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Abstract

Most recent strides in scaling up planning have centered around two competing themes–disjunctive
planners, exemplified by Graphplan, and heuristic state search planners, exemplified by UNPOP, HSP
and HSP-R. In this paper, we present a novel approach for successfully harnessing the advantages of
the two competing paradigms to develop planners that are significantly more powerful than either of the
approaches. Specifically, we show that the planning graph structure that Graphplan builds in polynomial
time, provides a rich substrate for deriving a family of highly effective heuristics for guiding state space
search as well as CSP-style search. The main leverage provided by the planning graph structure is a
systematic and graded way to take subgoal interactions into account in designing state space heuristics.
For state space search, we develop several families of heuristics, some aimed at search speed and others
at optimality of solutions, and analyze many approaches for improving the cost-quality tradeoffs offered
by these heuristics. Our normalized empirical studies show that our heuristics handily out-perform the
existing state space heuristics. For CSP-style search, we describe a novel way of using the planning-
graph structure to derive highly effective variable and value ordering heuristics. We show that these
heuristics can be used to improve Graphplan’s own backward search significantly. To demonstrate the
effectiveness of our approachvis a visthe state-of-the-art in plan synthesis, we present and evaluate
AltAlt , an implementation of our approach, on the suite of problems used in the recent AIPS-2000
planning competition. The results placeAltAlt in the top tier of the competition planners–outperforming
both Graphplan-based and heuristic search based planners.

1 Introduction

The last few years have seen a number of attractive and scalable approaches for solving deterministic plan-
ning problems. Prominent among these are “disjunctive” planners, exemplified the Graphplan algorithm of
Blum & Furst [3], and heuristic state space planners, exemplified by McDermott’s UNPOP [34] and Bonet
& Geffner’s HSP-R planners [4, 5]. The Graphplan algorithm can be seen as solving the planning problem
using CSP techniques. A compact CSP encoding of the planning problem is generated using a polynomial-
time data structure called “planning graph” [17]. On the other hand, UNPOP, HSP, HSP-R are simple state
space planners where the world state is considered explicitly. These planners rely on heuristic estimators to
evaluate the goodness of children states. As such, it is not surprising that heuristic state search planners and
Graphplan-based planners are generally seen as orthogonal approaches [44].

Indeed, the sources of strength (as well as weaknesses) of Graphplan and heuristic state search planners
are quite different. By posing the planning problem as a CSP and exploiting the internal structure of the
state, Graphplan is good in dealing with problems where there are a lot of interactions between actions and
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subgoals. Also, Graphplan guarantees, theoretically, to find a solution if such a solution exists. On the other
hand, having to exhaust the whole search space up to the solution bearing level is a big source of inefficiency
of the Graphplan.

In UNPOP, HSP and HSP-R, the heuristic can be seen as estimating the number of actions required to
reach a state (either from the goal state or the initial state). To make the computation tractable, these heuris-
tic estimators make strong assumptions about the independence of subgoals. Because of these assumptions,
state search planners often thrash badly in problems where there are strong interactions between subgoals.
Furthermore, these independence assumptions also make the heuristics inadmissible, precluding any guar-
antees about the optimality of solutions found. In fact, the authors of UNPOP and HSP/HSP-R planners
acknowledge that taking the subgoal interactions into account in a tractable fashion to compute more robust
and/or admissible heuristics remains a challenging problem [34, 5].

In this paper, we provide a way of successfully combining the advantages of the Graphplan and heuristic
state search approaches. The main idea is to use the planning graph data structure as the basis for deriving
effective heuristics for both state search and CSP style search. We list our specific contributions below.

1. We will show that the planning graph is a rich source for deriving effective and admissible heuristics
for controlling state space search. Specifically, we describe how a large family of heuristics–with
or without admissibility property–can be derived in a systematic manner from aleveled offplanning
graph. These heuristics are then used to control a regression search in the state space to generate plans.
The effectiveness of these heuristics is directly related to the fact that they give a better account of
the subgoal interactions. We show how the propagated of binary (and higher order) mutual exclusion
relations make the heuristics derived from the planning graph more sensitive to negative subgoal
interactions. Positive interactions are accounted for by exploiting structure of the planning graph that
explicitly shows when achieving a subgoal also, as a side effect, achieves another subgoal. We provide
a thorough cost-benefit evaluation of these heuristics:

� We provide a comparative analysis of the tradeoffs offered by the various heuristics derived from
the planning graph. We also show that our heuristics are superior to known hsp-style heuristics
(e.g. HSP-r [4]) for planning problems.

