
State Agnostic Planning Graphs
and the application to belief-space planning

William Cushing and Daniel Bryce
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-8809

{william.cushing|dan.bryce}@asu.edu

Abstract

Planning graphs have been shown to be a rich source of
heuristic information for many kinds of planners. In many
cases, planners must compute a planning graph for each ele-
ment of a set of states. The naive technique enumerates the
graphs individually. This is equivalent to solving an all-pairs
shortest path problem by iterating a single-source algorithm
over each source.
We introduce a structure, the state agnostic planning graph,
that directly solves the all-pairs problem for the relaxation in-
troduced by planning graphs. The technique can also be char-
acterized as exploiting the overlap present in sets of planning
graphs. For the purpose of exposition, we first present the
technique in classical planning. The more prominent appli-
cation of this technique is in belief-space planning, where
an optimization results in drastically improved theoretical
complexity. Our experimental evaluation quantifies this per-
formance boost, and demonstrates that heuristic belief-space
progression planning using our technique is competitive with
the state of the art.

Introduction
Heuristics derived from planning graphs (Blum & Furst
1995) are widespread in planning (Gerevini, Saetti, & Se-
rina 2003; Hoffmann & Nebel 2001; Bonet & Geffner 1999;
Younes & Simmons 2003; Nguyen, Kambhampati, & Ni-
genda 2002). In many cases, heuristics are derived from a
set of planning graphs. For example, progression planners
compute a planning graph (PG) for every search state. The
same situation arises in belief space planning: one method
of generating a heuristic for a belief is to build a planning
graph for each member of the belief (Bryce & Kambham-
pati 2004).

A set of planning graphs for related states can be highly
redundant. That is, any two planning graphs often overlap
significantly. As an extreme example, the planning graph for
a child state is a sub-graph of the planning graph of the par-
ent, left-shifted by one step (Zimmerman & Kambhampati
2005). Computing a set of planning graphs by enumerating
its members is, therefore, inherently redundant.

Motivating Example: Consider progression planning in a
classical domain whose states consist of sets of letters and

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

digits. So, “a1” and “ac45” are both states. Let there
be operators to transform any letter into any other letter:
for all letters α and β (not equal), there is an operator
oαβ=({fα= true }, {fα= false , fβ= true }). For digits, let
there be increment operators. For example, the shortest plan
to reach “be15” from “ad04” uses 4 steps.

For this example, all of the planning graphs built will have
much in common. In particular, consider the sub-graphs
over letters. Each is nearly identical: using a single tran-
sition, any letter is reachable. So, in level 1, all letters and
all letter manipulating operators are added to the graph. In
terms of letters, then, there are 26 different sub-graphs, all
with an identical level 1.

Contribution: In this paper, we develop an elegant gen-
eralization of the Planning Graph called the State Agnos-
tic Graph (SAG). The SAG extends the labeling technique
introduced in the work on the Labeled Uncertainty Graph
(PGLUG) (Bryce, Kambhampati, & Smith 2004). That
work estimates belief-space distance by aggregating esti-
mates of state-space distance. This is achieved, conceptu-
ally, by building a PG for each state contained in the be-
lief. The PGLUG is introduced as an efficient representa-
tion of this set of PGs. We take a more general perspec-
tive on the labeling technique employed, described here as
SAG, and apply this perspective to further boost the perfor-
mance of a belief-space progression planner, POND, em-
ploying PGLUG -based heuristics.

We view the planning graph as exactly solving a single-
source shortest path problem, for a relaxed planning prob-
lem. The levels of the graph efficiently represent a breadth-
first sweep from the single source. In the context of progres-
sion planning, the planner will end up calculating a heuristic
for many different sources. Iterating a single-source algo-
rithm over each source (building a PG per search node) is a
naive solution to the all-pairs shortest path problem. We de-
velop our generalization, SAG, under this intuition: directly
solving the all-pairs shortest path problem is more efficient
than iterating a single source algorithm.

This intuition falls short in most planning problems, be-
cause the majority of states are unreachable. Reasoning
about such states is useless, so instead, we develop the
SAG as a solution to the multi-source shortest path problem.
More precisely, the SAG is a representation of a set of PGs.
Its exact form depends upon the kind of PG being general-

ized (mutexes, cost, time, . . .). The main insight to the tech-
nique is to represent the propagation rules of the PG and a
set of sources as boolean functions. Composing these func-
tions via boolean algebra yields an approach for building the
set of PGs without explicitly enumerating its elements. Ma-
nipulating formulas exploits redundant sub-structure, and
this boosts empirical performance (Bryce, Kambhampati, &
Smith 2004), in spite of the fact that this technique does not
alter theoretical worst-case complexity.

Organization: We introduce the SAG technique, for the
purpose of exposition, in the simpler realm of classical plan-
ning. We present a well-known kind of PG for classical
planning, the Relaxed Planning Graph (PGR). We gener-
alize the PGR to the Relaxed State Agnostic Graph (SAR).
We extend our discussion to belief-space planning, gener-
alizing the PGLUG to its state agnostic version: SALUG .
We then demonstrate an equivalent formalization, SLUG ,
which drastically improves theoretical complexity: we use
this result as the basis for an efficient belief-space progres-
sion planner, POND. From there, we consider several strate-
gies for reducing redundant heuristic computations. Our ex-
perimental evaluation begins by comparing these strategies.
We take the best among these, Reachable-SAG, to conduct
an external comparison with state of the art belief space
planners. We demonstrate that POND is competitive with
the state of the art in both conformant and conditional plan-
ning. Before concluding, we provide some insight into the
connections to other work.

