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Abstract

Plan synthesis approaches in AI fall into two categories:
domain-independent and domain-dependent. The domain-
independent approaches are applicable across a variety of
domains, but may not be very efficient in any one given
domain. The domain-dependent approaches can be very
efficient for the domain for which they are designed, but
would need to be written separately for each domain of in-
terest. The tediousness and the error-proneness of manual
coding have hither-to inhibited work on domain-dependent
planners. In this paper, we describe a novel way of au-
tomating the development of domain dependent planners
using knowledge-based software synthesis tools. Specifi-
cally, we describe an architecture called CLAY in which the
Kestrel Interactive Development System (KIDS) is used in
conjunction with a declarative theory of domain indepen-
dent planning, and the declarative control knowledge spe-
cific to a given domain, to semi-automatically derive cus-
tomized planning code. We discuss what it means to write
declarative theory of planning and control knowledge for
KIDS, and illustrate it by generating a range of domain-
specific planners using state space and plan space refine-
ments. We demonstrate that the synthesized planners can
have superior performance compared to classical refine-
ment planners using the same control knowledge.

1. Introduction

Planning is the problem of synthesizing a sequence of
actions from a set of possible action templates such that
when they are executed from the initial world state, all goal
constraints are satisfied [4, 12]. Planning is known to be a
combinatorial problem, and a variety of approaches for plan
synthesis have been developed over the past twenty years.
These approaches can be classified into two varieties – do-
main independent and domain dependent. Domain inde-
pendent planners take a description of the actions, and the
initial and goal state specifications, and produce a plan for
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Figure 1. Architectural overview of planner syn-
thesis with KIDS in the CLAY approach.

the problem using the given actions. In contrast, domain
dependent planners have either the actions or the initial or
goal states hard-wired.

The domain-independent approaches are applicable
across a variety of domains by simply changing the action
template that is input to the algorithm, but may not be very
efficient in any one given domain. The domain-dependent
approaches need to be (re)designed for each domain sepa-
rately, but can be very efficient in the domain for which they
are designed as they can exploit the structure inherent in the
given domain.

In this paper, we introduce CLAY as a novel approach
for synthesizing efficient domain-dependent planners us-
ing automated software engineering tools leading to a fast
turn-around time in implementing domain-dependent plan-
ners. In this work, as is shown in Figure 1, a declara-
tive theory of plan synthesis (theory of planning) is com-
bined with the control knowledge specific to a given do-
main, in a semi-automated software synthesis system called
KIDS (Kestrel Interactive Development System) [17] to de-
rive a customized planner for the domain. We will draw the
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declarative theory of plan synthesis from domain indepen-
dent planning techniques. Domain specific information will
be expressed in terms of the types of plans that are preferred
in the given domain.

The advantage of the CLAY approach is that the theo-
ries of planning are encoded independent of domains, and
the domain control knowledge can be encoded independent
of the specific planning theory being used. The customiza-
tion step compiles the domain control knowledge into the
planning algorithm and ensures that the resulting planners
are able to exploit the structure of the domain. Finally, the
emphasis is shifted from “efficient plan generation” to “the
generation of efficient planners”.

Since our work straddles the areas of automated software
engineering and AI planning, we have to be careful with
our terminology for concepts that may be confused. The
term theory refers to any useful body of knowledge. Prob-
lem refers to any assignment that is given to KIDS for solv-
ing and the successful outcome is called the solution to the
problem. The input to KIDS is a problem theory consist-
ing of the problem specification and a declarative descrip-
tion of useful concepts and rules to reason in the problem
space. We give planning as a problem to KIDS and expect
it to synthesize a planner which is the solution for us. The
planner can take planning tasks as input and return results.
For example, we can give the assignment of synthesizing a
progression planner for blocks world domain to KIDS (the
problem) and expect it to return such a planner (the solu-
tion). The synthesized planner can take a planning task such
as Sussman Anomaly1 as input (a task) and return the plan
for it (the result).