� We consider and evaluate the costs and benefits involved in using planning graphs as the basis
for deriving state space heuristics. We point out that planning graphs, in addition to supporting
heuristic generation, also help in significantly reducing the branching factor of the state space
search by helping it focus on the applicable actions. As for the heuristic generation cost, in
addition to adapting several existing optimizations for generating planning graphs efficiently, we
also demonstrate that it is possible to cut cost while keeping the effectiveness of the heuristics
largely intact by working with partially grown planning graphs.

2. To show that our approach for deriving heuristics from planning graphs is competitive with the current
state-of-the-art plan synthesis systems, we implement our ideas in a planner calledAltAlt and compare
AltAlt ’s performance on the benchmark problems used in the recent AIPS-2000 Planning Competition
[1]. Our results indicate thatAltAlt ’s performance on these problems puts it squarely in the top tier of
two or three best planners in the competition.

3. To further clarify the connections between heuristic state-search and Graphplan, we show that the
distance based heuristics, such as those we derive from the planning graph, can also be used to control
Graphplan’s own backward search. It is well known that Graphplan’s backward search can be seen as a
variation of standard systematic backtracking search for constraint satisfaction problems [16]. In order
to improve this search, we show how the planning graph can be used to derive more effective variable
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and value ordering heuristics for backward search. Of specific interest is our empirical observation
that armed with these heuristics, Graphplan can largely avoid its unproductive exhaustive searches
in the non-solution bearing levels by starting with planning graphs that are longer than the minimal
length solutions. Surprisingly, our heuristics make the search on such longer planning graphs both
very efficient, and near-optimal (in that the quality of plans produced are close to the ones produced
by the original Graphplan).

4. Our work also makes several pedagogical contributions. To begin with, we point out that the ideas
inherent in Graphplan style systems, and the heuristic state search planners arecomplementaryrather
than competing. We also point out that planning graph based heuristics developed in our work are
closely related to “memory based heuristics” (such as pattern databases) [30] that are currently pop-
ular in search community. Given that the planning graph can be seen as a representation of the CSP
encoding of the planning problem, and mutex propagation can be seen as a form of consistency en-
forcement, our work also foregrounds the interesting connections between the degree of (local) consis-
tency of the underlying CSP encoding of the planning problem, and the effectiveness of the heuristics
generated from the encoding.

The rest of the paper is organized as follows. Section 2 reviews the state space search approach in
planning, exemplified by a state search planner such as HSP-R. We discuss the limitations of the heuristic
estimators in planners of this approach. Section 3 discusses how the Graphplan’s planning graph can be used
to measure the subgoal interactions. Section 4 develops several families of effective heuristics, which aims at
search speed without insisting on the admissibility. Section 5 focuses on generating the admissible heuristic
for optimal planning. Several implementational issues of computing the heuristic functions is investigated
in section 6. Section 7 describesAltAlt , a planning system based on our ideas, and presents a comparative
evaluation of its performancevis a visother state of the art planners. In section 8 we show how the planning
graph can be used to develop highly effective variable and value ordering heuristics for CSP encodings
for planning problems. We demonstrate their effectiveness by using them to improve the efficiency of
Graphplan’s own backward search. Section 9 discusses the related work, and section 10 summarizes the
contributions of our work.

2 Planning as state space search and the heuristics

Planning can be naturally seen as a search through the space of world states[36]. In this paper, we consider
the simple STRIPS representation of classical planning, where each state is represented as a set of proposi-
tions (or subgoals). We are given a complete initial stateS0, goalG, which is a set of subgoals and can be
incomplete, a set of deterministic actions
. Each actiona 2 
 has a precondition list, add list and delete
list, denoted asPrec(a); Add(a);Del(a), respectively. The planning problem is concerned with finding a
plan, e.g a sequence of action in
, that when applied to the initial stateS0 (and executed) will achieve the
goalG.