Classical Planning
We first present SAG in a classical setting. We start with a
formal definition of the kind of planning graph used in state
of the art progression planners, PGR. We touch upon the
level heuristic (hPGR

lev), before moving on to present the state
agnostic version of PGR, SAR. This graph allows us to ex-
tract PG-heuristics for a set of initial states. For the specific
case of the level heuristic, we capture this in a formal defi-
nition (hSAR

lev).
Definition 1 (PGR) A Relaxed Planning Graph,
PGR(s)=(V,E), built for a single source s, satisfies:

1. If f holds in s then (f, 0) ∈ V

2. For any i such that (f, i) ∈ V for every f ∈ pre(o), then
(o, i) ∈ V and ((g, i), (o, i)) ∈ E for all g ∈ pre(o)

3. For any i such that (o, i) ∈ V , then (f, i + 1) ∈ V and
((o, i), (f, i + 1)) ∈ E for all f ∈ eff (o)
The intuition is that (x, k) is in the graph when it is feasi-

ble that x (a literal or operator) could be k-reachable under
the full set of constraints of the planning problem. The level
of x is simply the minimum i such that (x, i) is in the graph.
The level heuristic is based on the extension of this idea to a
set of literals (without mutexes, the level and max heuristics
are equivalent).

Definition 2 (hPGR

lev) The level heuristic gives an estimate
of the distance between an initial state I, and a goal G. We
restrict our attention to goals as conjunctions of literals.

hPGR

lev (I,G) = argmini
∀x, (G |= x) ⇒

((x, i) ∈ PGR(I).V)

Level 0

fA=�
fB=�
fC=�
· · ·
fZ=�
fA=⊥
fB=⊥
fC=⊥
· · ·
fZ=⊥

f0=�

f1=⊥
f2=⊥
f3=⊥
f4=⊥
f5=⊥
f6=⊥
f7=⊥
f8=⊥
f9=⊥

Level 1

fA=�
fB=�
fC=�
· · ·
fZ=�
fA=⊥
fB=⊥
fC=⊥
· · ·
fZ=⊥

f0=�
f1=�
f0=⊥
f1=⊥
f2=⊥
f3=⊥
f4=⊥
f5=⊥
f6=⊥
f7=⊥
f8=⊥
f9=⊥

Level 2

fA=�

fC=�
fB=�

· · ·
fZ=�
fA=⊥
fB=⊥
fC=⊥
· · ·
fZ=⊥

f0=�
f1=�
f2=�

Level 3

fA=�
fB=�
fC=�
· · ·
fZ=�
fA=⊥

fC=⊥
fB=⊥

· · ·
fZ=⊥

f0=�
f1=�
f2=�
f3=�

f0=⊥
f1=⊥
f2=⊥
f3=⊥
· · ·
f9=⊥

f0=⊥
f1=⊥
f2=⊥
f3=⊥
· · ·
f9=⊥

· · ·
oAZ

· · ·
oBC

· · ·
oCA

· · ·

· · ·
oBA

· · ·
oCB

· · ·
oZC

· · ·

· · ·
oAC

· · ·
oBZ

· · ·
oZA

· · ·

o01 o01
o12

o01
o12
o23

Figure 1: Graph structure of a SAG(labels omitted)

We generalize the PGR to the State Agnostic Relaxed
Planning Graph (SAR), by permitting multiple source states.
We associate every element of the graph with a label; the la-
bels track which sources reach the associated graph element.
These labels are boolean functions of the domain fluents. In-
tuitively, a source reaches a graph element if the label eval-
uates to true.

Definition 3 (SAR) A State Agnostic Relaxed Planning
Graph is a labeled graph, SAR(S) = (V,E, l), with label
function l : V → ({
,⊥}n → {
,⊥}) assigning boolean
functions to vertices, where n is the number of fluents–l as-
signs vertices a mapping from states to true and false. The
graph is constructed from its scope S, a set of sources. For
all s ∈ S, the following holds:

1. If f holds in s, then l((f, 0))(s) is true and (f, 0) ∈ V

2. If l((f, i))(s) is true for every f ∈ pre(o), then:

(a) l((o, i))(s) is true

(b) (o, i) ∈ V

(c) ((f, i), (o, i)) ∈ E for every f ∈ pre(o)

3. If f ∈ eff (o) and l((o, i))(s) is true, then l((f, i + 1))(s)
is true and (f, i + 1) ∈ V

Consider building a SAG for the set of states that contain
exactly one letter and only the digit zero. The first four lev-
els are depicted in Figure 1. Each of the literals depicted in
the first layer is present because it holds in one of the source
states. For example, there is a single source state which con-
tains the letter “d”. Every other source state does not, so both
fd=
 and fd=⊥ are present at the first level. The remain-
ing structure is constructed normally, except that elements
with false labels are omitted.

The labels, not depicted in Figure 1, are built in step with
the rest of the graph. The zeroeth level labels encode which
of the source states reach the associated literal in zero steps;
i.e., the subset of the scope that each literal holds in. We

encode the scope, S, as a boolean formula:

S = (fa ∨ fb ∨ · · · ∨ fz) ∧ (at least one letter)
¬(fa ∧ fb) ∧ ¬(fa ∧ fc) ∧ · · · ∧ (at most one letter)
¬(fb ∧ fc) ∧ ¬(fb ∧ fd) ∧ · · · ∧
¬(fy ∧ fz) ∧

...

f0 ∧ ¬f1 ∧ ¬f2 ∧ · · · ∧ ¬f9 (only zero)

From which one can form all of the label functions for the
zeroeth level by conjoining with the appropriate projection
function. For example: l((fd=⊥, 0))(s) = ¬fd ∧ S.

