choose enough supporting effects so that the
chosen effect worlds are a superset of the worlds we need to support the clause, formally

∀C∈LRP
r
!RP
r (C) |=




∨
ϕj(a):l∈εj(a),

l∈C,
ϕj(a)∈Er−1

!RP
r−1(ϕ

j(a))




We think of supporting a clause in a set of worlds as a set cover problem where effects
cover subsets of worlds. Our algorithm to cover the worlds of a clause with worlds of effects
is a variant of the well known greedy algorithm for set cover [Cormen et al., 1990]. We first
choose as many relevant persistence effects that can cover new worlds, then choose action
effects that cover the most new worlds at each step. Each effect we choose for support is
added to ERP

r−1 and labelled with the new worlds it covered for C. Once all clauses in LRP
r

are covered, we form the action layer ARP
r−1 as all actions that have an effect in ERP

r−1. The
actions in ARP

r−1 are labelled to indicate all worlds where any of their effects were labelled
in ERP

r−1.
We obtain the next subgoal layer, LRP

r−1, by adding literals from the execution precondi-
tions of actions in ARP

r−1 and antecedents of effects in ERP
r−1. Each literal l ∈ LRP

r−1 is labelled
to indicate all worlds with which any action or effect, that required l, were labelled.

We support the literals in LRP
r−1 in the same fashion as LRP

r . We continue to support
literals with effects, insert actions, and insert action and effect preconditions until we have
supported all literals in LRP

1 .
Once we get a relaxed plan, the relaxed plan heuristic, hLUG

RP (BSi), is the number of
actions in each action layer, formally

hLUG
RP (BSi) =

b−1∑
i=0

| ARP
i |

Thus in our CBTC example we have hLUG
RP (BSG) = 3.

5. Empirical Evaluation

This section presents our implementation of the CAltAlt and POND planners and the
results of our experimentation with the heuristics within them. All tests were run in Linux
on a Pentium 4 2.66GHz w/ 1GB RAM. Both CAltAlt and POND used a heuristic weight
of five in the, respective, A* and AO* searches. We also compare with the competing
approaches (CGP, SGP, GPT v1.40, MBP v0.91, KACMBP, YKA, and CFF) on several
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Figure 9: The implementation of CAltAlt relies on a regression search engine that searches
over belief states. The search engine is guided by heuristics extracted from plan-
ning graphs.

domains and problems. All domain and problem files for all of the compared planners can
be found at http://rakaposhi.eas.asu.edu/belief-search/.

5.1 Implementation

CAltAlt The implementation of CAltAlt uses several off-the-shelf planning software
packages. Figure 9 shows a diagram of the system architecture. While CAltAlt extends
the name of AltAlt, it relies on a limited subset of the implementation. The components
of CAltAlt are the IPC parser for PDDL 2.1 (slightly extended to allow disjunction in the
initial conditions) , the HSP-r search engine [Bonet and Geffner, 1999], the IPP planning
graph [Koehler et al., 1997], and CUDD [Brace et al., 1990] to implement the LUG la-
bels. The custom parts of the implementation include the action representation, belief state
representation and regression operator, and the heuristic calculation.

POND The implementation of POND is very similar to CAltAlt aside from the search
engine and state representation. POND uses LAO* [Hansen and Zilberstein, 2001] source
code from Eric Hansen to perform the search, and BDDs [Brace et al., 1990] to represent
belief states and actions. POND also uses the IPP source code for planning graphs.
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Problem Initial Goal Literals Causative Observational Optimal Optimal
States Literals Actions Actions Parallel Serial

Rovers1 1 1 66 88 0 {12} 5 {5} 5 {5}
Rovers2 2 1 66 88 0 {12} 8 {7} 8 {7}
Rovers3 3 1 66 88 0 {12} 10 {?} 10 {8}
Rovers4 4 1 66 88 0 {12} 13 {?} 13 {10}
Rovers5 16 3 71 97 0 {12} ? {?} 20 {?}
Rovers6 12 3 119 217 0 {18} ? {?} ? {?}

Logistics1 2 1 29 70 0 {10} 6 {6} 9 {7}
Logistics2 4 2 36 106 0 {20} 6 {?} 15 {12}
Logistics3 2 1 58 282 0 {21} 8 {?} 11 {8}
Logistics4 4 2 68 396 0 {42} 8 {?} 18 {?}
Logistics5 8 3 78 510 0 {63} ? {?} 28 {?}

BT(n) n 1 n+1 n 0 {n} 1 {1} n {n-1}
BTC(n) n 1 n+2 n+1 0 {n} 2n-1 {2} 2n-1 {n-1}

CubeCenter(n) n3 3 3n 6 0 (3n-3)/2 (9n-3)/2
Ring(n) n3n n 4n 4 0 3n-1 3n-1

Figure 10: Features of test domains and problems - Number of initial states, Number of
goal literals, Number of literals, Number of causative actions, Number of Ob-
servational Actions, Optimal number of parallel plan steps, Optimal number of
serial plan steps. Data for conditional versions of domains is in braces; plan
lengths are max conditional branch length.

5.2 Domains

Figure 10 shows some of the relative features of the different problems we used to evaluate
our approach. The table shows the number of initial states, goal literals, literals, actions,
and optimal plan lengths. This can be used as a guide to gauge the difficulty of the prob-
lems, as well as our performance.

Conformant Problems In addition to the standard domains used in conformant planning–
such as Bomb-in-the-Toilet, Ring, and Cube Center, we also developed two new domains.
We chose these new domains because they demonstrate higher difficulty in the attainment
of subgoals, and have many plans of varying length.

The Rovers domain is a conformant adaptation of the analogous domain of the classical
planning track of the International Planning Competition [Long and Fox, 2003]. The added
uncertainty to the initial state is conditions that rule whether an image objective is visible
from various vantage points due to weather as well as the availability of rock and soil
samples. The goal is to upload an image of an objective and some rock and soil sample
data, thus a conformant plan requires visiting all of the possible vantage points and taking
a picture, plus visiting all possible locations of soil and rock samples to draw samples.

The first five Rovers problems have 4 waypoints. Problems one through four have one
through four locations, respectively, at which a desired imaging objective is possibly visible
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(at least one will work, but we don’t know which one). Problem 5 adds some rock and soil
samples as part of the goal and a couple waypoints where one of each can be obtained
(again, we don’t know which waypoint will have the right sample). Problem 6 adds two
more waypoints, keeps the same goals as Problem 5 and changes the possible locations of
the rock and soil samples. In all cases the waypoints are connected in a tree structure, as
opposed to completely connected.

The Logistics domain is a conformant adaptation of the classical Logistics domain
where trucks and airplanes move packages. The uncertainty is the initial locations of pack-
ages. Thus, any actions relating to the movement of packages have a conditional effect
that is predicated on the package actually being at a location. In the conformant version,
the drivers and pilots cannot sense or communicate a package’s actual whereabouts. The
problems scale by adding packages and cities.

The Logistics problems consist of one airplane, and cities with an airport, a post office,
and a truck. The airplane can travel between airports and the trucks can travel within cities.
The first problem has two cities and one package that could start at either post office, and
the goal is to get the package to the second city’s airport. The second problem adds another
package at the same possible starting points and having the same destination. The third
problem has three cities with one package that could be at any post office and has to reach
the third airport. The fourth problem adds a second package to the third problem with the
same starting and ending locations. The fifth problem has three cities and three packages,
each at one of two of the three post offices and having to reach different airports.

Conditional Problems For conditional planning we consider domains from the litera-
ture: bomb in the toilet with sensing BTS, and bomb in the toilet with clogging and sensing
BTCS. We also extend the conformant Logistics and Rovers to include sensory actions.

The Rovers problem allows for the rover, when it is at a particular waypoint, to sense
the availability of image, soil, or rock data at that location. The locations of the collectable
data are expressed as one-of constraints, so the rover can deduce the locations of collectable
data by failing to sense the other possibilities.

Logistics has observations to determine if a package at a location exists, and the obser-
vation is assumed to be made by a driver or pilot at the particular location. Since there are
several drivers and a pilot, different agents make the observations. The information gained
by the agents is assumed to be automatically communicated to the others, as the planner is
the agent that has all the knowledge.5

We start by comparing the heuristic approaches within our planners. We continue by
describing how our planners, using the best heuristics, compare against other state of the
art approaches.

5. This problem may be interesting to investigate in a multi-agent planning scenario, assuming no global
communication (e.g. no radio dispatcher).

37



BRYCE, KAMBHAMPATI, & SMITH

5.2.1 INTRA-PLANNER COMPARISON

We compare many techniques within CAltAlt and POND on our conformant planning
domains, and in addition we test the heuristics in POND on the conditional domains.
We proceed by showing how the heuristics perform in CAltAlt and then how various mu-
tex computation schemes for the LUG can affect performance. Finally, we present how
POND performs with the different heuristics in both conformant and conditional do-
mains, then finish with a summary of important conclusions. Our performance metrics
include the total planning time and the number of search nodes expanded. Additionally,
when discussing mutexes we analyze planning graph construction time. We also compare
the heuristic estimates in POND to the optimal plan length to gauge heuristic accuracy.

We only compute mutexes in the planning graphs for CAltAlt because the planning
graph(s) are only built once in a search episode and mutexes help prune the inconsistent
belief states encountered in regression search. We abstain from computing mutexes in
POND because in progression we build new planning graphs for each search node and we
want to keep graph computation time low.