In progression state space search, an actiona is said to be applicable to stateS if Prec(a) � S. The
result of the progression ofS over an applicable actiona is defined as:

Progress(S; a) = S +Add(a) �Del(a)

The heuristic function over a stateS is the cost estimate of a plan that achievesG from the stateS.
In regression state space search, an actiona is said to be applicable to stateS if Add(a) \ S 6= � and

Del(a) \ S = �. The regression ofS over an applicable actiona is defined as:

Regress(S; a) = S + Prec(a)�Add(a)
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The heuristic function over a stateS is the cost estimate of a plan that achievesS from initial stateS0.
The efficiency of state search planners and the quality of the solution that they return depend critically on

the informedness and admissibility of these heuristic estimators, respectively. The difficulty of achieving the
desirable informedness and admissibility of the heuristic estimates is due to the fact that subgoal interact in
complex ways. There are two kinds of subgoal interactions: Negative interactions and positive interactions.
Negative interactions happen when achieving one subgoal interferes with the achievement of some other
subgoal. Ignoring this kind of interactions would normally underestimate the cost, rendering the heuristic
uninformed. Positive interactions happen when achieving one subgoal also makes it easier to achieve other
subgoals. Ignoring this kind of interactions would normally overestimate the cost, rendering the heuristic
estimate inadmissible.

For the rest of this section we will demonstrate the importance of accounting for subgoal interactions
in order to compute informed and/or admissible heuristic functions. We do so by specifically examining
the weakness of heuristics that ignore these subgoal interactions, as shown by a typical state search planner
such as HSP-R [4]. Similar arguments can also be generalized over other state space planners such as HSP,
UNPOP, etc.

Recall that HSP-R cast the planning problem as search in theregressionspace of the world states. The
heuristic value of a stateS is the estimated cost (number of actions) needed to achieveS from the initial
state. It is important to note that since the cost of a stateS is computed from the initial state and we are
searching backward from the goal state, the heuristic computation is done only once for each state. Then,
HSP-R follows a variation of A* search algorithm, calledGreedy Best First, which uses the cost function
f(S) = g(S)+w �h(S), where g(S) is the accumulated cost (number of actions when regressing from goal
state) andh(S) is the heuristic value of stateS.

The heuristic is computed under the assumption that the propositions constituting a state are strictly
independent. Thus the cost of a state is estimated as the sum of the cost for each individual proposition
making up that state.

Heuristic 1 (Sum heuristic) hsum(S) :=
P

p2S h(p)

The heuristic costh(p) of an individual propositionp is computed using a iterative procedure that is
run to fix point as follows. Initially, each propositionp is assigned a cost 0 if it is in the initial stateI,
and1 otherwise. For each instantiated actiona, let Add(a), Del(a) andPrec(a) be its Add, Delete and
Precondition lists. For each actiona that adds some propositionp, h(p) is updated as:

h(p) := minfh(p); 1 + h(Prec(a))g (1)

Whereh(Prec(a)) is computed using the sum heuristic (heuristic 1). The updates continue until the h
values of all the individual propositions stabilize. This computation can be done before the backward search
actually begins, and typically proves to be quite cheap.

Because of the independence assumption, the sum heuristic turns out to be inadmissible (overestimating)
when there are positive interactions between subgoals (i.e achieving some subgoal may also help achieving
other subgoals), and less informed (significantly underestimating) when there are negative interactions be-
tween subgoals (i.e achieving a subgoal deletes other subgoals). Bonet and Geffner [4] provide two separate
improvements aimed at handling these problems to a certain extent. Their simple suggestion to make the
heuristic admissible is to replace the summation with the “max” function.

Heuristic 2 (Max heuristic) hmax(S) := maxp2S h(p)

This heuristic, however, is often much less informed than the sum heuristic as it grossly underestimates
the cost of achieving a given state.
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To improve the informedness of the sum heuristic, HSP-R adopts the notion of mutex relations first
originated in Graphplan planning graph. But unlike Graphplan, onlystatic propositional mutexes(also
known as binary invariants) are computed. Two propositionsp andq form a static mutex when they cannot
both be present in any state reachable from the initial state. The static mutex relation can be seen as an
extreme form of negative interactions. Since the cost of any set containing a mutex pair is infinite, we define
a variation of the sum heuristic called the “sum mutex” heuristic as follows:

Heuristic 3 (Sum Mutex heuristic)
h(S) :=1 if 9p;q2S s:t: mutex(p; q) else

P
p2S h(p)

In practice, the Sum Mutex heuristic turns out to be much more powerful than the sum heuristic and
HSP-R implementation uses it as the default.