The remaining functions are built up from the initial la-
bels. The function for an operator is the and of its precon-
ditions’ labels, likewise, the function for a literal is the or
of its supporters’ labels. Consider the operator oad at level
0. Its label is the conjunction of its single precondition,
fa=
. So, l((oad, 0)) = l((fa, 0)) = fa ∧ S. The other
25 supporters of fd=
 are of the same form, so the func-
tion S can be factored out of the label of fd=
 at level 1:
l((fd=
, 1)) = (fa ∨ · · · ∨ fz) ∧ S = S. This simplifies
down to just S because S implies that at least one letter is
present. For the negative case, fd=⊥, there is again a sup-
porter for each letter, and so the label simplifies to S. A
similar argument holds for the remaining letters; at all levels
other than 0, the label of a letter literal is just S.

The digit literals only possess one distinct label function.
The label of each at level 0 is either S or the literal is not
present in the graph. Since all of the operators which affect
digits precondition on only digits, whenever a digit literal
is added to the graph it and all of its supporters are labeled
with S.

Sharing: Unlike the PG, the SAG can be reused across mul-
tiple search states. Consider a set of sources, S. We extract
a PG-heuristic for each source, s ∈ S, from SAR(S), with-
out building any additional graphs. We do so by evaluating
label functions. As an example, we present the formal gener-
alization of hPGR

lev , hSAR

lev . We denote the sharing of the SAG
across invocations of the heuristic by passing the graph as an
argument. That is, the caller builds a graph for a set of an-
ticipated search states, and passes that graph when obtaining
the heuristic estimate for each search state in the set.

Definition 4 (hSAR

lev) The graph, G = SAR(S), is built once
for a set of states, S. For any I ∈ S, the heuristic hSAR

lev
reuses the shared graph G.

hSAR

lev (G, I,G) = argmini

∀x, (G |= x) ⇒
((x, i) ∈ G.V ∧
G.l((x, i))(I))

Consider a goal, G=fb ∧ f5, of making the state contain
“b” and “5”. Calculating a heuristic for a state, I = “a0”,
using hPGR

lev (I,G), requires building PGR(I). The cost of
building this graph cannot be shared among search states.
Even with early termination, any means of building this PG
is bounded from below by the required 718 conclusions that
it needs to draw. The majority of this quantity is the 26*25
reachable letter operators (the rest consists of 5 operators
and 26*2 + 5*2+1 literals). Instead, we build G=SAR(
)
(for all states), depicted in Figure 2, and replace hPGR

lev with

oAB

oAC

· · ·
oBA

oBC

· · ·
oZA

· · ·
oZY

o01

o12

o23

o34

o45

o56

o67

o78

o89

¬fZ

¬fA

¬fB

¬fC

fA

fB

fC

fZ

¬f9

f0
f1
f2

f9

¬f0
¬f1
¬f2

Level 0 Level 0 Level 1

fB=�
fC=�
· · ·
fZ=�

fB=⊥
fC=⊥
· · ·
fZ=⊥

fA=⊥

fA=�
fB=�
fC=�
· · ·
fZ=�

fB=⊥
fC=⊥
· · ·
fZ=⊥

fA=⊥

fA=�

· · ·
f9=⊥

· · ·

f0=�
f1=�
f2=�

f9=�
f0=⊥
f1=⊥
f2=⊥

· · ·
f9=⊥

· · ·

f0=�
f1=�
f2=�

f9=�
f0=⊥
f1=⊥
f2=⊥

fA

fA

fB

fB

fZ

fZ

f0

f1

f2

f3

f4

f5

f6

f7

f8

fA∨· · ·∨fZ

fA∨· · ·∨fZ

fA∨· · ·∨fZ

fA∨· · ·∨fZ

�
�
�

�

f0 ∨ f1
f1 ∨ f2

f8 ∨ f9

f0

�
�
�
¬f9

Figure 2: A SAG built for all states

hSAR

lev . Evaluating hSAR

lev (G, I,G), performs at most 2 label
evaluations for “b” and 6 for “5”, with the naive strategy of
evaluating labels at successively increasing levels. Binary
search improves this to 1 and 3 label evaluations, respec-
tively. In our implementation of boolean formulas, evalu-
ating a label requires no more than one operation per state
fluent. In this example, the actual cost is much lower, but
let us grossly estimate the cost as 8*36=388. We must also
account for the cost of building G. Since G can be shared
across every search state, we amortize the cost by the num-
ber of visited states. We conclude that there is quite some
room for a performance boost: 388 + amortization is a loose
upper bound on our technique, while 718 is a loose lower
bound on the standard approach.

Belief-Space Planning
We apply SAG to belief-space planning. Our presentation
parallels the discussion in the classical setting: we formally
present a PG-variant for belief-space planning, PGLUG , and
generalize to the state agnostic version, SALUG . The worst-
case complexity of the SAG technique is exponential in the
worst-case complexity of the PG method. That is, normally,
there is no complexity-theoretic advantage to the technique.
In the case of SALUG , we find an equivalent representation,
SLUG (see below), with the same worst-case complexity as
PGLUG–an exponential reduction.