CAltAlt: The results for CAltAlt in the conformant Rovers, Logistics, BT, and BTC do-
mains, in terms of total time and number of expanded search nodes, are presented in Figure
11. We do not discuss the Ring and Cube Center domains for CAltAlt because due to
implementation details the planner performs very poorly when domains have actions with
several conditional effects and hence does not scale. We show the number of expanded
nodes because it gives an indication of how well a heuristic guides the planner. The total
time captures the amount of time computing the heuristic and searching. A high total time
with a high number of search nodes indicates a poor heuristic, and a high total time and
low number of search nodes indicates an expensive but informed heuristic.

We describe the results from left to right in Figure 11, comparing the different planning
graph structures and relaxed plans computed on each planning graph. We start with the
non-planning graph heuristics h0 and hcard. As expected, h0, breadth-first search, does
not perform well in a large portion of the problems, shown by the large number of search
nodes and inability to scale to solve larger problems. We notice that with the hcard heuristic
performance is very good in the BT and BTC problems (this confirms the results originally
seen in [Bertoli et al., 2001b]). However, hcard does not perform as well in the Rovers and
Logistics problems because the size of a belief state, during planning, does not necessarily
indicate that the belief state will be in a good plan.

Next, for a single planning graph, CAltAlt does reasonably well with the hSG
RP heuristic

in the Rovers and Logistics domains, but fails to scale very well on the BT and BTC do-
mains. Rovers and Logistics have comparatively fewer initial worlds than the BT and BTC
problems. Moreover the deterministic plans, assuming each initial state is the real state,
are somewhat similar for Rovers and Logistics, but mostly independent for BT and BTC.
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Therefore, approximating a fully observable plan with the single graph relaxed plan is rea-
sonable when plans for achieving the goal from each world have high positive interaction.
However, without high positive interaction the heuristic degrades quickly when the number
of initial worlds increases.

With multiple planning graphs, CAltAlt is able to perform better in the Rovers domain,
but takes quite a bit of time in the Logistics, BT, and BTC domains. In Rovers, capturing
distance estimates for individual worlds and aggregating them by some means tends to
be better than aggregating worlds and computing a single distance estimate (as in a single
graph). In Logistics, part of the reason computing multiple graphs is so costly is that we are
computing mutexes on each of the planning graphs. In BT and BTC, the total time increases
quickly because the number of planning graphs, and relaxed plans for every search node
increases so much as problems get larger.

Comparing the two multiple graph heuristics6 we demonstrate in CAltAlt namely hMG
m−RP

and hMG
RPU , we notice the effect of our choices for state distance aggregation. The hMG

m−RP re-
laxed plan heuristic aggregates state distances, as found on each planning graph, by taking
the maximum distance, and the hMG

RPU unions the relaxed plans, from each graph, and counts
the number of actions in the unioned relaxed plan. As with the single graph relaxed plan,
the hMG

m−RP relaxed plan essentially measures one state to state distance; thus, performance
suffers on the BT and BTC domains. However, using the unioned relaxed plan heuristic,
we capture the independence among the multiple worlds so that we scale up better in BT
and BTC. Despite the usefulness of the unioned relaxed plan, it is costly to compute and
scalability is limited, so we turn to the LUG version of this same measure.

With the LUG, we use the hLUG(FX)
RP heuristic in CAltAlt heuristic. This heuristic uses

a LUG with full cross world mutexes (denoted by FX). As in the similar hMG
RPU heuristic,

measuring overlap is important, and improving the speed of computing the heuristic tends
to improve the scalability of CAltAlt. While CAltAlt is slower in the Rovers and BTC
domains when using the LUG, we note that it is because of the added cost of computing
cross world mutexes – we are able to improve the speed by relaxing the mutexes, as we
will describe shortly.

Mutexes: Since the LUG is used for heuristic guidance only and the number of possible
mutexes we can find is quite large, we can use several schemes to relax the complexity of
the mutex computations. The schemes combine different types of mutexes with types of
cross world checking. The mutex types are: computing no mutexes (NX), computing only
static interference mutexes (StX), computing (StX) plus inconsistent support and compet-
ing needs mutexes – dynamic mutexes (DyX), and computing (DyX) plus induced mutexes
– full mutexes (FX). The cross world checking (see appendix B) reduction schemes are:

6. We show hMG
s−RP with POND.
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Problem h0 hcard hSG
RP hMG

m−RP hMG
RPU h

LUG(FX)
RP

Rovers 1 2255/5 18687/14 543/5 542/5 185/5 15164/5
2 49426/8 TO 78419/8 8327/8 29285/9 32969/8
3 TO - 91672/10 20162/10 2244/11 16668/10
4 - - TO 61521/16 3285/15 31584/13
5 - - - TO TO TO
6 - - - - - -

Logistics 1 1108/9 4268/9 198/9 183/9 1109/9 1340/9
2 TO TO 7722/15 15491/15 69818/19 18535/15
3 - - 3324/14 70882/14 TO 16458/15
4 - - 141094/19 TO - 178068/19
5 - - TO - - TO

BT 2 19/2 14/2 18/2 20/2 21/2 12/2
10 4837/10 56/10 5158/10 8988/10 342/10 71/10
20 TO 418/20 TO TO 2299/20 569/20
30 - 1698/30 - - 9116/30 2517/30
40 - 5271/40 - - 44741/40 7734/40
50 - 12859/50 - - TO 18389/50
60 - 26131/60 - - - 37820/60
70 - 48081/70 - - - 70538/70
80 - 82250/80 - - - 188603/80

BTC 2 30/3 16/3 16/3 33/3 23/3 18/3
10 15021/19 161/19 15679/19 41805/19 614/19 1470/19
20 TO 1052/39 TO TO 2652/39 51969/39
30 - 3823/59 - - 9352/59 484878/59
40 - 11285/79 - - 51859/79 TO
50 - 26514/99 - - TO -
60 - 55687/119 - - - -
70 - 125594/140 - - - -

Figure 11: Results for CAltAlt for conformant Rovers, Logistics, BT, and BTC. The data
is Total Time / # Expanded Nodes, “TO” indicates a time out, “OoM” indicates
out of memory, and “-” indicates no attempt.

computing mutexes across same-worlds (SX), computing mutexes across pairs of worlds
in the intersection (conjunction) of element labels (IX).

Figure 12 shows that within CAltAlt, using the relaxed plan heuristic and changing
the way we compute mutexes on the LUG can drastically alter performance. Often, the
possible number of cross world mutexes are so numerous that building the LUG takes
too much time. To see if we could reduce graph construction overhead without hindering
performance, we evaluated hLUG

RP when the LUG is built (a) considering all cross world
relations, for the schemes (NX), (StX), (DyX), and (FX); and (b) same world relations for
the schemes (DyX-SX) and (FX-SX), and (c) cross world relations for all possible worlds
pairs in the intersection of element’s labels (DyX-IX) and (FX-IX).

The results show that simpler problems like BT and BTC do not benefit as much from
advanced computation of mutexes beyond static interference. However, for the Rovers and
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Logistics problems, advanced mutexes play a larger role. Mainly, interference, competing
needs, and inconsistent support mutexes are important. The competing needs and incon-
sistent support mutexes seem to have a large impact on the informedness of the guidance
given by the LUG, as scalability improves most here. Induced mutexes don’t improve
search time much, and only add to graph computation time. Reducing cross world mu-
tex checking also helps quite a bit. It seems that only checking same world mutexes is
sufficient to solve large problems. Interestingly, the MG graphs compute same-world in-
terference, competing needs, and inconsistent support mutexes within each graph, equating
to the same scenario as (DyX-SX), however, the LUG provides a much faster construction
time, evidenced by the LUG’s ability to out-scale MG.

POND: We show the total time and the number of expanded nodes for POND solving
the conformant problems (including Ring and Cube Center) in Figure 13, and for POND
solving the conditional problems in Figure 14. As with CAltAlt we show the total time and
number of expanded nodes for each test. We also add the hMG

s−RP heuristic, not implemented
in CAltAlt, that sums the values of relaxed plans extracted from multiple planning graphs.
We do not compute mutexes on any of the planning graphs used for heuristics in POND
mainly because we build planning graphs for each search node. We proceed by first com-
menting on the performance of POND, with the different heuristics, in the conformant
domains, then discuss the conditional domains.

In the conformant domains, POND generally does better than CAltAlt. This may be
attributed in part to implementation-level details. Aside from a few differences that we
will mention, we see similar trends in the performance of the various heuristics in both
CAltAlt and POND. Namely, the NG and SG heuristics have limited ability to help
the planner scale, the MG heuristics help the planner scale better but are costly, and the
LUG provides the best scalability. The difference between the MG and the LUG are
especially pronounced in Cube Center and Ring, where the size of the initial belief state is
quite large as the instances scale. Interestingly in Ring, breadth first search and the single
graph relaxed plan are able to scale due to reduced heuristic computation time and focussed
search effort. The LUG is able to provide good search guidance, but tends to take a long
time computing heuristics.