Before closing this section, we provide a brief summary of the procedure of computing mutexes used
in HSP-R[4]. The basic idea is to start with a large set of “potential” mutex pairs and iteratively weed out
those pairs that cannot be actually mutex. The setM0 of potential mutexes is union of setMA of all pairs
of propositionshp; qi, such that for some actiona in A, p in Add(a) andq in Del(a), and setMB of all
pairshr; qi, such that for somehp; qi in MA and some actiona, r in Prec(a) andp in Add(a). This already
precludes from consideration potential mutexeshr; si, wherer ands are not in the add, precondition and
delete lists of any single action. As we shall see below, this turns out to be an important limitation in several
domains.

2.1 A pathological example that showcases the limitations of sum mutex heuristic

Thesum mutex heuristicused by HSP-R, while shown to be powerful in domains where the subgoals are
relatively independent such as logistics and gripper domains [4], thrashes badly in problems where there is
rich interaction between actions and subgoal sequencing. Specifically, when a subgoal that can be achieved
early but that must be deleted much later when other subgoals are achieved, the sum heuristic is unable to
recognize this interaction. To illustrate this, consider a simple problem from the grid domain [34] shown in
Figure 1: Given a 3x3 grid. The initial state is denoted by two propositions at(0,0) and key(0,1) and the goal
state is denoted by 2 subgoals at(0,0) and key(2,2) (See figure 1). Notice the subgoal interaction here: The
first subgoal at(0,0) is already true in the initial state. When key(2,2) is first achieved, at(0,0) is no longer
true and needs to be achieved again. There are three possible actions: the robot moves from one square to an
adjacent square, the robot picks up a key if there is such a key in the square the robot currently resides, and
the robot drops the key at the current square. One obvious solution is: The robot goes from (0,0) to (0,1),
picks up the key at (0,1), moves to (2,2), drops the key there, and finally moves back to (0,0). This is in
fact the optimal 10-action plan. We have run (our Lisp implementation of) HSP-R planner on this problem
and no solution was found after 1 hour (generating more than 400,000 nodes, excluding those pruned by the
mutex computation). The original HSP-R written in C also runs out of memory (250MB) on this problem.

It is easy to see how HSP-R goes wrong. First of all, according to the mutex computation procedure
described above, we are able to detect that when the robot is at a square, it cannot be in an adjacent square.
But HSP-R’s mutex computation cannot detect the type of mutex that says that the robot can also not be in
any other square as well (because there is no single action that can place a robot from a square to another
square not adjacent to where it currently resides).

Now let’s see how this limitation ofsum mutex heuristicwinds up fatally misguiding the search. Given
the subgoals (at(0,0), key(2,2)), the search engine has three potential actions over which it can regress the
goal state (see Figure 1b). Two of these– move from (0,1) or (1,0) to (0,0)–give the subgoal at(0,0), and
the third–dropping key at (2,2), which requires the precondition at(2,2)–gives the subgoal key(2,2). If either
of the move actions is selected, then after the regression the robot would be at either (0,1) or (1,0), and
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(a) Grid Problem

Key(2,2), At(0,0)Key(2,2), At(0,0)

Goal state (6)Goal state (6)

Drop_key(2,2)Drop_key(2,2) Move(0,1,0,0)Move(0,1,0,0) Move(1,0,0,0)Move(1,0,0,0)

At(2,2), At(0,0),At(2,2), At(0,0),
Have_keyHave_key

Key(2,2), At(1,0)Key(2,2), At(1,0)Key(2,2), At(0,1)Key(2,2), At(0,1)

(6)(6) (7)(7) (7)(7)

(b) Regression Search

Figure 1: A simple grid problem and the first level of regression search on it.

that would increase the heuristic value because the cost of at(0,1) or at(1,0) is 1 (greater than the cost of
at(0,0)). If we pick the dropping action, then after regression, we have a state that has both at(0,0) (the
regressed first subgoal), and at(2,2) (the precondition of drop key at (2,2) action). While we can see that
this is an inconsistent state, the mutex computation employed by HSP-R does not detect this (as explained
above). Moreover, the heuristic value for this invalid state is actually smaller compared to the other two
states corresponding to regression over the move actions. This completely misguides the planner into wrong
paths, from which it never recovers.

HSP-R also fails or worsens the performance for similar reasons in the travel, mystery, grid, blocks
world, and eight puzzle domains[33].

3 Exploiting the structure of Graphplan’s planning graph

In the previous section, we showed the type of problems where ignoring the (negative) interaction between
subgoals in the heuristic often lead the search into wrong directions. On the other hand, Graphplan’s plan-
ning graph, with its wealth of mutex constraints, contains much of such information, and can be used to
compute more effective heuristics.