We describe the operators in belief-space planning
as tuples of deterministic conditional effects: oi =
(oi1, oi2, . . . , oiik), with pre(oij) and eff (oij) as antecedent
and consequent, respectively, of conditional effect oij (Rin-
tanen 2003). We extend our running example to belief-space
by reinterpreting its operators: the executability precondi-
tion is removed, and the effect is conditioned on the former
executability precondition.

Definition 5 (PGLUG) A Labeled Uncertainty Graph,
PGLUG(b) = (V,E, l), is a labeled graph, built for the
belief state b. The label, l, is a function from vertices of the

graph to boolean functions of world states. For every s ∈ b,
the following holds:

1. If f holds in s, then l((f, 0))(s) is true and (f, 0) ∈ V

2. If l((f, i))(s) is true for every f ∈ pre(oxy), then:
(a) l((oxy, i))(s) is true
(b) (oxy, i) ∈ V
(c) ((f, i), (o, i)) ∈ E for every f ∈ pre(oxy)

3. If f ∈ eff (oxy) and l((oxy, i))(s) is true, then l((f, i +
1))(s) is true and (f, i + 1) ∈ V

As stated, the PGLUG is a kind of SAG. The PGLUG is
an efficient representation of a set of PGs built for classical
planning with conditional effects: the kind of PG is PGIPP

(Koehler 1999).1 That is, the structure of the PGLUG is sim-
ply the state agnostic generalization of PGIPP : PGLUG =
SAIPP . However, the PGLUG is more than that: the
PGLUG is a full-fledged PG for belief-space planning. That
is, Bryce, Kambhampati, & Smith derive heuristics for
belief-space from it. We reproduce a formal description of
hPGLUG

lev , extensions of other standard PG-heuristics are sim-
ilar (Bryce, Kambhampati, & Smith 2004).

Definition 6 (hPGLUG

lev) The function hPGLUG

lev (b,G) is an es-
timate of the belief-space distance between the belief b and
the goal G; it is an extension of the level heuristic.

hPGLUG

lev (b,G) = argmini

∀x, (G |= x) ⇒
((x, i) ∈ PGLUG(b).V ∧
b |= PGLUG(b).l((x, i)))

Note that hPGLUG

lev is a heuristic similar in structure to both
hPGR

lev and hSAR

lev . The heuristic does not amortize graph con-
struction effort across search states, but, it does use the SAG
technique to efficiently build and reason about a set of PGs.
That is, the check “b |= PGLUG(b).l((x, i))” reasons about
a set of PGs (one for each s ∈ b) using only the single graph
PGLUG(b).

We introduced Figure 1 as an example of SAR. We
re-interpret it as an example PGLUG . The graph, G =
PGLUG(b), depicted in Figure 1 is built for the belief, b,
that one is certain that the state contains 0, and certain that
the state contains exactly one letter.

We generalize PGLUG to SALUG , by analogy with gen-
eralizing PGR to SAR. We introduce a label function to
track which sources reach vertices. In this case, sources are
beliefs. A further complication arises in that the PGLUG

already defines its own label functions. In order to com-
plete the generalization, we introduce further propositions
to capture these label functions. That is, we use two sets
of propositions to define our label function. The first set of
propositions, gα, correspond to world states. For example,
gac45 represents the state “ac45”: if true, then “ac45” is a
member of the current belief. The second set of propositions
are simply the domain fluents, fα. The former set allows us
to express properties of beliefs which the propagation rules
of PGLUG could depend upon. The latter set allow us to
capture the additional data computed by PGLUG .

1our discussion omits factoring out executability preconditions
and unconditional effects; our implementation does not, and so
possesses the 3-layer form of PGIPP

Definition 7 (SALUG) The structure SALUG(B) =
(V,E, l) is a labeled graph built for a set of belief states B.
The label function is l : Vertex → ((Belief × State) →
{
,⊥}). The following holds for every b ∈ B, and s ∈ b:

1. If f holds in s, then l((f, 0))(b, s) is true and (f, 0) ∈ V

2. If l((f, i))(b, s) is true for every f ∈ pre(oxy), then:
(a) l((oxy, i))(b, s) is true
(b) (oxy, i) ∈ V

(c) ((f, i), (o, i)) ∈ E for every f ∈ pre(oxy)
3. If f ∈ eff (oxy) and l((oxy, i))(b, s) is true, then l((f, i +

1))(b, s) is true and (f, i + 1) ∈ V

Intuitively, the label of a literal, f , at level k represents
a set of (b, s) pairs. The label evaluates to true for some
pair (b, s) if, and only if, PGLUG(b) considers the literal k-
reachable from state s. As a concrete example, the label of
f9 =
 at level 0 is:

l((f9 =
, 0))(b, s) = f9∧
(

ga9 ∨ gb9 ∨ . . . ∨ gz9∨
gab9 ∨ . . . ∨ ga−z9∨
ga89 ∨ . . . ∨ ga−z0−9 ∨ g9

)

That is, the PGLUG built for any belief which includes
at least one state containing ‘9’ considers f9 =
 a 0-
reachable literal from any state where f9 is true.