We are also now able to compare the choices for aggregating the distance measures
from relaxed plans for multiple graphs. We see that taking the max of the relaxed plans,
hMG
m−RP , in assuming positive interaction among worlds is useful in Logistics and Rovers,

but loses the independence of worlds in the BT and BTC domains. However, taking the
sum of the relaxed plan values for different worlds, hMG

s−RP is able to capture the indepen-
dence in the BT domain. We notice that the summation does not help POND in the BTC
domain; this is because we overestimate the heuristic value for some nodes by counting the
Flush action once for each world when it in fact only needs to be done once (i.e. we miss
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LUG(NX)
RP h

LUG(StX)
RP h

LUG(DyX)
RP h

LUG(FX)
RP h

LUG(DyX−SX)
RP h

LUG(DyX−IX)
RP h

LUG(FX−SX)
RP h

LUG(FX−IX)
RP

Rovers 1 13/1112/51 19/1119/51 15453/89/6 15077/87/6 15983/87/6 15457/87/6 15098/86/6 15094/85/6
2 20/904/41 16/903/41 13431/138/8 32822/147/8 10318/139/8 10625/134/8 10523/138/8 14550/138/8
3 13/8704/384 17/8972/384 17545/185/10 16481/187/10 10643/185/10 11098/209/10 10700/191/10 11023/184/10
4 TO TO 32645/441/14 31293/291/14 14988/291/14 16772/291/14 14726/290/14 16907/290/14
5 - - 698575/3569/45 TO 61373/3497/45 379230/3457/45 60985/3388/45 378869/3427/45
6 - - TO - 217507/3544/37 565013/3504/37 225213/3408/37 588336/3512/37

Logistics 1 5/868/81 10/868/81 1250/117/9 1242/98/9 791/116/9 797/117/9 796/115/9 808/115/9
2 10/63699/1433 88/78448/1433 16394/622/15 18114/421/15 2506/356/15 7087/428/15 2499/352/15 6968/401/15
3 TO TO 17196/1075/15 16085/373/15 10407/403/15 10399/408/15 10214/387/15 10441/418/15
4 - - 136702/1035/19 176995/1073/19 24214/648/19 71964/871/19 23792/642/19 71099/858/19
5 - - TO TO 52036/2690/41 328114/4668/52 52109/2672/41 324508/4194/52

BT 2 1/34/2 0/13/2 0/13/2 0/12/2 0/16/2 0/15/2 0/25/2 0/13/2
10 4/72/10 4/56/10 13/57/10 13/58/10 12/59/10 14/59/10 13/59/10 14/56/10
20 19/452/20 22/448/20 120/453/20 120/449/20 102/450/20 139/454/20 105/444/20 137/454/20
30 62/1999/30 59/1981/30 514/1999/30 509/2008/30 421/1994/30 600/2007/30 413/1986/30 596/2002/30
40 130/6130/40 132/6170/40 1534/6432/40 1517/6217/40 1217/6326/40 1822/6163/40 1196/6113/40 1797/6127/40
50 248/14641/50 255/14760/50 3730/14711/50 3626/14763/50 2866/14707/50 4480/14676/50 2905/14867/50 4392/14683/50
60 430/30140/60 440/29891/60 7645/30127/60 7656/30164/60 5966/30017/60 9552/30337/60 5933/30116/60 9234/29986/60
70 680/55202/70 693/55372/70 15019/55417/70 14636/55902/70 11967/55723/70 18475/55572/70 11558/55280/70 18081/55403/70
80 1143/135760/80 1253/140716/80 26478/132603/80 26368/162235/80 21506/136149/80 32221/105654/80 21053/139079/80 32693/109508/80

BTC 2 0/62/3 1/16/3 0/15/3 4/14/3 0/16/3 1/14/3 1/13/3 2/14/3
10 4/93/19 4/77/19 14/78/19 1388/82/19 13/76/19 16/75/19 14/75/19 440/81/19
20 21/546/39 32/545/39 139/553/39 51412/557/39 105/546/39 140/549/39 110/555/39 19447/568/39
30 58/2311/59 61/2293/59 543/2288/59 482578/2300/59 427/2294/59 606/2300/59 444/2287/59 199601/2401/59
40 133/6889/79 149/6879/79 1564/6829/79 TO 1211/6798/79 1824/6816/79 1253/6830/79 1068019/6940/79
50 260/15942/99 261/16452/99 TO - 2890/16184/99 4412/16414/99 2926/16028/99 TO
60 435/32201/119 443/32923/119 - - 6045/32348/119 9492/32350/119 6150/32876/119 -
70 742/62192/139 745/61827/139 - - TO TO TO -
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Problem h0 hcard hSG
RP hMG

m−RP hMG
s−RP hMG

RPU hLUG
RP

Rovers 1 540/36 520/21 590/6 580/6 580/6 580/6 590/6
2 940/249 790/157 700/15 1250/32 750/10 830/13 680/11
3 3340/1150 2340/755 3150/230 3430/77 1450/24 1370/23 850/16
4 TO 14830/4067 13480/1004 10630/181 7000/163 2170/34 1130/28
5 - TO TO 85370/452 12470/99 31480/73 2050/36
6 - - - 180890/416 15780/38 31950/73 9850/147

Logistics 1 560/169 530/102 680/46 970/58 730/21 650/9 560/9
2 TO TO TO 2520/32 6420/105 2310/20 910/15
3 - - - 27820/927 4050/83 2000/15 1130/14
4 - - - 5740/27 29180/211 53470/382 3180/46
5 - - - 42980/59 51380/152 471850/988 6010/42

BT 2 450/3 460/2 460/3 450/2 450/2 500/2 460/2
10 760/1023 590/428 1560/1023 6200/428 820/10 880/10 520/10
20 TO TO TO TO 6740/20 6870/20 1230/20
30 - - - - 41320/30 44260/30 4080/30
40 - - - - 179930/40 183930/40 11680/40
50 - - - - 726930/50 758140/50 28420/50
60 - - - - TO TO 59420/60
70 - - - - - - 113110/70
80 - - - - - - 202550/80

BTC 2 460/5 460/4 450/5 460/4 460/3 470/3 460/3
10 1090/2045 970/1806 3160/2045 18250/1806 980/19 990/19 540/19
20 TO TO TO TO TO 9180/39 1460/39
30 - - - - - 54140/59 4830/59
40 - - - - - 251140/79 14250/79
50 - - - - - 1075250/99 34220/99
60 - - - - - TO 71650/119
70 - - - - - - 134880/139

CubeCenter 3 10/184 30/14 90/34 1050/61 370/9 0430/11 70/11
5 180/3198 20/58 3510/1342 60460/382 11060/55 14780/82 1780/205
7 1940/21703 40/203 46620/10316 TO 852630/359 1183220/444 27900/1774
9 TO 70/363 333330/46881 - TO TO 177790/7226
11 - 230/1010 TO - - - 609540/17027
13 - 700/2594 - - - - TO

Ring 2 20/15 20/7 30/15 80/8 80/7 80/8 30/8
3 20/59 20/11 70/59 1500/41 500/8 920/19 70/10
4 30/232 20/15 350/232 51310/77 6370/11 19300/40 0250/24
5 160/973 20/19 2270/973 TO 283780/16 TO 970/44
6 880/4057 30/23 14250/4057 - TO - 4080/98
7 5940/16299 40/27 83360/16299 - - - 75020/574
8 39120/64657 40/31 510850/64657 - - - 388300/902
9 251370/261394 50/35 TO - - - TO
10 TO 70/39 - - - - -

Figure 13: Results for POND for conformant Rovers, Logistics, BT, and BTC. The data
is Total Time / # Expanded Nodes, “TO” indicates a time out, “OoM” indicates
out of memory, and “-” indicates no attempt.

interaction and independence by taking the overlap of relaxed plans. Again, with the LUG
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Problem h0 hcard hSG
RP hMG

m−RP hMG
s−RP hMG

RPU hLUG
RP

Rovers 1 550/36 480/21 580/6 570/6 570/6 580/6 580/6
2 1030/262 550/36 780/15 760/14 710/12 730/12 730/13
3 1700/467 590/48 3930/248 830/15 830/15 910/17 810/16
4 5230/1321 620/58 6760/387 1020/20 1040/21 1070/21 910/21
5 TO TO TO 16360/175 11100/232 12810/209 7100/174
6 - - - 31870/173 24840/159 30250/198 13560/174

Logistics 1 530/118 TO 740/46 580/10 570/10 600/10 570/10
2 TO - TO 1630/30 1300/36 1360/36 1250/36
3 - - - 1360/20 1250/19 1290/19 1210/19
4 - - - 4230/59 3820/57 3940/57 4160/57
5 - - - 27370/183 19620/178 20040/178 20170/178

BT 2 460/5 460/3 450/3 460/3 450/3 470/3 460/3
10 TO 470/19 111260/7197 970/19 970/19 1020/19 550/19
20 - 510/39 TO 9070/39 9060/39 9380/39 1610/39
30 - 620/59 - 52410/59 52210/59 55750/59 5970/59
40 - 850/79 - 207890/79 206830/79 233720/79 17620/79
50 - 1310/99 - 726490/99 719000/99 TO 43020/99
60 - 2240/119 - TO TO - 91990/119
70 - 24230/139 - - - - 170510/139
80 - 45270/159 - - - - 309940/159

BTC 2 450/6 460/3 470/5 470/3 460/3 470/3 470/3
10 TO 480/19 271410/10842 1150/19 1140/19 1200/19 590/19
20 - 510/39 TO 11520/39 TO 11610/39 1960/39
30 - 660/59 - 62060/59 - 64290/59 6910/59
40 - 970/79 - 251850/79 - 274610/79 19830/79
50 - 1860/99 - 941220/99 - TO 49080/99
60 - 4010/119 - TO - - 103480/119
70 - 7580/139 - - - - 202040/139

Figure 14: Results for POND conditional Rovers, Logistics, BTS, BTCS. The data is
Total Time / # Expanded Nodes, “TO” indicates a time out, “OoM” indicates
out of memory, and “-” indicates no attempt.

relaxed plan, analogous to the multiple graph unioned relaxed plan, POND scales well
because we measure overlap and lower the cost of computing the heuristic significantly.