Graphplan algorithm [3] works by converting the planning problem specifications into a planning graph.
Figure 2 shows part of the planning graph constructed for the 3x3 grid problem shown in Figure 1. As illus-
trated here, a planning graph is an ordered graph consisting of two alternating structures, called “proposition
lists” and “action lists”. We start with the initial state as the zeroth level proposition list. Given ak level
planning graph, the extension of the structure to levelk + 1 involves introducing all actions whose precon-
ditions are present in thekth level proposition list. In addition to the actions given in the domain model,
we consider a set of dummy “noop” actions, one for each condition in thekth level proposition list (the
condition becomes both the single precondition and effect of the noop). Once the actions are introduced,
the proposition list at levelk + 1 is constructed as just the union of the effects of all the introduced actions.
Planning-graph maintains the dependency links between the actions at levelk+1 and their preconditions in
levelk proposition list and their effects in levelk + 1 proposition list.

The critical asset of the planning graph, for our purposes, is the efficient marking and propagation of
mutex constraints during the expansion phase. The propagation starts at level 1, with the actions that are
statically interfering with each other (i.e., their preconditions and effects are inconsistent) labeled mutex.
Mutexes are then propagated from this level forward by using two simple propagation rules: Two proposi-
tions at levelk are marked mutex if all actions at levelk that support one proposition are pair-wise mutex
with all actions that support the second proposition. Two actions at levelk + 1 are mutex if they are stati-
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Figure 2: Planning Graph for the 3x3 grid problem

cally interfering or if one of the propositions (preconditions) supporting the first action is mutually exclusive
with one of the propositions supporting the second action. Figure 2 shows a part of the planning graph for
the robot problem specified in Figure 1. The curved lines with x-marks denote the mutex relations. The
planning graph can be seen as a CSP encoding [19, 44], with the mutex propagation corresponding to a form
of directed partial 1- and 2-consistency enforcement [19].Higher order mutexescan also be computed and
propagated in a similar fashion, corresponding to a higher degree of consistency enforcement. The CSP en-
coding can be solved using any applicable CSP solving methods (a special case of which is the Graphplan’s
backward search procedure).

Normally, Graphplan attempts to extract a solution from the planning graph of lengthl, and will expand
it to level l+1 only if that solution extraction process fails. Graphplan algorithm can thus guarantee that the
solution it finds isoptimal in terms of number of steps. To make the optimality hold in terms of number of
actions (a step can have multiple actions), we need to start with a planning graph that isserial [17]. A serial
planning graphis a planning graph in which every pair of non-noop actions at the same level are marked
mutex. These additional action mutexes propagate to give additional propositional mutexes. A planning
graph is said tolevel off when there is no change in the action, proposition and mutex lists between two
consecutive levels.

Based on the above mutex computation and propagation rules, the following properties can be easily
verified:

1. The number of actions required to achieve a pair of propositions is no less than the number of
proposition levels to be expanded until the two propositions both appear and arenot mutexin the planning
graph.

2. Proposition pairs that remain mutex at the level where the planning graph levels off can never be
achieved starting from initial state.

3. The set of actions present in the level where the planning graph levels off contains all actions that are
applicable to states reachable from the initial state.

The three observations above give a rough indication as to how the information in the planning graph
after it levels off, can be used to guide state search planners. The first observation shows that the level infor-
mation in planning graph can be used to estimate the cost of achieving a set of propositions. Furthermore,
the set oflevel-specificpropositional mutexes help give a finer distance estimate. The second observation
shows that once the planning graph levels off, all mutexes in the final level arestaticmutexes. The third ob-
servation shows a way to extract a finer (smaller) set of applicable actions to be considered by the regression
search, since a new action is introduced into a level only if all of its preconditions appear in the previous
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level and are non-mutexed, and all actions present in a level are also present in the next level.

4 Extracting effective state-space heuristics from planning graph

We describe in this section the formulation of a family of state space heuristics extracted from the planning
graph. Briefly, from a graph viewpoint, we will try to estimate the distance from the initial state to a given
state (i.e a set of propositions or subgoals). From the viewpoint of action cost, we try to estimate the cost of
achieving a given set of subgoals from the initial state.

Before we go on to describing a set of effective heuristics extracted from the planning graph, let us
briefly describe how these heuristics are used and evaluated. All the heuristics extracted from the planning
graph as well as the HSP-R’s sum heuristic are plugged into thesameregression search engine using a
variation of A* search’s cost functionf(S) = g(S) + w � h(S).