1.1. Background

Part of the reason for our interest in KIDS system stems
from the fact that it has been used in the past to derive
efficient scheduling software [16]. Using KIDS to derive
planning software in CLAY involves figuring out (a) how
declarative theories for different types of classical planning
are specified and (b) what algorithmic design templates are
best suited to planner synthesis. We answer these questions
with the help of a unifying framework for plan synthesis al-
gorithms (called Universal Classical Planning or UCP) that
we have developed in our recent work [9, 8]. In this frame-
work, plan synthesis is modeled as a process of searching
in a space of sets of action sequences. These sets are repre-
sented compactly as collections of constraints called “par-
tial plans.” The search process first attempts to extract a re-
sult (an action sequence capable of solving the task) from
the partial plan, and when that fails, “refines” (or splits)
the partial plan into a set of new partial plans (each corre-
sponding to sets of action sequences that are subsets of the

1Sussman Anomaly refers to a task in blocks world domain with three
blocks A, B and C. In the initial state, Block C is on top of Block A and
Block B is on Table. The goal state has Block A on top of Block B, Block
B on top of Block C and Block C on top of Table.

original partial plan’s action sequence set), and considers
the new plans in turn. As mentioned in Kambhampati and
Srivastava [10], existing domain independent plan-synthesis
algorithms correspond to four different ways of refining par-
tial plans. These are known, respectively, as Forward State
Space Refinement (FSS), Backward State Space Refine-
ment (BSS) e.g. TOPI, Plan Space Refinement (PSS) e.g.
SNLP and Task Reduction Refinement (HTN) e.g. NON-
LIN [7]. Given this background, the declarative theory of
plan generation in CLAY corresponds to theories of these
refinements. The algorithm tactic underlying plan genera-
tion corresponds to “refinement search.” KIDS system sup-
ports an algorithm tactic called “global search” [17] which
can be seen as a generalization of this refinement search.

As we give planning as a problem to KIDS, we have to
develop a theory of planning (planning theory). Our view
of planning envisages a common plan representation over
which multiple refinements can describe how the partial
plans are refined. Consequently, our planning theory should
consist of a specification of planning and one or more re-
finement theories. Moreover, we are interested in domain
dependent planners and so, we have to provide the neces-
sary domain theory to KIDS.

Given these inputs, KIDS semi-automatically synthe-
sizes a solution (domain-dependent refinement planner) us-
ing generic algorithm design tactics (such as branch and
bound algorithms, global search algorithms). The resulting
planner, like conventional planners, can handle any plan-
ning task from the domain. If no domain theory was given,
the resulting planner can handle any planning task from any
domain.

1.2. Outcome of our work

To understand the efficacy of plan synthesis in CLAY,
we initially concentrated on the synthesis of planners using
state-space refinement theories (FSS and BSS). Work on the
synthesis of PSS planner is still in progress and we discuss
our approach towards the end of this paper. Empirical eval-
uation shows that synthesized planners can be very efficient
[18]. For example, in the blocks world domain where the
goal was stack inversion, a KIDS synthesized planner could
solve 14 blocks task in under a minute. This is unheard of
in traditional planners. In the logistics domain, a task with
12 packages, 4 planes and 8 places was solved in under a
minute. Similarly, in the Tyre domain [15], the fixit task was
solved in under a minute. To put the performance results
in perspective, we compared KIDS’ synthesized planners
and the instantiations of UCP (which emulate a spectrum
of classical planners, including the popular SNLP planner
[12], by selecting the appropriate refinement) across many
blocks world tasks [18]. In our experiments with state-space
planners for the blocks world domain, the best of the KIDS’
synthesized planners outperformed the best of the UCP in-
stantiations when given the same domain-specific informa-



tion. We hypothesize that this is because KIDS can prof-
itably fold-in the domain-specific control knowledge (i.e.
the domain theory) into the planning code.

The paper is organized as follows: after a brief review of
software synthesis on KIDS in Section 2, we walk-through
the CLAY framework in Section 3 in the context of state
space planners. Section 4 summarizes some of our empiri-
cal results (See detailed report in [18]). Section 5 presents
our on-going effort to synthesize PSS planners within the
CLAY framework. We cover related work in Section 6 and
concluding comments in Section 7.

2. Background on KIDS

KIDS is a program-transformation framework for the
development of programs from formal specifications of a
problem. KIDS runs on Sun workstations and it is built over
REFINE. The REFINE language supports first-order logic,
set-theory, pattern matching and transformation rules. Re-
fine has its own compiler that generates Common Lisp or
C code. In the following, we describe the general steps in-
volved in synthesizing software on KIDS. The process is
illustrated in more detail in Section 3 in the context of syn-
thesis of customized planner code.