The main change we see in using POND versus CAltAlt is that the direction of search
is different, so the hcard heuristic performs unlike before. In the BT and BTC domains
cardinality does not work well in progression because the size of belief states does not
change as we get closer to the goal (it is impossible to ever know which package contains
the bomb). However, in regression we start with a belief containing all states consistent
with the goal and regressing actions limits our belief to only those states that can reach the
goal through those actions. Thus in regression the size of belief states decreases, but in
progression remain constant.

The performance of POND in the conditional domains exhibits similar trends to the
conformant domains, with a few exceptions. Like the conformant domains, theMG relaxed
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Figure 15: Ratio of heuristic estimates to optimal plan length. Rv = Rovers, L = Logistics,
B = BT, BC = BTC, C = Cube Center, R = Ring.

plans tend to outperform the SG relaxed plan, but the LUG relaxed plan does best overall.
Unlike the conformant domains, The hMG

m−RP performs much better in BTS and BTCS over
BT and BTC partly because the conditional plans have a lower average cost. The hcard

heuristic does better in BTS and BTCS over BT and BTC because the belief states actually
decrease in size when they are partitioned by sensory actions.

Finally, we compare the heuristic estimates for the distance between the initial belief
state and the goal belief state for all the heuristics used in conformant problems solved by
POND. Figure 15 shows the ratio of the heuristic estimate for (h(BSI)) to the optimal
serial plan length (i.e. h∗(BSI)) in several problems. The points below the line (where the
ratio is one) are under-estimates, and those above are over-estimates. Some of the problem
instances are not shown because no optimal plan length is known.

We note that in all the domains the hLUG
RP and hMG

RPU heuristics are very close to h∗.
Interestingly, hMG

s−RP and hMG
m−RP are both close to h∗ in Rovers and Logistics; whereas

the former is close in the BT and BTC problems, and the latter is close in CubeCenter
and Ring. As expected, assuming independence (using sum) tends to over-estimate, and
assuming positive interaction (using max) tends to under-estimate. The hSG

RP heuristic tends
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to under-estimate, and in some cases (CubeCenter and Ring) gives a value of zero (because
there are initial states that satisfy the goal). The hcard heuristic is only accurate in BT
and BTC, under-estimates in Rovers and Logistics, and over-estimates in Cube Center and
Ring.

The accuracy of heuristics is in some cases disconnected from their run time perfor-
mance. For instance hcard highly overestimates in Ring and Cube Center, but does well
because the domains exhibit special structure and the heuristic is fast to compute. On the
other hand, hLUG

RP and hMG
RPU are very accurate in many domains, but suffer in Ring and

Cube Center because they can be costly to compute.

Intra-Planner Conclusions: Our findings fall into two main categories: one, what are
effective estimates for belief state distances in terms of state to state distances, and two,
how we can exploit planning graphs to support the computation of these distance measures.

In comparing ways to aggregate state distance measures to compute belief state dis-
tances, we found that measuring no interaction as in single graph heuristics tends to poorly
guide planners, measuring independence and positive interaction of worlds works well in
specific domains, and measuring overlap (i.e. a combination of positive interaction and
independence) tends to work well in a large variety of instances.

Comparing graph structures that provide the basis for belief state distance measures,
we found that the heuristics extracted from the single graph fail to systematically account
for the independence or positive interaction among different possible worlds. Despite this
lack in the distance measure, single graphs can still leverage some structure in domains
like Rovers and Logistics. To more accurately reflect belief state distances, multiple graphs
reason about reachability for each world independently. This accuracy comes at the cost
of computing a lot of redundantMG structure and is limiting in instances with large belief
states. Optimizing the representation of the redundant structure by using theLUG, planners
are able to exhibit better scalability. The improvement in scalability is attributed to lowering
the cost of heuristic computation, but retaining measures of multiple state distances. The
LUG makes a trade-off of using an exponential time algorithm for evaluation of labels
instead of building an exponential number of planning graphs. This trade-off is justified by
our experiments.

5.2.2 CONFORMANT INTER-PLANNER COMPARISON

Although this work is aimed at giving a general comparison of heuristics for belief space
planning, we also present a comparison of the best heuristics within CAltAlt and POND
to some of the other leading approaches to conformant planning. Note, since each ap-
proach uses a different planning representation (BDDs, GraphPlan, etc.), not all of which
even use heuristics, it is hard to get a standardized comparison of heuristic effectiveness.
Furthermore, not all of the planners use PDDL-like input syntax; MBP, and KACMBP use
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Problem CAltAlt POND MBP KACMBP GPT CGP YKA CFF

h
LUG(DyX−SX)
RPU hLUG

RP

Rovers 1 16070/5 590/5 66/5 9293/5 3139/5 70/5 1220/7 70/5
2 10457/8 680/9 141/8 9289/15 4365/8 180/8 2050/10 30/8
3 10828/10 850/11 484/10 9293/16 5842/10 460/10 1740/12 10/10
4 15279/13 1130/16 3252/13 9371/18 7393/13 1860/13 2010/16 10/13
5 64870/29 2050/25 OoM 39773/40 399525/20 OoM 7490/27 18/22
6 221051/25 8370/25 727/32 TO TO - 24370/26 21/23

Logistics 1 907/9 560/9 37/9 127/12 916/9 60/6 250/13 10/9
2 2862/15 910/15 486/24 451/19 1297/15 290/6 670/19 12/15
3 10810/15 1130/14 408/14 1578/18 1711/11 400/8 20280/21 14/12
4 24862/19 3180/22 2881/27 8865/22 9828/18 1170/8 17530/27 12/18
5 54726/34 6010/29 OoM 226986/42 543865/28 TO 141910/40 25/28

BT 2 16/2 460/2 6/2 10/2 487/2 20/1 0/2 0/2
10 71/10 520/10 119/10 16/10 627/10 520/1 0/10 30/10
20 552/20 1230/20 80/20 84/20 472174/20 3200/1 20/20 4400/20
30 2415/30 4080/30 170/30 244/30 TO 10330/1 80/30 4500/30
40 7543/40 11680/40 160/40 533/40 - 24630/1 160/40 26120/40
50 17573/50 28420/50 300/50 1090/50 - 49329/1 250/50 84730/50
60 35983/60 59420/60 480/60 2123/60 - 87970/1 420/60 233410/60
70 67690/70 113110/70 730/70 3529/70 - 145270/1 620/70 522120/70
80 157655/80 202550/80 1080/80 1090/80 - TO 3310/80 979400/80

BTC 2 16/3 460/3 8/3 18/3 465/3 0/3 10/3 10/3
10 89/19 540/19 504/19 45/19 715/19 39370/19 30/19 57/19
20 651/39 1460/39 98/39 211/39 - - 240/39 2039/39
30 2721/59 4820/59 268/59 635/59 - - 1210/59 23629/59
40 8009/79 14250/79 615/79 1498/79 - - 3410/79 116156/79
50 19074/99 34220/99 1287/99 10821/99 - - 8060/50 334879/99
60 38393/119 71650/119 2223/119 5506/119 - - 15370/119 TO
70 65448/139 134880/139 3625/139 2640/139 - - 27400/139 -

CubeCenter 3 TO 70/9 10/9 20/9 40/9 28990/3 0/9 20/15
5 - 1780/18 16/18 20/18 363/18 TO 0/19 28540/45
7 - 27900/29 35/27 70/27 4782/27 - 20/34 TO
9 - 177790/36 64/36 120/36 42258/36 - 80/69 -
11 - 609540/47 130/45 230/45 26549/45 - 190/68 -

Ring 2 TO 30/6 0/5 0/5 31/5 TO 0/5 360/12
3 - 70/8 0/8 40/8 35/8 - 0/8 TO
4 - 250/13 10/11 30/11 60/11 - 20/11 -
5 - 970/17 20/14 50/14 635/14 - 80/14 -
6 - 4080/22 30/17 120/18 51678/17 - 110/17 -
7 - 75020/30 80/20 230/21 TO - 300/20 -
8 - 388300/29 160/23 600/24 - - 480/23 -

Figure 16: Results for CAltAlt using h
LUG(DyX−SX)
RP , POND using hLUG

RP , MBP,
KACMBP, GPT, CGP, YKA, and CFF for conformant Rovers, Logistics, BT,
BTC, Cube Center, and Ring. The data is Total Time / # Plan Steps, “TO” indi-
cates a time out, “OoM” indicates out of memory, and “-” indicates no attempt.

AR encodings which may give them an advantage in reducing the number of literals and
actions. We gave the MBP planners the same grounded and filtered action descriptions
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that we used in CAltAlt and POND. We also tried, but do not report results, giving the
MBP planners the full set of ground actions without filtering irrelevant actions. It appears
that the MBP planners do not use any sort of action pre-processing because performance
was much worse with the full grounded set of actions. Nevertheless, Figure 16 compares
MBP, KACMBP, GPT, CGP, YKA, and CFF with hLUG(DyX−SX)

RP in CAltAlt and hLUG
RP in

POND with respect to run time and plan length.