We tested the heuristics on a variety of planning domains. These include several well-known benchmark
domains such as the blocksworld, rocket, logistics, 8-puzzle, gripper, mystery, grid and travel. Some of
these were used in the AIPS-98 competition [33]. These domains are believed to represent different types
of planning difficulty. Problems in the rocket, logistics and gripper domains are typical of those where
the subgoals are relatively independent. These domains are also called parallel domains, because of the
nature of their solutions. The grid, travel and mystery domains add to logistic domains the hardness of the
“topological” combinatorics, while the blocksworld and 8-puzzle domains also have very rich interactions
between actions and subgoal sequencing.

This section is concerned with improving the effectiveness of the heuristics and the solution quality
without insisting on the strict admissibility of the heuristic functions. We setw = 1 in all experimental
results described in this subsection, except for the parallel domains (e.g rocket, logistics and gripper) where
the heuristics work best (in terms of speed) withw = 5. 1 Section 5 is concerned with improving admissible
heuristics for finding optimal solutions. Due to the nature of the paper, we will briefly present the empirical
results along the formulation of each heuristic, setting motivation for the development of the next heuristics.
To make the comparisons meaningful, all the planners are implemented in Allegro Common Lisp, and share
most of the critical data structures. The empirical studies are conducted on a 500 MHz Pentium-III with 256
meg RAM, running Linux. All the times reported include both heuristic computation time and search time,
unless specified otherwise.

We are now ready to extract heuristics from the planning graph. Unless stated otherwise, we will as-
sume that we have a serial planning graph that has been expanded until it has leveled off (without doing
any solution extraction). In this section, we will concentrate on the effectiveness, without insisting on the
admissibility of the heuristics.

Definition 1 (Level) Given a setS of propositions, denotelev(S) as the index of the first level in theleveled
serialplanning graph in which all propositions inS appear and are non-mutexed with one another. If no
such level exists, thenlev(S) =1. Similarly, denotelev(p) as the index of the first level that a proposition
p comes into the planning graph.

This property follows immediately from the above definition.

Proposition 1 If only binary mutexes are present in the planning graph, then:

lev(S) = max
p1;p22S

lev(fp1; p2g)

1See [29] for the role ofw in BFS. See also [4].
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If mutexes up to orderk are present in the planning graph, then:

lev(S) = max
p1;p2;:::;pk2S

lev(fp1; p2; :::; pkg) for jSj � k

It is easily seen that in order to have increased value of functionlev(S), one have to compute and propagate
more mutexes, including those of higher-order.

It takes only a small step from the observations made in the previous section to arrive at our first heuristic:

Heuristic 4 (Set-level heuristic) hlev(S) := lev(S)

Consider the set-level heuristic in the context of the robot example in previous section. In the planning
graph, the subgoal key(2,2) first comes into the planning graph at the level 6, however at that level this
subgoal is mutexed with another subgoal at(0,0), and the planning graph has to be expanded 4 more levels
until both subgoals are present and non-mutex. Thus the cost estimate yielded by this heuristic is 10, which
is exactly the true cost achieving both subgoals.

It is easy to see that set-level heuristic isadmissible. Secondly, it can be significantly more informed
than themax heuristic, because the max heuristic is only equivalent to the level that a single proposition first
comes into the planning graph. Thirdly, a by-product of the set-level heuristic is that it already subsumes
much of the static mutex information used by the Sum Mutex heuristic. Moreover, the propagated mutexes
in the planning graph wind up being more effective in detecting static mutexes that are missed by HSP-R.
In the context of the robot example, HSP-R can only detect that a robot cannot be at squares adjacent to its
current square, but using planning graph, we are able to detect that the robot cannot be at any square other
than its current square.

Table 1 and 2 show that the set-level heuristic performs reasonably well in domains such as grid, mystery,
travel and 8-puzzle2 compared to the standard Graphplan.3 Many of these problems prove intractable for
HSP-R’s sum-mutex heuristic. We attribute this performance of the set-level heuristic to the way the negative
interactions between subgoals are accounted for by the level information.