1. Develop a problem theory to state and reason about the
problem. The user defines appropriate functions and
types that describe the problem and also gives laws that
allow high-level reasoning about the defined functions.

2. Apply a design tactic to select an algorithmic frame-
work that should be used to implement the problem
specification.

3. Apply optimizations to make the generated algorithm
efficient. The algorithm is optimized through simplifi-
cation, partial evaluation, finite-differencing, etc.

4. Compile the algorithm to produce a software in the
base language.

3. Developing a planner from declarative spec-
ification

Figure 1 summarizes how KIDS is used to synthesize a
domain-specific refinement planner. Refinement planning
was explained briefly in Section 1.1.

The domain knowledge consists of a dynamical model
and control knowledge. The dynamical model is in the
form of actions or operators that define legal transformation
from one plan-state to another. For state space planners,
the plan state is the world state. Control knowledge is a set
of domain-specific criteria that helps the planner decide if
a plan P1 is better than P2 and is intended to make search
more efficient. An example of control knowledge is that in a
logistics domain where some packages have to be moved to
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Figure 2. The CLAY architecture for writing plan-
ning theory.

their destinations using airplanes, planes should not touch-
down at a location if they have no package to deliver.

The CLAY Architecture: Refinement planning and do-
main control knowledge are brought together in the CLAY
architecture for writing declarative domain-specific plan-
ning theory as summarized in Figure 2. To specify a plan-
ning task, a plan representation is selected and all behaviors
that a result plan of a planning task must show are enumer-
ated in the planner specification. The planner specification
is dependent on the plan representation but is independent
of the refinement needed for search. A refinement for plan-
ning uses the planner specification and defines how chil-
dren nodes are generated, what will be the goal test and
any refinement specific search pruning test. The refinement
and the specification together form the planning theory. To
obtain a domain-dependent planner, all one needs to do is
import any planning theory and provide any relevant plan-
ning domain-specific control knowledge (domain theory).
An interesting special case is when one specifies a generic
domain knowledge to the effect that all the plans are good in
the “domain”. In such a case, based on the refinement used,
one gets a FSS, BSS, PSS or hybrid (if multiple refinements
are used), general-purpose planner.

Each level in the directed tree in Figure 2 represents an
abstraction of the planning task. At the root of the tree
(Level 1), only a description of a planning task is required
without specifying what refinements strategies should be
used. At Level 2, the refinements are specified but no as-
sumption about the domain is made. Next, characteristics
of the domain are provided at Level 3. A progression (FSS)
blocks world planner is different from a progression (FSS)
logistics domain planner only in terms of the domain knowl-



STRIPS representation

� Action: move(?x, ?y, ?z)

� Pre: (?x != ?y) ^(?y != ?z) ^(?z != ?x) ^clear(?x) ^clear(?z)
^: clear(?y) ^on(?x, ?y)

� Post: on(?x,?z) ^clear(?y) ^: clear(?z) ^: on(?x, ?y)

Put ?x = A, ?y = B, ?z = C

State-variable representation
State = � pos-A, clr-A, pos-B, clr-B, pos-C, clr-C �

� Pre: � B, True, 0, False, 0, True �

� Post: � C, True, 0, True, 0, False �

where 0 represents don’t care.

Figure 3. Different representations of “Move A
from B to C”

edge. On the other hand, a progression (FSS) blocks world
is different from a regression (BSS) blocks-world planner
only in terms of the refinement used.

3.1. Representing Domain Operators

We now discuss how a world state is represented and
how the domain operators define state transformation from
one state to another. The two approaches which are popular
in the planning community are the STRIPS representation
[4] and the multi-valued state-variable representation [1].

In the STRIPS representation, the plan state is repre-
sented as a clause of predicates expressing some informa-
tion about the world. Actions have pre-conditions which
specify when the action can be executed and post-conditions
which express change to the plan state when the action is
executed. In multi-valued state-variable representation, the
attributes of the world objects are expressed by variables
that can take a range of values (variables with binary values
is a special case). Both of these representations are com-
pletely equivalent in their expressiveness. To us, the state-
variable representation was more natural for expressing the
world facts using the in-built data types of KIDS. Figure 3
shows the action of moving block A from block B to the
top of block C in STRIPS and state-variable representation.
A blocks world domain is an environment in which some
blocks are placed on a table or on top of other blocks and
the tasks involve stacking them in some desired configura-
tion. For the purpose of exposition, we are showing val-
ues of state variables corresponding to block positions (e.g.
pos-A) by symbols ’B’, ’C’, etc. and clear conditions (e.g.
clr-A) by True or False. In practice, we map all the valid
values of state variables to integers.