We optimize SALUG by eliminating the propositions gα.
Introducing these propositions is sufficient for representing
arbitrary extensions of the PG to belief space. The PGLUG ,
however, does not require this mechanical scheme. Intu-
itively, the propagation rules of the PGLUG depend only
upon properties of world states (as opposed to properties
of beliefs). SLUG exploits this: SLUG(B) represents
a set (PGLUG(b), b∈B) for the price of a single element
(PGLUG(b∗)).
Definition 8 (SLUG) An, optimized, State Agnostic La-
beled Uncertainty Graph, SLUG(B) = (V,E, l), is a la-
beled graph built for a set of beliefs B. The labels map ver-
tices to boolean functions of states. The structure is equiv-
alent to a particular PGLUG . Let b∗ =

⋃
b∈B b. Then

SLUG(B) = PGLUG(b∗).
Any query concerning PGLUG(b) = (Vb, Eb, lb), for b ∈

B, can be answered using SLUG(B) and the following true
statements:

1. v ∈ Vb iff: v ∈ V and l(v) ∧ b is satisfiable.
2. e = uv ∈ Eb iff: e ∈ E and l(u) ∧ l(v) ∧ b is satisfiable
3. lb(v) = l(v) ∧ b

By analogy with hSAR

lev , we define hSLUG
lev . Let G denote

Figure 2. This figure depicts the SLUG built for the set of
all beliefs. Let us consider determining hPGLUG

lev (b,G) for
the following belief, b: we are certain that our state con-
tains exactly one vowel, and either the digit 0 or the digit 5.
Here, G is the recurring goal of being certain of “b” and “5”.
For each level i, we can check b |= G.l((fb =
, i)) and
b |= G.l((f5 =
, i)) until both statements are true. This
happens for the first time at level 5, since before that point
states such as “a0” have not yet reached f5 =
. hSLUG

lev
formally captures this method, allowing us to share graphs
across search states in belief space planning.

Definition 9 (hSLUG
lev) The function hSLUG

lev (G, b,G) is a
level heuristic for belief-space planning. G = SLUG(B)
is built, once, for a set of belief-states, B, and re-used to
derive a heuristic estimate for any b ∈ B:

hSLUG
lev (G, b,G) = argmini

∀x, (G |= x) ⇒
((x, i) ∈ G.V ∧
b |= G.l((x, i)))

Utilizing SAG
We utilize the SAG structure by applying it to progression
planning. We build a SAG for many search states at once,
and extract heuristics for each from the shared graph. The
choice of scope has a great impact on the performance of
any approach based on SAG. Using fewer states in the scope
almost always requires less computation per graph. While
not every label function becomes smaller, the aggregate size
almost always decreases. Restricting the scope, however,
prevents the SAG from representing the PGs for states so
excluded. If such states are visited in search, then a new
SAG will need to be generated to cover them. All of the
approaches based on SAG can be seen as a particular strat-
egy for covering the set of all states with shared graphs.
We define 4 isolated points in that spectrum: Global-SAG,
Reachable-SAG, Child-SAG, and the PG (Node-SAG). With
respect to representing labels as Binary Decision Diagrams
(BDDs) (Meinel & Theobald 1998) (as our implementation
does), we provide an intuition concerning performance.

Global-SAG: A Global-SAG is a single graph for an en-
tire planning episode. The scope is taken to be the set of
all states; that is, Global-SAG uses the degenerate partition
containing only the set of all states. Under a natural vari-
able ordering of “a-z0-9”, we can consider the size of the la-
bel functions in our example domain. Each individual label
function is a relatively small BDD; however, the pertinent
statistic (since diagrams are shared) is that the total size of
all the diagrams combined is 108.

Reachable-SAG: A Reachable-SAG is also a single graph
for an entire planning episode. A normal planning graph is
constructed from the initial state of the problem; all states
consistent with the last level form the set from which the
Reachable-SAG is built. That is, states are partitioned into
two groups: definitely unreachable, and possibly reachable.
A graph is generated only for the latter set of states.

With respect to the running example, consider the initial
state of “5”. The last level of the planning graph built for
that state allows all of the false literals, but among true lit-
erals, admits only “5-9”. So the set of states consistent with
¬fa∧· · ·∧¬fz∧¬f0∧· · ·∧¬f4 is what the Reachable-SAG
is built for. Compared to the Global-SAG, the Reachable-
SAG levels off after 5 levels instead of 10, and consume 52
shared BDD nodes (under the order “5-9a-z0-4”) instead of
108.

Child-SAG: A Child-SAG is a graph built for the set of chil-
dren of the current node. This results in one graph per non-
leaf search node. That is, Child-SAG partitions states into
sets of siblings. While this is still an exponential number of

graphs, the reduction, relative to Node-SAG, is still signifi-
cant.

Node-SAG: A Node-SAG is built for the smallest conceiv-
able scope: the current search node. In such a situation,
label propagation is useless, and therefore skipped. That is,
Node-SAG is just a name for the naive approach of building
a PG for every search node.

Empirical Evaluation
In order to qualitatively evaluate our techniques,
we developed a belief-space progression planner
called POND. We implemented the SAG strategies
(Node,Child,Reachable,Global) within POND. The degen-
erate case, Node-SAG, simply uses PGLUG . The other
three cases are implemented with respect to the (optimized)
state agnostic version of PGLUG : SLUG .

We discuss the implementation, and in particular, the re-
laxed plan based heuristic employed throughout our exper-
iments. We report on our internal comparison of SAG-
based strategies. We demonstrate that POND (using the best
strategy from the internal comparison) is competitive with
state of the art belief space planners. Domains, problems,
POND, and the full set of test results are all available at
http://rakaposhi.eas.asu.edu/belief-search/.