MBP: The MBP planner uses a cardinality heuristic that in many cases overestimates plan
distances (as per our implementation). It is interesting to note that in the more difficult
problem instances in the Rovers and Logistics domains MBP and KACMBP tend to gen-
erate much longer plans than the other planners. MBP does outperform POND in some
cases but does not find solutions in certain instances (like Rovers 5), most likely because of
its heuristic. We note that KACMBP and MBP are quite fast on the Cube Center and Ring
domains, but have more trouble on domains like Rovers and Logistics. This illustrates how
a heuristic modelling knowledge opposed to reachability can do well in domains where the
challenge is uncertainty not reachability.

Optimal Planners: The optimal approaches (CGP and GPT) tend not to scale as well,
despite their good solutions. GPT finds optimal serial plans but is not as effective when the
size of the search space increases. CGP has trouble constructing its planning graphs as the
parallel conformant plan depth increases.

YKA: YKA, like CAltAlt is a regression planner, but the search engine is very different
and YKA does not compute heuristics. YKA proves to perform well on all the domains
without heuristics because of its search engine. The relative performance between YKA
and POND is similar to the relative performance of CAltAlt and POND, ascribing to
the differences between progression and regression. Additionally, it seems YKA has a
stronger regression search engine than CAltAlt. POND is able to do better than YKA in
the Rovers and Logistics domains, but it is unclear that it is because of the search direction
or heuristics.

CFF: Conformant FF, using a relaxed plan similar to the LUG relaxed plan, does very well
in the Rovers and Logistics domains because it uses the highly optimized FF search engine
as well as a cheap to compute relaxed plan heuristic. However, CFF does not do as well
in the BT, BTC, Cube Center, and Ring problems because there are not as many literals
that will be entailed by a belief state. A possible reason CFF suffers is our encodings. The
Cube Center and Ring domains are naturally expressed with multi-valued state features,
and in our transformation to binary state features we describ the values that must hold but
also the values that must not hold. This is difficult for CFF because the conditional effect
antecedents contain several literals and their heuristic is restricted to considering only one
such literal. It may be that CFF is choosing the wrong literal or simply not enough literals
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Problem POND MBP GPT SGP YKA
hLUG
RP

Rovers 1 580/5 3312/11 3148/5 70/5 3210/5
2 730/8 4713/75 5334/7 760/7 6400/7
3 810/8 5500/119 7434/8 TO 7490/8
4 910/10 5674/146 11430/10 - 11210/10
5 7100/19 16301/76 TO - TO
6 13560/22 OoM - - -

Logistics 1 570/7 41/16 1023/7 5490/6 1390/8
2 1250/12 22660/177 5348/12 TO TO
3 1210/9 2120/45 2010/8 - TO
4 4160/15 OoM TO - -
5 20170/22 - - - -

BT 2 460/2 0/2 510/2 0/1 0/2
10 550/10 240/10 155314/10 70/1 20/10
20 1610/20 OoM OoM 950/1 60/20
30 5970/30 - - 4470/1 200/30
40 17620/40 - - 13420/1 400/40
50 43020/50 - - 32160/1 810/50
60 91990/60 - - 90407/1 1350/60
70 170510/70 - - 120010/1 2210/70
80 309940/80 - - TO 3290/80

BTC 2 470/2 20/2 529/2 10/2 0/4
10 590/10 280/10 213277/10 TO 210/12
20 1960/20 OoM TO - 2540/22
30 6910/30 - - - 13880/32
40 19830/40 - - - 46160/42
50 49080/50 - - - 109620/52
60 103480/60 - - - 221460/62
70 202040/70 - - - 41374/72

Figure 17: Results for POND using hLUG
RP−ha, MBP, GPT, SGP, and YKA for conditional

Rovers, Logistics, BT, and BTC. The data is Total Time / # Max possible steps
in a execution, “TO” indicates a time out, “OoM” indicates out of memory, and
“-” indicates no attempt.

to get effective heuristics. However in BT and BTC where we used only one literal in effect
antecedents CFF still peforms poorly.

5.2.3 CONDITIONAL INTER-PLANNER COMPARISON

Figure 17 shows the results for testing the conditional versions of the domains on POND,
MBP, GPT, SGP, and YKA.
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MBP: The POND planner is very similar to MBP in that it uses progression search. How-
ever, POND uses an AO* search, whereas the MBP binary we used uses a depth first
And-Or search. The depth first search used by MBP contributes to highly sub-optimal max
length branches (as much as an order of magnitude longer than POND). For instance, the
plans generated by MBP for the Rovers domain have the rover navigating back and forth
between locations several times before doing anything useful; this is not a situation benefi-
cial for actual mission use. MBP tends to not scale as well as POND in all of the domains
we tested. A possible reason for the performance of MBP is that the Logistics and Rovers
domains have sensory actions with execution preconditions, which prevent branching early
and finding deterministic plan segments for each branch. We experimented with MBP us-
ing sensory actions without execution precondition and it was able to scale relatively better,
but plan quality was still lacking.

Optimal Planners: GPT and SGP generate better solutions but very slowly. GPT does
better on the Rovers and Logistics problems because they exhibit some positive interaction
in the plans, but SGP does well on BT because its planning graph search is well suited for
shallow, yet broad (highly parallel) problems.

YKA: We see that YKA fares similar to GPT in Rovers and Logistics, but has trouble
scaling for other reasons. We think that YKA may be having trouble in regression because
of sensory actions since it was able to scale reasonably well in the conformant version of
the domains. Despite this, YKA proves to do very well in the BT and BTC problems.

5.2.4 OVERALL CONCLUSIONS

In our internal comparisons of heuristics within CAltAltand POND, as well as external
comparisons with several state of the art conformant and conditional planners we have
learned many interesting lessons about heuristics for planning in the uniform probability
belief space.

• Distance based for belief space search help control conformant and conditional plan
length because, as opposed to cardinality, the heuristics model desirable plan quality
metrics.

• Planning graph heuristics for belief space search scale better than planning graph
search and admissible heuristic search techniques.

• Of the planning graph heuristics presented, relaxed plans that take into account the
overlap of individual plans between states of the source and destination belief states
are the most informed.

• The LUG is an effective planning graph data structure for both regression and pro-
gression search heuristics.
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• In regression search, planning graphs that maintain only same-world mutexes provide
the best trade-off between graph construction cost and heuristic informedness.

• The LUG heuristics help our conditional planner, POND, to scale up in conditional
domains, despite the fact that the heuristic computation does not model observation
actions.

Our work to this point has centered on distance measures for belief space when uncer-
tainty over the initial state is the sole reason for using belief states. Next, we discuss how
these techniques can be extended to handle non-deterministic actions in making belief state
distance measures.

6. Extension to Non-Deterministic Actions

While the scope of our presentation and evaluation is restricted to planning with initial
state uncertainty and deterministic actions, some of the planning graph techniques can be
extended to include non-deterministic actions of the type described by Rintanen [2003].
Non-determinisic actions have effects that are described in terms of a set of outcomes.
For simplicity, we consider Rintanen’s conditionality normal form, where actions have a
set of conditional effects (as before) and each consequent is a mutually-exclusive set of
conjunctions (outcomes) – one outcome of the effect will result randomly. We outline the
generalization of our single, multiple, and labelled planning graphs to reason with non-
deterministic actions.

Single Planning Graphs: Single planning graphs, that are built from approximate belief
states, do not lend themselves to a straight-forward extension. A single graph ignores uncer-
tainty in a belief state by unioning its literals to form the initial planning graph layer. Con-
tinuing with the single graph assumptions about uncertainty, it makes sense to treat non-
deterministic actions as deterministic. Similar to how we use approximated a belief state
as a set of literals to form the initial literal layer, we can assume that a non-deterministic
effect adds all literals appearing in the effect as if the action were deterministic (i.e. gives
a set of literals). Single graph relaxed plan heuristics thus remain unchanged.

Multiple Planning Graphs: Multiple planning graphs are very much like Conformant
GraphPlan [Smith and Weld, 1998]. We can generalize splitting the non-determininsm
in the current belief into multiple intitial literal layers to splitting the outcomes of non-
deterministic effects into multiple literal layers. The idea is to root a set of new planning
graphs at each level, where each has an initial literal layer containing literals supported
by an interpretation of the previous effect layer. By interpretations of the effect layer we
mean every possible set of effect outcomes. A set of effect outcomes is possible if no two
outcomes are outcomes of the same effect. Relaxed plan extraction still involves extracting
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a relaxed plan from each planning graph. However, since each planning graph is split many
times (in a tree-like structure) a relaxed plan is extracted from each “path of the tree”.

We note that this technique is not likely to scale because of the exponential growth in
redundant planning graph structure over time. Further, in our experiments CGP has enough
trouble with initial state uncertainty. We note that we should be able to do much better with
the LUG.