3.2. Specification of a planner

A specification of the problem ( [17]) is represented by
a quadruple F = h D, R, I, O i where D is the input type

satisfying the input condition, I : D ! boolean. The output
type is R and the output condition, O : D � R ! boolean
defines a feasible solution. If O(x,z) holds, then z is a feasi-
ble solution with respect to input x. The specification of a
program follows the template:

function F (x :D) : set(R)

where I(x)

returns f O (x,z) g

= Body(x)

A specification for program F is consistent if for all pos-
sible inputs satisfying the input condition, the body pro-
duces the feasible solution, i.e., 8(x: D)(I(x) =) O(x, z)).

Within this view, a planner takes as inputs an initial state,
a goal state and an operator list. The operators are assumed
to define state transitions from valid states to valid states.
A specification for the planning task is: given the initial
state, the goal state and the operator list, return a sequence
of operators (plan) such that:

� TERMINATION-TEST: The goal
state can be achieved if the plan is executed. We are
only considering planning problems in which the goal
is to make all state-variables achieve specified values,
i.e. goals of achievement.

� DOMAIN-INDEPENDENT-PRUNING-TEST:
The plan passes the domain-independent pruning tests.
Each planning refinement can specify conditions under
which a partial-plan cannot have a minimal solution
and such a plan can be pruned away. For example, in
FSS refinement, if the plan-state after executing oper-
ator O2 is a subset of the state following an earlier op-
erator O1, this partial-plan can be pruned. This is the
idea of state-looping based pruning in classical state-
space planning.

� DOMAIN-DEPENDENT-PRUNING-TEST: The plan
passes the additional domain-specific pruning tests.

The above specification of planning is declarative in that
it states what constraints must be satisfied in the resulting
plan produced by a planner when given a planning task. It
does not suggest any algorithm about how the results could
be obtained. Algorithmic decisions will be made in the pro-
gram development phase of KIDS.

An example of top-level specification of planning (in
REFINE) is shown in Figure 4. In this specification, I
(the input condition) is true, D (the input data type) is
INIT, GOAL and OPERS, R (the output data type) is PLAN
and O (the output condition) consists of GOODNESS-
TEST, GOAL-TEST, NO-MOVES-BACK and the check on
range of PLAN. GOAL-TEST and NO-MOVES-BACK are
domain independent pruning tests whereas GOODNESS-
TEST is a domain dependent pruning test.



function PLANNER
(INIT: seq(integer), GOAL: seq(integer),
OPERS: seq(tuple(seq(integer), seq(integer))))
returns
(PLAN: seq(integer)

| range(PLAN) subset {1 .. size(OPERS)}
& GOODNESS-TEST(VISITED-STATES

(PLAN, INIT, GOAL, OPERS),
INIT, GOAL)

& NO-MOVES-BACK(VISITED-STATES
(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)
& GOAL-TEST(VISITED-STATES

(PLAN, INIT, GOAL, OPERS),
INIT, GOAL))

Figure 4. A declarative specification for planning

In words, the specification says that a partial plan is a se-
quence of integer indices (of operators) and so the indices
must not be more than the size of operator list. A valid
plan is one whose corresponding state sequence (produced
by VISITED-STATES) satisfies the GOAL-TEST, NO-
MOVES-BACK and GOODNESS-TEST. In the context of
FSS refinement, VISITED-STATES returns the states ob-
tained by the successive application of the operators in the
partial plan to the initial state and the resulting states there-
after. GOAL-TEST signals that the goal has been achieved;
for FSS refinement it involves checking that the last state
in the state-sequence is the goal state. The NO-MOVES-
BACK function tests forward state-space looping.

The GOODNESS-TEST function checks for possible re-
dundancy in the state sequence corresponding to the current
partial plan based on domain characteristics. Let us explain
it in the context of blocks world domain. We can specify
any reasonable checks for the blocks world as long as it
does not make the planner lose a result. Below, we present
two GOODNESS-TESTs:

� (H1: Limit useless moves) If a block moves between
states i and (i+1), it must not change position between
(i+1) and (i+2) state. The motivation behind this check
is to prevent blocks from randomly moving around.