Implementation: POND searches in the space of belief
states to find strong conditional plans (conformant and clas-
sical plans are special cases). Searching for conditional
plans requires more complicated methods than A* and its
cousins; we use AO* (And/Or) search (Nilsson 1980) to find
conditional plans. POND is implemented in C++ and makes
use of many software packages. The search relies on the
LAO* source code (Hansen & Zilberstein 2001) (modified
to only do AO*). As previously mentioned, labels are repre-
sented as BDDs (Meinel & Theobald 1998). Likewise, we
represent actions and belief states as BDDs, via the CUDD
library (Brace, Rudell, & Bryant 1990). We progress ac-
tions over beliefs using the BDD image function, as in MBP
(Bertoli et al. 2001). As previously implied, POND extends
the planning graph implementation provided in the IPP plan-
ner (Koehler 1999); we include support for propagating our
label functions and sharing graphs across multiple search
states.

In all of experiments, we use a belief-space relaxed plan
heuristic (Bryce & Kambhampati 2004) to guide POND’s
AO* search. We additionally weight the heuristic: f =
g+5∗h. Our relaxation ignores sensing in addition to ignor-
ing negative interactions between operators. We extract a
belief-space relaxed plan from PGLUG(b) by requiring that,
for any s ∈ b, the set of vertices whose labels’ evaluate to
true for s represents a classical relaxed plan. Prior work
(Bryce, Kambhampati, & Smith 2004) demonstrates a pro-
cedure for efficiently extracting such a plan via label algebra
(as opposed to enumerating the states in the belief). The re-
laxed plan can be viewed as ignoring negative interactions
between states in a belief in addition to ignoring negative in-
teractions between operators. We extend this to extracting
belief-space relaxed plans from SLUG(B), for b ∈ B, by
conjoining the labels of the SLUG with b before using them

0

50

100

150

200

250

300

0 50 100 150 200 250 300

PG
 r

un
-t

im
e

(s
)

Reachable-SAG run-time (s)

(Reachable-SAG , PG)
Even

0
20
40
60
80

100
120
140
160
180
200

0 50 100 150 200 250 300

of

 p
ro

bl
em

s
so

lv
ed

Deadline (s)

Reachable-SAG
PG

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Sp
ee

du
p

PG run-time (s)

PG / Reachable-SAG
Even

Figure 3: Reachable-SAG (using SLUG) vs. PG (using PGLUG), Belief-Space Problems

0

50

100

150

200

250

300

0 50 100 150 200 250 300

PG
 r

un
-t

im
e

(s
)

Reachable-SAG run-time (s)

(Reachable-SAG , PG)
Even

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

of

 p
ro

bl
em

s
so

lv
ed

Deadline (s)

Reachable-SAG
PG

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Sp
ee

du
p

PG run-time (s)

PG / Reachable-SAG
Even

Figure 4: Reachable-SAG (using SLUG) vs. PG (using PGLUG), Classical Problems

in the above extraction procedure. As with classical relaxed
plans, the heuristic value of a belief-space relaxed plan is the
number of action vertices it contains.

Internal Comparison
We ran tests across a wide variety of benchmark problems
in belief-space planning. All problems in the POND dis-
tribution were attempted; we further augmented the test set
with all benchmarks from the 2000, 2002, and 2004 plan-
ning competitions. The latter problems are classical plan-
ning problems, which we include in order to gauge the pos-
sible benefits of applying SAG to classical planners.

As there are several hundred problems tested, we imposed
relatively tight limits on the execution (5 minutes on a P4 at
3.06 GHz with 900 MB of RAM) of any single problem. We
exclude failures due to these limits from the figures. In addi-
tion, we sparsely sampled these failures with relaxed limits
to ensure that our conclusions were not overly sensitive to
the choice of limits. Up until the point where physical mem-
ory is exhausted, the trends remain the same.

Our measurement for each problem is the total run time of
the planner, from invocation to exit. We have only modified
the manner in which the heuristic is computed; despite this,
we report total time to motivate the importance of optimiz-
ing heuristic computation. It should be clear, given that we
achieve large factors of improvement, that time spent calcu-
lating heuristics is dominating time spent searching.

Figures 3 and 4 provide several perspectives on the mer-
its of Reachable-SAG. The figures omit Global-SAG and
Child-SAG for clarity. The former, Global-SAG, is domi-
nated; the mode wastes significant time projecting reachabil-

ity for unreachable states. The latter, Child-SAG, improves
upon the PG approach in virtually all problems. However,
that margin is relatively small, so we prefer to depict the
current standard in the literature, the PG approach. The
first graph in each figure is a scatter-plot of the total running
times. The line “y=x” is plotted, which plots identical per-
formance. The second graph in each figure plots the number
of problems that each approach has solved by a given dead-
line. The third graph in each figure offers one final perspec-
tive, plotting the ratio of the total running times.

Belief-Space Domains The scatter-plots reveal that
Reachable-SAG always outperforms the PG approach.
Moreover, the boost in performance is well-removed from
the break-even point. The deadline graphs are similar in
purpose to plotting time as a function of complexity: ro-
tating the axes reveals the telltale exponential trend. How-
ever, it is difficult to measure complexity across domains.
This method corrects for that at the cost of losing the ability
to compare performance on the same problem. We observe
that, with respect to any deadline, Reachable-SAG solves a
much greater number of planning problems. Most impor-
tantly, Reachable-SAG out-scales the PG approach. When
we examine the speedup graphs, we see that the savings
grow larger as the problems become more difficult.