Labelled Uncertainty Graph: With multiple graphs we are forced to capture non-determinism
through splitting the planning graphs not only in the initial literal layer, but also each literal
layer that follows at least one non-deterministic effect. We saw in the LUG that labels can
capture the non-determinism that drove us to split the initial literal layer in multiple graphs.
As such, these labels took on a syntactic form that describes subsets of the states in our
source belief state. In order to generalize labels to capture non-determinism resulting from
uncertain effects, we need to extend their syntactic form. Our objective is to have a label
represent which sources of uncertainty (arising from the source belief or effects) causally
support the labelled item. We also introduce a graph layer Ok to represent outcomes and
how they connect effects and literals.

At first thought, it would seem natural to describe the labels for outcomes in terms of
their affected literals, but this can lead to trouble. The problem is that the literals in effect
outcomes are describing states at a different time than the literals in the projected belief
state. Further, an outcome that appears in two levels of the graph is describing a random
event at different times. Using state literals to describe all labels will lead to confusion as
to which random events (state uncertainty and effect outcomes at distinct steps) causally
support a labelled item. The pathological example is when we have an effect whose set of
outcomes matches one-to-one with the states in the source belief. In such a case, by using
labels defined in terms of state literals we cannot distinguish which random event (the state
uncertainty or the effect uncertainty) is described by the label.

We have two choices for describing effect outcomes in labels. In both choices we
introduce a new set of label variables to describe how a literal layer is split. These new
variables will be used to describe effect outcomes in labels and will not be confused with
variables describing initial state uncertainty. In the first case, these variables will have a
one-to-one matching with our original set of literals, but can be thought of as time-stamped
literals. The number of variables we add to the label function is on the order of 2F per
level (the number of fluent literals – assuming binary). The second option is to describe
outcomes in labels with a new set fluents, where each interpretation over the fluents is
matched to particular outcome. In this case, we add on the order of log |Ok| variables,
where Ok is the kth outcome layer. It would actually be lower if many of the outcomes were
from deterministic effects because there is no need to describe them in labels. The former
approach is likely to introduce fewer variables when there are a lot of non-deterministic
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effects and they affect quite a few of the same literals, and the latter will introduce fewer
variables when there are relatively few non-deterministic effects whose outcomes are fairly
independent.

With the generalized labelling, we can still say that an item is reachable from the source
belief state when its label is entailed by the source belief. This is because even though we
are adding variables to labels, we are implicitly adding the variables to the source belief
state. For example, say we add a variable v to describe two outcomes of an effect. One
outcome is labelled v, the other ¬v. We can express the source belief BSp that is projected
by the LUG with the new variable as BSp ∧ (v ∨¬v) = BSp. An item labelled as BSp ∧ v
will not be entailed by the projected belief (i.e. is unreachable) because only one outcome
causally supports it. If both outcomes support the item, then it will be reachable.

Understanding reachability, we can determine the level from which to extract a relaxed
plan. The relaxed plan procedure does not change much in terms of its semantics other than
having the extra graph layer for outcomes. We still have to ensure that literals are causally
supported in all worlds they are labelled with in a relaxed plan, whether or not the worlds
are from the initial state uncertainty or supporting non-deterministic effects.

7. Related Work

The recent interest in conformant and contingent planning can be traced to CGP [Smith
and Weld, 1998], a conformant version of GraphPlan [Blum and Furst, 1995], and SGP
[Weld et al., 1998], the analogous contingent version of GraphPlan. Here the graph search
is conducted on several planning graphs, each constructed from one of the possible initial
states. More recent work on C-plan [Castellini et al., 2001] and Frag-Plan [Kurien et al.,
2002] generalize the CGP approach by ordering the searches in the different worlds such
that the plan for the hardest to satisfy world is found first, and is then extended to the other
worlds. Although CAltAlt and POND utilize planning graphs similar to CGP and Frag-
plan, in contrast to them, it only uses them to compute reachability estimates. The search
itself is conducted in the space of belief states.

Another strand of work models conformant and contingent planning as a search in the
space of belief states. This started with Genesereth and Nourbakhsh [1993], who concen-
trated on formulating a set of admissible pruning conditions for controlling search. There
were no heuristics for choosing among unpruned nodes. GPT [Bonet and Geffner, 2000]
extended this idea to consider a simple form of reachability heuristic. Specifically, in com-
puting the estimated cost of a belief state, GPT assumes that the initial state is fully ob-
servable. The cost estimate itself is done in terms of reachability (with relaxed dynamic
programming rather than planning graphs). GPT’s reachability heuristic is similar to our
hMG
m−RP heuristic because they both estimate the cost of the farthest (max distance) state by
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looking at a deterministic relaxation of the problem. In comparison to GPT, CAltAlt and
POND can be seen as using heuristics that do a better job of considering the cost of the
belief state across the various possible worlds.

Another family of planners that search in belief states is the MBP-family of planners—
MBP [Bertoli et al., 2001a], and KACMBP [Bertoli and Cimatti, 2002]. Alternative to
CAltAlt but similar to POND, the MBP-family of planners all represent belief states in
terms of binary decision diagrams. Action application is modelled as modifications to
the BDDs. MBP supports both progression and regression in the space of belief states,
while KACMBP is a purely progression planner. Before computing heuristic estimates,
KACMBP pro-actively reduces the uncertainty (disjunction) in the belief state by taking
actions that effectively force the agent into states with reduced uncertainty. The motivation
for this approach is that applying cardinality heuristics to belief states containing multiple
states may not give accurate enough direction to the search. While reducing the uncertainty
seems to be an effective idea, we note that (a) not all domains may contain actions that
reduce belief state uncertainty and (b) the need for uncertainty reduction may be reduced
when we have heuristics that effectively reason about the multiple worlds (viz., our multiple
planning graph heuristics). Nevertheless, it would be very fruitful to integrate knowledge
goal ideas of KACMBP and the reachability heuristics of CAltAlt and POND to handle
domains that contain both high uncertainty and costly goals.

In contrast to these domain-independent approaches that only require models of the
domain physics, PKSPlan [Bacchus, 2002] is a forward-chaining knowledge-based planner
that requires richer domain knowledge. The planner makes use of several knowledge bases
that are updated by actions, opposed to a single knowledge base taking the form of a belief
state. The knowledge bases separate binary and multi-valued variables and planning and
execution time knowledge.

YKA [Rintanen, 2003] is a regression conditional planner using BDDs but does not
use heuristics. Recently Rintanen has also developed related reachability heuristics that
consider distances for groups of states, which do not rely on planning graphs [Rintanen,
2004].

More recently, there has been closely related work on heuristics for constructing con-
formant plans within the CFF planner [Brafman and Hoffmann, 2004]. The planner rep-
resents belief states implicitly through a set of known facts, the action history (leading to
the belief), and the initial belief state. CFF builds a planning graph forward from the set of
known literals to the goal literals and backwards toward the initial belief. In the planning
graph, conditional effects are restricted to single literals in their antecedent to enable 2-cnf
reasoning. From this planning graph, CFF extracts a relaxed plan that represents support-
ing the goal belief from all states in the initial belief. The biggest differences between the
LUG and the CFF technique are that the LUG reasons only forward from the source belief
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state (assuming an explicit, albeit symbolic, belief state), and the LUG does not restrict
reasoning to antecedents with a single literal. As a result, the LUG does not lose the causal
support information and does not have to perform backward reasoning to the initial belief
state.

Finally, CAltAlt and POND are also related to, and an adaptation of the work on,
reachability heuristics for classical planning, including AltAlt [Nguyen et al., 2002], FF
[Hoffmann and Nebel, 2001] and HSP-r [Bonet and Geffner, 1999]. CAltAlt is the confor-
mant extension to AltAlt that uses regression search (similar to HSP-r) guided by planning
graph heuristics. POND is similar to FF in that it uses progression search based on plan-
ning graph heuristics.

8. Conclusion

With the intent of establishing a basis for belief state distance estimates, we have:

1. Discussed how heuristic measures can aggregate state distance measures to capture
positive interaction, negative interaction, independence, and overlap.

2. Shown how to compute such heuristic measures on planning graphs.

3. Provided empirical comparisons of these measures.

4. Learned that a labelled uncertainty graph can capture the same support information
as multiple graphs, and reduces the cost of heuristic computation.

5. Learned that the labelled uncertainty graph is very useful for conformant planning
and, without considering observational actions and knowledge, can perform well in
contingent planning.

Our intent in this work was to provide a formal basis for measuring the distance be-
tween belief states in terms of underlying state distances. We investigated several ways to
aggregate the state distances to reflect various assumptions about the interaction of state to
state trajectories. The best of these measures turned out to measure both positive interac-
tion and independence, what we call overlap. We saw that planners using this notion of
overlap tend to do well across a large variety of domains and tend to have more accurate
heuristics.

We’ve also shown that planning with a Labelled Uncertainty planning Graph LUG, a
condensed version of the multiple graphs is useful for encoding conformant reachability
information. Our main innovation is the idea of “labels” – labels are attached to all literals,
actions, effect relations, and mutexes to indicate the set of worlds in which those respective
elements hold. Our experimental results show that the LUG can outperform the multiple
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graph approach. In comparison to other approaches, we’ve also been able to demonstrate
the utility of structured reachability heuristics in controlling plan length and boosting scal-
ability for both conformant and contingent planning.

We intend to investigate three additions to this work. The first, is to incorporate sensing
and knowledge into the heuristics. We already have some promising results without these
features in the planning graphs, but hope that they will help the approaches scale even
further on conditional problems.