� (H2: Move via table) A block can only move from its
initial state to the table and from table only to its goal
position. This check guides the planner to first put all
the blocks on the table that are not already on the table,
and then arrange blocks according to the goal configu-
ration.

The problem specification is not complete without dis-
tributive laws. KIDS has a directed-inference engine called
RAINBOW which uses the specification and laws specified
by the user to simplify and reformulate the expressions. We
specify such laws for all the operations involved in the plan-
ning specification.

0. Focus Initialize PLANNER
1. Tactic Global Search on PLANNER
2. Simplify, context-independent-fast:

if ## then ## else some (PLAN-2: ##...
3. Simplify, context-dependent, forward-0,

backward-4: ##(...) & ##(....
4. Simplify, context-dependent, forward-0,

backward-4: if ## else und...
5. FD (general-purpose) VS =

VISITED-STATES(V, INIT, GOAL, OPERS)
6. FD (general-purpose) L-VS = last(VS)
7. FD (general-purpose) NUM-OPS = size(OPERS)
8. Abstract NEXT-STATE(L-VS, I, OPERS) into NS

in ex (I: integer) (## in ## &...
9. Simplify, context-independent-fast:

if ## & ## then PLANNER-AUX(##, ##,...
10. Refine compile into Lisp: PLANNER-AUX, PLANNER

Figure 5. Derivation steps to generate a progres-
sion planner for blocks world domain.

3.3. From Specification to Code with KIDS

As discussed in Section 2, we need to select an algorithm
design tactic to implement the specification. One of the
design tactics provided by KIDS is global search. Global
search (GS) is a general case of refinement search that we
used to formalize refinement planning in UCP framework.
GS algorithms work as follows: starting from an initial set
that contains all solutions to the given problem instance, the
algorithm repeatedly extracts solutions, splits sets and elim-
inates sets via filters until no sets remain to be split. The
process can be described as a tree search in which a node
represents a set of candidates and an arc represents the split
relationship between a set and its subset. For complete de-
tails, readers are referred to [17].

Based on the problem specification, KIDS lists pre-
canned global search theories to which it can automatically
map the current problem instance using deductive inference.
Since our data type was a sequence, we used the specializa-
tion of global search for sequences over a finite domain.

The first code produced by KIDS after incorporating a
design tactic (in our case global search) is well-structured
but very inefficient. There are several opportunities for op-
timization and KIDS provides tools for program optimiza-
tion. These tools make use of the distributive and monotonic
laws to simplify and optimize the code. Figure 5 shows a
summary of the sequence of derivation steps carried out to
obtain a blocks world domain-specific forward-state space
planner.

In step 0, the top-level planner specification is selected
and algorithmic design is performed in step 1. Step 2 in-
volves a context independent simplification, and context de-
pendent simplifications are done in steps 3 and 4. Steps
5 through 8 cover finite differencing. Finally, an efficient
planner code is compiled in step 10 (shown in Figure 6).



function PLANNER-AUX
(INIT: seq(integer), GOAL: seq(integer),
OPERS: seq(tuple(seq(integer), seq(integer))),
V: seq(integer), VS: seq(seq(integer)),
NUM-OPS: integer, L-VS: seq(integer)
| SEQEQUAL(L-VS, last(VS))
& SEQEQUAL(VS,

VISITED-STATES(V, INIT, GOAL, OPERS))
& NO-MOVES-BACK

(VISITED-STATES(V, INIT, GOAL, OPERS),
INIT, GOAL)

& GOODNESS-TEST
(VISITED-STATES(V, INIT, GOAL, OPERS),
INIT, GOAL)

& range(V) subset {1 .. size(OPERS)}
& NUM-OPS = size(OPERS))

: seq(integer)
= if GOAL-TEST(VS, INIT, GOAL) then V

else some (PLAN-2: seq(integer))
ex (NS: seq(integer), I: integer)
(NS = NEXT-STATE(L-VS, I, OPERS)
& CROSS-NO-MOVES-BACK(VS, [NS], INIT, GOAL)
& CROSS-GOODNESS-TEST(VS, [NS], INIT, GOAL)
& DEFINED?(PLAN-2)
& PLAN-2