Classical Domains POND treats classical problems as
problems in belief-space; naturally, this is very inefficient.
Despite this, Reachable-SAG still produces an improvement
on average. While the scatter-plots reveal that performance
can degrade, it is still the case that average time is improved:
mostly due to the fact that as problems become more diffi-

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

ru
n-

tim
e

(s
)

Problem

KACMBP
CFF

SLUG

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

ru
n-

tim
e

(s
)

Problem

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

ru
n-

tim
e

(s
)

Problem

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

ru
n-

tim
e

(s
)

Problem

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 C5 C13 R2 R10

ru
n-

tim
e

(s
)

Problem

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14 B10 B80

ru
n-

tim
e

(s
)

Problem

BBSP
MBP

SLUG

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14 B10 B80

ru
n-

tim
e

(s
)

Problem

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14 B10 B80

ru
n-

tim
e

(s
)

Problem

0.01

0.1

1

10

100

600

Rv1 Rv6 L1 L5 M2 M14 B10 B80

ru
n-

tim
e

(s
)

Problem

Figure 5: Comparison of planners on conformant (left) and conditional (right) domains. Four domains appear in each plot.
The conformant domains are Rovers(Rv1-Rv6), Logistics(L1-L5), Cube Center(C5-C13), and Ring(R2-R10). The conditional
domains are Rovers(Rv1-Rv6), Logistics(L1-L5), Medical(M2-M14), and BTCS(B10-B80).

cult, the savings become larger.
In light of this, we have made a preliminary investiga-

tion in comparing SAR to state of the art implementations
of PGR. In particular, Hoffmann & Nebel (2001) go to
great lengths to build PGR as quickly as possible, and sub-
sequently extract a relaxed plan. We attempted to compete
against that implementation with a straightforward imple-
mentation of SAR. We ran trials of greedy best-first search
using hPGR

RP (the relaxed plan heuristic) against using hSAR

RP
with the Reachable-SAG strategy. Total performance was
improved, sometimes doubled, for the Rovers domain; how-
ever, in most other benchmark problems, the relative close-
ness of the goal and the poor estimate of reachability prohib-
ited any improvement. Of course, per-node heuristic extrac-
tion time (i.e. ignoring the time it takes to build the shared
graph) was always improved, which motivates an investiga-
tion into more sophisticated graph-building strategies than
Reachable-SAG.

External Comparison

We made an external comparison of our planner POND
with several of the best conformant: KACMBP (Bertoli &
Cimatti 2002) and CFF (Brafman & Hoffmann 2004), and
conditional planners: MBP (Bertoli et al. 2001) and BBSP
(Rintanen 2005). Based on the results of the internal anal-
ysis, we used belief-space relaxed plans extracted from a
common SLUG , using the Reachable-SAG strategy. We de-
note this mode of POND as “SLUG” in Figure 5. The tests
depicted in Figure 5 were allowed 10 minutes on a P4 at 2.8
GHz with 1GB of memory. The planners we used for these
comparisons require descriptions in differing languages. We
ensured that each encoding had an identical state space; this
required us to use only boolean fluents in our encodings.

Conformant Domains We used the conformant Rovers
and Logistics domains (Bryce & Kambhampati 2004) as
well as the Cube Center and Ring domains (Bertoli &

Cimatti 2002) for our conformant planner comparison in
Figure 5. These domains exhibit two distinct dimensions
of difficulty. The primary difficulty in Rovers and Logistics
problems centers around causing the goal. The Cube Center
and Ring domains, on the other hand, revolve around know-
ing the goal. The distinction is made clearer if we consider
the presence of an oracle. The former pair, given complete
information, remains difficult. The latter pair, given com-
plete information, becomes trivial, relatively speaking.

We see our heuristic as a middle-ground between
KACMBP’s cardinality based heuristic and CFF’s approx-
imate relaxed plan heuristic. In the Logistics and Rovers do-
mains, CFF dominates, while KACMBP becomes lost. The
situation reverses in Cube Center and Ring: KACMBP eas-
ily discovers solutions, while CFF wanders. Meanwhile, by
avoiding approximation and eschewing cardinality in favor
of reachability, POND achieves middle-ground performance
on all of the problems.

Conditional Domains We devised conditional versions of
Logistics and Rovers domains by introducing sensory ac-
tions. We also drew conditional domains from the literature:
BTCS (Weld, Anderson, & Smith 1998) and a variant of
Medical (Petrick & Bacchus 2002). Our variant of Medical
splits the multi-valued stain type sensor into several boolean
sensors.

The results (Figure 5) show that POND dominates the
other contingent planners. This is not surprising: MBP’s
heuristic is belief state cardinality, and BBSP uses no heuris-
tic. Meanwhile, POND employs a strong, yet cheap, esti-
mate of reachability (relaxed plans extracted from SLUG ,
in Reachable-SAG mode). MBP employs greedy depth-first
search, so the quality of plans returned can be drastically
poor. The best example of this in our results is instance Rv4
of Rovers, where the max length branch of MBP requires
146 actions compared to 10 actions for POND.