The second addition will be to consider heuristics for stochastic planning problems. We
have preliminary work [Bryce and Kambhampati, 2005] describing how to propagate cost
information on the LUG to support cost-sensitive conditional planning. Given our ability
to propagate numeric information on the LUG, we are currently adapting these heuristics
and POND to handle non uniform probabilities. The extension involves adding probabil-
ities to labels by using ADDs instead of BDDs, and redefining propagation semantics. The
propagation semantics replaces conjunctions with products, and disjunctions with summa-
tions. A label represents a probability distribution over possible worlds, the probability of
reaching the vertex is a summation over the possible world probabilities, and the expected
cost of a vertex is the sum of products between cost vector partitions and the label. Relaxed
plans, which previously involved weighted set covers with a single objective (minimizing
cost) become multi-objective by trading off cost and probability.

In addition to cost propagation we have also recently extended the LUG within the
framework of state agnostic planning graphs [Cushing and Bryce, 2005]. The LUG seeks
to avoid redundancy across the multiple planning graphs built for states in the same belief
state. We extended this notion to avoid redundancy in planning graphs built for every belief
state. We have shown that the state agnostic LUG (SLUG) which is built once per search
episode (opposed to a LUG at each node) can reduce heuristic computation cost without
sacrificing informedness.

Acknowledgments We would like to thank Minh B. Do, Romeo Sanchez, Terry Zim-
mermam, and Satish Kumar Thittamaranahalli, for helpful discussions and feedback, and
Piergiorgio Bertoli for helping with the MBP planner. This work was supported in part
by NASA grants NCC2-1225 and NAG2-1461, the NSF grant IIS-0308139, as well as the
2003 NASA RIACS SSRP, and an IBM faculty award.

References

Ronald P.A. Petrick Fahiem Bacchus. A knowledge-based approach to planning with in-
complete information and sensing. In Artificial Intelligence Planning Systems, pages
212–221, 2002.

56



PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

Piergiogio Bertoli and Alessandro Cimatti. Improving heuristics for planning as search in
belief space. In Artificial Intelligence Planning Systems, pages 143–152, 2002.

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Planning in
nondeterministic domains under partial observability via symbolic model checking. In
Bernhard Nebel, editor, Proceedings of the seventeenth International Conference on Ar-
tificial Intelligence (IJCAI-01), pages 473–486, San Francisco, CA, August 4–10 2001.
Morgan Kaufmann Publishers, Inc.

Piergorgio Bertoli, Alessandro Cimatti, and Marco Roveri. Heuristic search + symbolic
model checking = efficient conformant planning. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence (IJCAI-01), 2001.

Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 95),
pages 1636–1642, 1995.

Blai Bonet and Hector Geffner. Planning as heuristic search: New results. In Proceedings
of the Euoropean Conference of Planning, pages 360–372, 1999.

Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic search
in belief space. In Artificial Intelligence Planning Systems, pages 52–61, 2000.

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a bdd
package. In Conference proceedings on 27th ACM/IEEE design automation conference,
pages 40–45. ACM Press, 1990.

Ronen Brafman and Joerg Hoffmann. Conformant planning via heuristic forward search:
A new approach. In Proceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS 04), 2004.

Daniel Bryce and Subbarao Kambhampati. Heuristic guidance measures for conformant
planning. In Proceedings of the 14th International Conference on Automated Planning
and Scheduling (ICAPS’04), June 2004.

Daniel Bryce and Subbarao Kambhampati. Cost sensitive reachability heuristics for han-
dling state uncertainty. In Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence (UAI-05), 2005.

Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. Improvements to sat-
based conformant planning. In Preedings of the 6th European Conference on Planning,
2001.

57



BRYCE, KAMBHAMPATI, & SMITH

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill,
1990.

William Cushing and Daniel Bryce. State agnostic planning graphs. In Proceedings of the
Twenty-fifth National Conference on Artificial Intelligence (AAAI-05), 2005.

Michael R. Genesereth and Illah R. Nourbakhsh. Time-saving tips for problem solving with
incomplete information. In Proceedings of the 11th National Conference on Artificial
Intelligence, pages 724–730, Menlo Park, CA, USA, July 1993. AAAI Press.

Eric A. Hansen and Shlomo Zilberstein. LAO: A heuristic-search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1–2):35–62, 2001.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs to an
ADL subset. Technical Report report00088, IBM, 1, 1997.

Jana Koehler. Handling of conditional effects and negative goals in IPP. Technical Report
report00128, IBM, 17, 1999.

James Kurien, P. Pandurang Nayak, and David E. Smith. Fragment-based conformant
planning. In Artificial Intelligence Planning Systems, pages 153–162, 2002.

D. Long and M. Fox. The 3rd international planning competition: Results and analysis.
JAIR, 20:1–59, 2003.

XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez Nigenda. Planning
graph as the basis for deriving heuristics for plan synthesis by state space and CSP search.
Artificial Intelligence, 135(1-2):73–123, 2002.

Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

Edwin P. D. Pednault. Synthesizing plans that contain actions with context-dependent
effects. Technical Memorandum, AT&T Bell Laboratories, Murray Hill, NJ, 1987.

Jussi Rintanen. Product representation of belief spaces in planning under partial observabil-
ity. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI-
03), Aculpulco, Mexico, August 2003.

Jussi Rintanen. Distance estimates for planning in the discrete belief space. In Proceedings
of the 19th National Conference on Artificial Intelligence (AAAI 04), 2004.

58



PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

David E. Smith and Daniel S. Weld. Conformant graphplan. In Proceedings of the Sixteenth
National Conference on Artifical Intelligence (AAAI-98) and (IAAI-98), pages 889–896,
Menlo Park, July 26–30 1998. AAAI Press.

Daniel S. Weld, Corin Anderson, and David E Smith. Extending graphplan to handle
uncertainty and sensing actions. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence (AAAI-98). AAAI Press, 1998.

59



BRYCE, KAMBHAMPATI, & SMITH

Appendix A. Additional Heuristics

For completeness, we present some additional heuristics adapted from classical planning to
reason about belief state distances in each type of planning graph. Many of these heuristics
appeared in our previous work [Bryce and Kambhampati, 2004]. We show how to compute
the max, sum, and level heuristics on the single graph SG, multiple graphs MG, and the
labelled uncertainty graph LUG. While these heuristics tend to be less effective than the
relaxed plan heuristics, we provide them as reference.

A.1 Single Planning Graph Heuristics (SG)

Like, the relaxed plan for the single unmodified planning graph, we cannot aggregate state
distances because all notion of separate states is lost in forming the initial literal layer.

No State Aggregation:

• Max In classical planning, the maximum cost literal is used to get a max heuristic,
but we have formulae describing our beliefs, so we take the maximum cost clause as
the cost of the belief to find the max heuristic hSG

max. The maximum cost clause of the
destination belief state, with respect to a single planning graph, is:

hSG
max(BSi) = max

C∈κ(BSi)
cost(C)

where the cost of a clause is

cost(C) = min
l∈C

min
k:l∈Lk

k

Here we find the cheapest literal as the cost of each clause to find the max cost clause.
This is an underestimate of the closest state to our current belief.

• Sum Like the classical planning sum heuristic, we can take the sum hSG
sum of the costs

of the clauses in our belief state to estimate our belief state distance:

hSG
sum(BSi) =

∑
C∈κ(BSi)

cost(C)

This heuristic sums the costs of the literals of the closest estimated state in the belief
state, and is inadmissible because there may be a single action that will support every
clause, and we could count it once for each clause.

• Level When we have mutexes on the planning graph, we can compute a level heuris-
tic hSG

level (without mutexes the level heuristic is equivalent to max). The level heuris-
tic maintains the admissibility of the max heuristic but improves the lower bound
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by considering what level of the planning graph all literals in a constituent are non-
pairwise mutex. The level heuristic is computed by taking the minimum among the
S ∈ ξ(BSi), of the first level (lev(S)) in the planning graph where literals of S are
present with none of them marked pairwise mutex. Formally:

hSG
level(BSi) = min

S∈ξ(BSi)
lev(S)

Positive Interaction Aggregation:

• Individual state to state distances can not be computed on the single planning graph
because all notion of which state in our current belief is used for the estimate is lost
when the literals are unioned to form the initial layer.

Independence Aggregation:

• See Positive Interaction Aggregation.

Overlap Aggregation:

• See Positive Interaction Aggregation.

A.2 Multiple Planning Graph Heuristics (MG)

Similar to the various relaxed plan heuristics for the multiple graphs, we can compute a
max, sum, or level heuristic on each of the multiple planning graphs and aggregate them
with a max or sum to respectively measure positive interaction or independence. The reason
we cannot aggregate the individual graph heuristics to measure overlap is that they are
numbers, not sets of actions. Measuring overlap involves taking the union of heuristics
from each graph and the union of numbers is not meaningful like the union of action sets
from relaxed plans.

No Aggregation:

• There is no reason to use multiple graphs if there is no state distance aggregation. A
single planning is sufficient.

Positive Interaction Aggregation:

• Max The max heuristic hMG
m−max is computed with multiple planning graphs to mea-

sure positive interaction in the hMG
m−max heuristic. This heuristic computes the max
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cost clause in κ(BSi) for each graph γ ∈ Γ, similar to how hSG
m−max(BSi) is com-

puted, and takes the maximum. Formally:

hMG
m−max(BSi) = max

γ∈Γ
(hγ

max(BSi)) (A-1)

The hMG
m−max heuristic considers the minimum cost, relevant literals of a belief state

(those that are reachable given a possible world for each graph γ) to get state mea-
sures. The max is taken because the estimate accounts for the worst (i.e., the plan
needed in the most difficult world to achieve the subgoals).