= PLANNER-AUX
(INIT, GOAL, OPERS, append(V, I),
append(VS, NS), NUM-OPS, NS)

& I in {1 .. NUM-OPS})

function PLANNER
(INIT: seq(integer), GOAL: seq(integer),
OPERS: seq(tuple(seq(integer), seq(integer))))
returns
(PLAN: seq(integer)
| range(PLAN) subset {1 .. size(OPERS)}
& GOODNESS-TEST

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),
INIT, GOAL)

& NO-MOVES-BACK
(VISITED-STATES(PLAN, INIT, GOAL, OPERS),
INIT, GOAL)

& GOAL-TEST
(VISITED-STATES(PLAN, INIT, GOAL, OPERS),
INIT, GOAL))

= PLANNER-AUX
(INIT, GOAL, OPERS, [], [INIT],
size(OPERS), INIT)

Figure 6. Final progression blocks world planner
code synthesized by KIDS

4. Empirical evaluation of synthesized state
space planners

In this section, we demonstrate that the CLAY approach
for domain-specific planner synthesis is flexible as well as
potentially superior than traditional planners. We conducted
empirical study to confirm our hypothesis that since the do-
main control knowledge is folded into the planning process
in CLAY while it is explicitly invoked at each iteration in
classical planners, synthesized planners should outperform
classical planners given the same control knowledge.

Name Domain Refinmt. Domain Dependent
Pruning Test

BW-P-H1 Blocks World FSS Limit useless moves (H1)
BW-P-H2 Blocks World FSS Move via table (H2)
BW-R-H1 Blocks World BSS Limit useless moves (H1)
BW-R-H2 Blocks World BSS Move via table (H2)

LOG-P-L Logistics FSS Limit inefficiency
LOG-R-L Logistics BSS Limit inefficiency

TYR-P-M Tyre World FSS Multiple control rules

INDEP-P ****** FSS -none-
INDEP-R ****** BSS -none-

Table 1. Table showing the variety of planners
synthesized on KIDS.

4.1. Domains and problems

Table 1 lists several domain-dependent state-space plan-
ners that we have synthesized until now. The planners are
characterized by the domain for which they are developed
(BW for blocks world, LOG for logistics, and TYR for Tyre
World – all of which are benchmark domains in AI plan-
ning); the type of (state-space) refinement used (P for pro-
gression and R for regression), and the type of domain spe-
cific control knowledge used (H1, H2, etc.).

A blocks world domain is an environment in which some
blocks are placed on a table and the tasks involve stacking
them in some desired configuration. The logistics domain
consists of a certain number of planes and packages at dif-
ferent places. The goal is to find a sequence of actions such
that all planes and packages are at the goal positions. In the
Tyre world [15], there is a car with spare tyre and tools in
the boot. Given some tyre trouble, it may be inflated or re-
placed with the help of the tools. We used the same domain
description as used in Graphplan [3].

4.2. Performance of Synthesized planners

The synthesized state space planners were able to solve
large blocks world, logistics and Tyre world problems very
efficiently. As can be seen from (Figure 7,left), the domain-
specific blocks world with H1 (Limit useless move) helped
the progression planner (BW-P-H1) solve the stack inver-
sion task for 22 blocks in under 30 minutes (14 blocks
task in under a minute). Similarly, in the logistics domain,
the progression planner with Limit Inefficiency (LOG-P-L)
could solve 6 plane task in around 30 minutes (4 plane task
in under a minute) (Figure 7, right).

There are 25 operators, 27 state variables and 6 control
rules in our manually encoded Tyre world description. The
fixit task was solved in under a minute and a 31 step plan
was returned. All these results are significantly better than
the performance of traditional domain-independent classi-
cal planners on these benchmark domains.