Related Work
We have already noted that our work is a generalization of
(Bryce, Kambhampati, & Smith 2004), which efficiently ex-
ploits the overlap in the PGs of members of a belief. Liu,
Koenig, & Furcy (2002) have explored issues in speeding
up heuristic calculation in HSP. Their approach utilizes the
prior PG to improve the performance of building the current
PG (the rules which express the dynamic program of HSP’s
heuristic correspond to the structure of a PG). We set out
to perform work ahead of time in order to save computation
later; their approach demonstrates how to boost performance
by skipping re-initialization. Also in that vein, Long & Fox
(1999) demonstrate techniques for representing a PG that
take full advantage of the properties of the PG. We seek to
exploit the overlap between different graphs, not different
levels. Liu, Koenig, & Furcy seek to exploit the overlap be-
tween different graphs as well, but limit the scope to graphs
adjacent in time. Another way of avoiding the inefficien-
cies in repeated construction of PGs is to do the reachabil-
ity computation in the backward direction (Kambhampati,
Parker, & Lambrecht 1997). However, we note that state of
the art progression planners typically do reachability anal-
ysis in the forward direction. Work on greedy regression
graphs (McDermott 1999) as well as the GRT system (Re-
fanidis & Vlahavas 2001), can be understood this way.

Conclusion
A common task in many planners is to compute a set of plan-
ning graphs. The naive approach fails to take account of
the redundant sub-structure of planning graphs. We devel-
oped the state agnostic graph (SAG) as an extension of prior
work on the labeled uncertainty graph (PGLUG). The SAG
employs a labeling technique which exploits the redundant
sub-structure, if any, of arbitrary sets of PGs.

We developed a belief-space progression planner called
POND to evaluate our technique. We improve the use of the
PGLUG within POND by applying our SAG technique. We
found an optimized form, SLUG , of the state agnostic ver-
sion of the PGLUG . This optimized form improves worst-
case complexity, which carries through to our experimental
results.

We compared POND to state of the art planners in con-
formant and conditional planning. We demonstrated that, by
using SLUG , POND is highly competitive with the state of
the art in belief-space planning. Given our positive results
in applying SAG, we see promise in applying SAG to other
planning formalisms.

Acknowledgements: This research is supported in part by
the NSF grant IIS-0308139 and an IBM Faculty Award to
Subbarao Kambhampati. We thank David Smith for his con-
tributions to the foundations of our work, in addition, we
thank the members of Yochan and Subbarao Kambhampati
for many helpful suggestions.

References
Bertoli, P., and Cimatti, A. 2002. Improving heuristics for plan-
ning as search in belief space. In AIPS, 143–152.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in nondeterministic domains under partial observability via
symbolic model checking. In IJCAI, 473–486.
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. In IJCAI, 1636–1642.
Bonet, B., and Geffner, H. 1999. Planning as heuristic search:
New results. In ECP, 360–372.
Brace, K. S.; Rudell, R. L.; and Bryant, R. E. 1990. Efficient
implementation of a bdd package. In Conference proceedings
on 27th ACM/IEEE design automation conference, 40–45. ACM
Press.
Brafman, R., and Hoffmann, J. 2004. Conformant planning via
heuristic forward search: A new approach. In ICAPS, 355–364.
Bryce, D., and Kambhampati, S. 2004. Heuristic guidance mea-
sures for conformant planning. In ICAPS, 365–375.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2004. Planning in
belief space with a labelled uncertainty graph. In AAAI Workshop
on Learning and Planning in Markov Decision Processes.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs in lpg. JAIR
20:239–290.
Hansen, E. A., and Zilberstein, S. 2001. LAO: A heuristic-search
algorithm that finds solutions with loops. Artificial Intelligence
129(1–2):35–62.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Kambhampati, S.; Parker, E.; and Lambrecht, E. 1997. Under-
standing and extending graphplan. In ECP, 260–272.
Koehler, J. 1999. Handling of conditional effects and negative
goals in IPP. Technical Report report00128, IBM.
Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up the
calculation of heuristics for heuristic search-based planning. In
AAAI/IAAI, 484–491.
Long, D., and Fox, M. 1999. Efficient implementation of the plan
graph in stan. JAIR 10:87–115.
McDermott, D. V. 1999. Using regression-match graphs to con-
trol search in planning. Artificial Intelligence 109(1-2):111–159.
Meinel, C., and Theobald, T. 1998. Algorithms and Data Struc-
tures in VLSI Design: OBDD - Foundations and Applications.
Springer.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. S. 2002. Plan-
ning graph as the basis for deriving heuristics for plan synthe-
sis by state space and CSP search. Artificial Intelligence 135(1-
2):73–123.
Nilsson, N. J. 1980. Principles of Artificial Intelligence. Morgan
Kaufmann.
Petrick, R. P., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
AIPS, 212–221.
Refanidis, I., and Vlahavas, I. 2001. The GRT planning system:
Backward heuristic construction in forward state-space planning.
JAIR 15:115–161.
Rintanen, J. 2003. Expressive equivalence of formalisms for
planning with sensing. In ICAPS, 185–194.
Rintanen, J. 2005. Conditional planning in the discrete belief
space. In IJCAI.
Weld, D. S.; Anderson, C.; and Smith, D. E. 1998. Extending
graphplan to handle uncertainty and sensing actions. In National
Conference on Artificial Intelligence. AAAI Press.
Younes, H., and Simmons, R. 2003. Vhpop: Versatile heuristic
partial order planner. JAIR 20:405–430.
Zimmerman, T., and Kambhampati, S. 2005. Using memory to
transform search on the planning graph. JAIR 23:533–585.