• Sum The sum heuristic that measures positive interaction for multiple planning graphs
is hMG

m−sum. hMG
m−sum(BSi) computes the sum of the cost of the clauses in κ(BSi) for

each graph γ ∈ Γ and takes the maximum. Formally:

hMG
m−sum(BSi) = max

γ∈Γ
(hγ

sum(BSi))

hMG
m−sum considers the minimum cost, relevant literals of a belief state (those that

are reachable given the possible worlds represented for each graph γ) to get state
measures. As with hMG

m−max, the max is taken to estimate for the most costly world.

• Level Similar to hMG
m−max and hMG

m−sum, the hMG
m−level heuristic is found by first finding

hγ
level for each graph γ ∈ Γ to get a state distance measure, and then taking the

max across the graphs. hγ
level(BSi) is computed by taking the minimum among the

S ∈ ξ(BSi), of the first level levγ(S) in the planning graph γ where literals of Ŝ are
present with none of them marked mutex. Formally:

hγ
level(BSi) = min

S∈ξ(BSi)
levγ(S)

and
hMG
m−level(BSi) = max

γ∈Γ
(hγ

level(BSi))

Note that this heuristic is admissible. By the same reasoning as in classical planning,
the first level where all the subgoals are present and non-mutex is an underestimate
of the true cost of a state. This holds for each of the graphs. Taking the max accounts
for the most difficult world in which to achieve a constituent of BSi and is thus a
provable underestimate of h∗. GPT’s max heuristic [Bonet and Geffner, 2000] is
similar to hMG

m−level, but is computed with dynamic programming rather than planning
graphs.

Independence Aggregation:
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• All heuristics mentioned for Positive Interaction Aggregation can be augmented to
take the sum of costs found on the individual planning graphs rather than the max. We
denote them as: hMG

s−max, hMG
s−sum, and hMG

s−level. None of these heuristics are admissible
because the same action may be used in all worlds, but we count its cost for every
world by using summation.

Overlap Aggregation:

• See relaxed plans covered in Section 4.

A.3 Labelled Uncertainty Graph (LUG)

The max, sum, and level heuristics for the LUG are similar to the analogous multiple graph
heuristics. The main difference with these heuristics for the LUG is that it is much easier
to compute positive interaction measures than independence measures. The reason positive
interaction is easier to compute is that we find the cost of a clause for all states in our belief
at once, rather than on each of multiple planning graphs.

No Aggregation:

• The LUG is useful for aggregating the planning graphs for multiple states into one
structure, so it does not make sense to throw away this information and compute
a heuristic that does not aggregate states. Rather, if one has only one state under
consideration, then a single graph would be ideal.

Positive Interaction Aggregation:

• Max The max heuristic hLUG
m−max for the LUG finds the maximum clause cost across

clauses of the current belief BSi. The cost of a clause is the first level it becomes
reachable. Formally:

hLUG
m−max(BSi) = max

C∈κ(BSi)

(
min

k:BSP |= ∗k(C)
k

)

• Sum The sum heuristic hLUG
m−sum for the LUG sums the individual levels where each

clause in κ(BSi) is first reachable. Formally:

hLUG
m−sum(BSi) =

∑
C∈κ(BSi)

(
min

k:BSP |= ∗k(C)
k

)
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• Level The level heuristic hLUG
m−level is the index of the first level where BSi is reach-

able. Formally:

hLUG
m−level(BSi) = min

k:BSP |= ∗k(BSi)
i

Independence Aggregation:

• All heuristics mentioned for Positive Interaction Aggregation can be augmented to
take the sum of costs for each state in our belief. This may be inefficient due to
the fact that we lose the benefit of having a LUG by evaluating a heuristic for each
state of our current belief, rather than all states at once as in the Positive Interaction
Aggregation. In such a case we are doing work similar to the multiple graph heuristic
extraction, aside from the improved graph construction time. The Positive Interaction
Aggregation is able to implicitly calculate the max over all worlds for most of the
heuristics, whereas for sum we need to explicitly find a cost for each world. We
denote the sum heuristics as: hLUG

s−max, hLUG
s−sum, and hLUG

s−level.

State Overlap Aggregation:

• Covered in section 4.

Appendix B. Cross-World Mutexes

Mutexes can develop not only in the same possible world but also between two possible
worlds, as described in Smith and Weld [1998]. Cross world mutexes are useful to cap-
ture negative interactions in belief state distance measures (mentioned in Section 3). The
representation of cross-world mutexes requires another generalization for the labelling of
mutexes. Same world mutexes require keeping only one label for the mutex to signify all
same possible worlds for which the mutex holds. The extended representation keeps a pair
of labels, one for each element in the mutex; if x in possible world S is mutex with x′ in
possible world S′, we denote the mutex as the pair (!̂k(x) = S, !̂k(x

′) = S ′).
We can say that a formula f is reachable from our projected belief state BSP , when

considering cross-world mutexes, if for every pair of states in BSP , f is reachable. For, a
pair of states S and S′, f is reachable if i)BSP |= !∗k(f), ii) there is a pair of states in f , say
S ′′ and S ′′′ such that S |= !∗k(S

′′) and S ′ |= !∗k(S
′′′), iii) there are no two literals in either

S ′′ or S ′′′ same-world mutex in the respective worlds S and S′, and iv) there is not mutex
between literals in S′′ and S ′′′, in the respective worlds S and S′. There is a mutex between
a pair literals l and l′, respectively from S′′ and S ′′′ if there is a mutex (!̂k(l), !̂k(l

′)) such
that S |= !̂k(l) and S ′ |= !̂k(l

′).
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The computation of cross-world mutexes requires changes to some of the mutex formu-
las, as outlined next. The major change is to check, instead of all the single possible worlds
S, all pairs of possible worlds S and S′ for mutexes.

Action Mutexes Âk: The action mutexes can now hold for actions that are executable in
different possible worlds.

• Interference Interference mutexes do not change for cross-world mutexes, except
that there is a pair of labels where (!̂k(a) = BSP , !̂k(a

′) = BSP ), instead of a single
label.

• Competing Needs Competing needs change mutexes for cross-world mutexes be-
cause two actions a and a′, in worlds S and S′ respectively, could be competing.
Formally, a cross-world competing needs mutex ((!̂k(a) = S, !̂k(a

′) = S ′) exists
between a and a′ in worlds S and S′ if:

∃l∈ρe(a),l′∈ρe(a′)(!̂k(l) = S, !̂k(l
′) = S ′)

Effect Mutexes Êk: The effect mutexes can now hold for effects that occur in different
possible worlds.

• Interference Effect interference mutexes do not change for cross-world mutexes,
except that there is a pair of labels where (!̂k(ϕi(a)) = BSP , !̂k(ϕ

j(a′)) = BSP ),
instead of a single label.

• Competing Needs Effect competing needs mutexes change for cross-world mutexes
because two effects ϕi(a) and ϕj(a′), in worlds S and S′ respectively, could be com-
peting. Formally, a cross-world competing needs mutex (!̂k(ϕi(a)) = S, !̂k(ϕ

j(a′)) =

S ′) exists between ϕi(a) and ϕj(a′) in worlds S and S′ if:

∃l∈ρi(a),l′∈ρj(a′)(!̂k(l) = S, !̂k(l
′) = S ′)

• Induced Induced mutexes change slightly for cross-world mutexes. The formula f ,
representing the worlds where one effect induces another, remains the same, but the
mutex changes slightly. If there exists a mutex (!̂k(ϕi(a)), !̂k(ϕ

h(a′))), and ϕi(a)

induces ϕj(a), then the mutex (f ∧ !̂k(ϕi(a)), !̂k(ϕ
h(a′))) holds.

An example of a cross-world induced effect mutex is shown in Figure 18. Literal p
holds in possible worlds S1 and S2 (denoted by label !), q holds in possible worlds
S1 and S3 (denoted by label !′), and r holds in worlds S1 and S4 (denoted by !′′).
Literals p and q are mutex across possible worlds (S2, S1). The effect ϕi(a) induces
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a

a’

ϕi

ϕj

ϕh’

induces, S1

mutex, S2
S1

induced
mutex, S2

S1

p

q

S1, S2 ² l

S1, S3 ² l’

l

l’S1

r

S1, S4 ² l’’
l’’

S2

Figure 18: Example of a cross-world induced effect mutex.

ϕj(a) in possible world S1, ϕh(a′) is mutex with effect ϕi(a) across possible worlds
(S2, S1) because of the mutex between p and q, and ϕj(a) becomes induced mutex
with ϕh(a′) across possible world (S2, S1).

Literal Mutexes L̂k: The literal mutexes can now hold for literals that are supported in
different possible worlds.

• Inconsistent Support changes for cross-world mutexes. A mutex (!̂k(l) = S, !̂k(l
′) =

S ′) holds for l in S and l′ in S ′ if:

∀ ϕi,ϕ
j(a′)∈Ek−1,

wherel∈εi(a),l′∈εj(a′)
(!̂k−1(ϕ

i(a)) = S, !̂k−1(ϕ
j(a′)) = S ′)
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