Since our synthesized planners used domain specific
control knowledge that is not normally used by domain-
independent planners, our next step involved comparing



2.0 12.0 22.0
# blocks

0.0

4000.0

8000.0

12000.0

ti
m

e 
(i

n
 s

ec
s)

Synthesized Progression Planners for Blocks World
Effectiveness of domain-based goodness tests in KIDS

DOM-DEPENDENT-GOODNESS-TEST
DOM-INDEPENDENT

1.0 2.0 3.0 4.0 5.0 6.0
# planes (2X places, 3X packages)

0.0

500.0

1000.0

1500.0

2000.0

ti
m

e 
(i

n
 s

ec
s)

Synthesized Progression Planners for Logistics
Effectiveness of domain-based goodness tests in KIDS

DOM-DEPENDENT-GOODNESS-TEST
DOM-INDEPENDENT

Figure 7. Effect of domain-dependent goodness tests on performance.

synthesized planners to domain-independent planners using
the same control knowledge. Our methodology is to select a
planning task suite in the blocks world domain and first ex-
periment with multiple synthesized planners, each differing
in the employed refinement or the domain control knowl-
edge or both. Next, we run the task suite with a set of tradi-
tional planners obtained by instantiating UCP and selecting
the best traditional planner. Finally, we compare the best of
the synthesized planners for different tasks with the selected
traditional planner.

We selected two task suites: random block world tasks
and stack building task (See [18] for detail). Each task class
is defined in terms of the number of blocks and an average
of 10 runs is shown in each plot. The total time allowed for
a class of tasks was 1000 seconds after which the planner
was deemed to have failed on that task class. All planners
were run on the same tasks from the task suite.

We experimented with different instantiations of UCP
and determined that UCP-FSS is the best UCP strategy for
blocks world domain. Similarly, we experimented with dif-
ferent KIDS’ synthesized planners and found the best syn-
thesized planners to be BW-P-H2 for the random blocks
world task set and BW-R-H2 for the stack building task
set. We next tested how UCP-FSS performs against the best
of KIDS’ synthesized planners. Comparison is done when
all planners are either given the same heuristic information
(H2) or no domain dependent guidance. Figure 8 plots the
results.

In the left plot, UCP-FSS-DOM-INDEP does better than
INDEP-P i.e. without any heuristic information. When H2
heuristic is given to both the planners, BW-P-H2 is a winner.
In the right plot, BW-R-H2 outperforms UCP-FSS with H2.
So, we see that given the same heuristic information, the
best of KIDS’ synthesized planners can outperform the best
instantiation of UCP for the blocks world.

It is interesting to note that while all synthesized planners
improve drastically with domain specific knowledge, do-
main independent planners don’t always improve the same
way. In fact, in Figure 8 all synthesized planners improve
with H2, while the performance of UCP-FSS (the plot on
the right) degrades. We speculate that this is because UCP-
FSS explicitly calls a function to do domain-specific reason-
ing in each recursive invocation while the synthesized plan-
ners have domain control knowledge folded into the planner
code.

5. Progress on Synthesizing Plan Space plan-
ners within CLAY

Until now, we have concentrated on synthesis of state-
space planners. In this section we briefly describe our
progress to-date on synthesizing plan-space planners [7]
Plan space planners search in the space of partially or-
dered plans, introducing actions without restricting their
position. Such an approach is considered to be more ef-
ficient than state space planning [2, 7]. Consequently, we
have been working on synthesizing domain-dependent plan
space planners.

In plan space refinement (PSR), a partial-plan is defined
as a collection of steps, precedence constraints (si � sj) be-
tween steps and causal links that indicate that pre-condition
C of a step sj is supported by step si (hsi; C; sji). The first
difficulty in synthesizing plan-space planners is that the un-
derlying datastructures are more complex than those in state
space planners. For example, while the state space plans
can be described as ranging over sequences of integers, plan
space plans cannot be described in that way. In our current
approach, we generate all possible causal links and prece-
dence orderings a priori, and store them in a sequence. This
sequence serves as the range of the solution for plan space
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planning. A sequence of some elements from this range
meeting the specifications corresponds to the desired plan
space plan.

The plan space plan is represented by the data type
seq(tuple(integer, seq(integer), integer)). An example of
an element of such a sequence is the tuple (3(4000)5),
meaning that there is a causal link between steps 3 and
5, where a precondition (represented by the state vector
(4 0 0 0)) of step 5 is contributed by the effect of step
3. A precedence constraint demanding step 3 to come be-
fore step 5 is encoded as (3(0000)5). The sequence of all
zeros between step indices distinguishes an ordering from
a causal link. This approach allows us to use the same
data type tuple(integer; seq(integer); integer) to repre-
sent both causal links and precedence orderings.

The second difficulty in synthesizing plan-space plan-
ners is that control knowledge is harder to specify for them.
The type of pruning knowledge that we discussed in Sec-
tion 4.1 is less effective for plan-space planners which do
not maintain the current state of the world explicitly. At
the time of this writing, we have synthesized a prototype
planner for a simple logistics domain. To improve its effi-
ciency, we are currently working on providing more effec-
tive search control during the synthesis process.

6. Related Work

The research reported here straddles the two fields of
automated software synthesis and AI planning. Although
there has not been much work on automated planner synthe-
sis, Gomes [6] has synthesized a state-space problem solver
for the “missionaries and cannibals” problem on KIDS,
and has shown that it outperforms general purpose prob-
lem solvers in that domain. Our framework can be seen as
a generalization of the work done by Gomes. In particular,

we separate planning theories from the dynamics and con-
trol knowledge, which in principle supports generation of
planning code based on a variety of refinements. Method-
ologically, our work adds to Gomes’ results in that we have
shown that given the same control knowledge, planners gen-
erated by KIDS can outperform traditional planners. This
makes for a fairer comparison between synthesized and
general-purpose planners.

There are many research projects in constraint satisfac-
tion systems, for example, COASTOOL [19] and ALICE
system [11] that take declarative description of CSPs and
compile specialized algorithms for solving them. MULTI-
TAC [13] does the same thing but uses distribution-oriented
information and machine learning techniques to assist in the
customization. We use declarative knowledge about refine-
ment and planning domain to customize the planner.

7. Discussion and Conclusion

In this paper, we described the CLAY architecture for
synthesizing efficient domain-dependent classical planners
from declarative theory of planning and domain theory us-
ing a software synthesis system (KIDS). We have synthe-
sized state space and shown that the synthesized planners
can be superior to traditional planners when given the same
domain control knowledge. We have also described the sta-
tus of our efforts to synthesize plan-space planners. Even
though newer breed of classical planners (e.g. Graphplan
[3]) can solve the same problems in better or compara-
ble time, in theory, even these planners can be synthesized
within the CLAY architecture. Thus, the results give em-
pirical evidence that the CLAY approach is an interesting
research direction for obtaining efficient planners.

Our synthesis approach provides an interesting contrast
to main-stream AI planning work in several ways. Most



of AI planning work attempts to improve the efficiency of
planning by concentrating on the way plans are generated.
Our work sets the next stage in that we concentrate on how
“efficient planners” may be synthesized. Generating plan-
ners by deductive methods requires reasoning about the log-
ical aspects of planning and this is the functionality that the
CLAY architecture promises.

The planning theory is specified declaratively rather than
in the form of an implemented program. This supports
changes and extensions to planning theory. Since the al-
gorithm is synthesized from specification, the user is freed
from low-level coding, and can concentrate on “declarative
specification” of control knowledge (e.g. pruning tests) and
the way the operations mentioned in the specification com-
bine (e.g. distributive laws).

Additionally, in a typical classical planner like SNLP
[12], UCPOP [14] and PRODIGY [5], domain control rules
may be used to guide the search if the implementation has
programming hooks at different choice points to make use
of them. But such hooks need to be explicitly encoded in
the planning algorithm and no context dependent analysis
is done to optimize the planner (at code level) based on
the available control knowledge. In contrast, we have en-
coded the information declaratively and the planning algo-
rithm can be optimized based on all the knowledge that is
available, including the control knowledge.

Having shown that the CLAY approach for planner syn-
thesis is a promising research direction, we also note some
of the problems that we faced while working with KIDS.
To start with, the user must be reasonably familiar with the
software synthesis process in order to do anything substan-
tial with KIDS. We had to go through a steep learning curve
before we could understand how to structure our theories
and design our data structures to make good use of opti-
mizations provided by KIDS. We also had to learn to keep
the lay-out of the search in view while writing the distribu-
tive and monotonic laws. One open issue is whether or not
it is easy for humans to give declarative control informa-
tion to KIDS in the form it understands. For example, in
a complex domain like the Tyre World domain, we realized
that tool support is needed to specify declarative knowledge.
With large number of state variable in such domains, man-
ually encoding the control knowledge is painstaking, time-
consuming and error-prone.

Despite these caveats, our overall experience demon-
strates the feasibility of automating the synthesis of domain-
dependent planners.
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