Interestingly, the set-level heuristic fails in the domains that thesum heuristictypically does well, such
as rocket world and logistics, where the subgoals are fairly independent of each other. Closely examining the
heuristic values reveals that the set-level heuristic remains too conservative and often underestimates the real
cost in these domains. A related problem is that the range of numbers that the cost of a set of propositions
can take is limited to integers less than or equal to the length of the planning graph. This range limitation
leads to a practical problem as these heuristics tend to attach the same numerical cost to many qualitatively
distinct states, forcing the search to resort to arbitrary tie breaking.

To overcome these limitations, we pursue two families of heuristics that try to account for the subgoal
interactions in different ways. The first family, called “partition-k” heuristics, attempts to improve and
generalize the set-level heuristic using the sum heuristic’s idea. Specifically, it estimates the cost of a set
in terms of costs of its partitions. The second family, called “adjusted sum” heuristics attempt to improve
the sum heuristic using the set-level’s idea. Specifically, it starts explicitly from the sum heuristic and then
considers adding the interactions among subgoals that can be extracted from the planning graph’s level
information. These two families are described separately in the next two subsections.

28puzzle-1, 8puzzle-2 and 8puzzle-3 are two hard and one easy eight puzzle problems of solution length 31, 30 and 20, re-
spectively. Grid3 and grid4 are simplified from the grid problem at AIPS-98 competitions by reducing number of keys and grid’s
size.

3Graphplan implemented in Lisp by M. Peot and D. Smith.
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Problem Graphplan Sum-mutex set-lev partition-1 partition-2 adj-sum combo adj-sum2

bw-large-a 12/ 13.66 12/ 41.64 12/ 26.33 12/ 19.02 14/ 19.79 12/ 17.93 12/ 20.38 12/ 19.56
bw-large-b 18/ 379.25 18/ 132.50 18/ 10735.48 18/ 205.07 20/ 90.23 22/ 65.62 22/ 63.57 18/ 87.11
bw-large-c - - - - 32/ 535.94 30/ 724.63 30/ 444.79 28/ 738.00
bw-large-d - - - - 48/ 2423.32 - - 36/ 2350.71

rocket-ext-a - 36/ 40.08 - 32/ 4.04 54/ 468.20 40/ 6.10 34/ 4.72 31/ 43.63
rocket-ext-b - 34/ 39.61 - 32/ 4.93 34/ 24.88 36/ 14.13 32/ 7.38 28/ 554.78

att-log-a - 69/ 42.16 - 65/ 10.13 66/ 116.88 63/ 16.97 65/ 11.96 56/36.71
att-log-b - 67/ 56.08 - 69/ 20.05 66/ 113.42 67/ 32.73 67/ 19.04 47/ 53.28

gripper-15 - 45/ 35.29 - 45/ 12.55 45/ 178.39 45/ 16.94 45/ 16.98 45/ 14.08
gripper-20 - 59/ 90.68 - 59/ 39.17 61/ 848.78 59/ 20.54 59/ 20.92 59/38.18

8-puzzle1 31/ 2444.22 33/ 196.73 31/ 4658.87 35/ 80.05 39/ 130.44 39/ 78.36 39/ 119.54 31/ 143.75
8-puzzle2 30/ 1545.66 42/224.15 30/ 2411.21 38/ 96.50 36/ 145.29 42/ 103.70 48/ 50.45 30/ 348.27
8-puzzle3 20/ 50.56 20/ 202.54 20/ 68.32 20/ 45.50 20/ 232.01 24/ 77.39 20/ 63.23 20/ 62.56

travel-1 9/ 0.32 9/ 5.24 9/ 0.48 9/ 0.53 9/ 0.77 9/ 0.42 9/ 0.44 9/ 0.53
grid3 16/ 3.74 - 16/ 14.09 16/ 55.40 16/ 121.94 18/ 21.45 19/ 18.82 16/ 15.12
grid4 18/ 21.30 - 18/ 32.26 18/ 86.17 18/ 1261.66 18/ 37.01 18/ 37.12 18/ 30.47

aips-grid1 14/ 311.97 - 14/ 659.81 14/ 870.02 14/ 1142.83 14/ 679.36 14/ 640.47 14/ 739.43
mprime-1 4/ 17.48 - 4/ 743.66 4/ 78.730 4/ 565.47 4/ 76.98 4/ 79.55 4/ 722.55

Table 1: Number of actions/ Total CPU Time in seconds. The dash (-) indicates that no solution was found in 3 hours or 500MB. All the heuristics are
implemented in Lisp and share the same state search data structure and algorithm. The empirical studies are conducted on a 500 MHz Pentium-III with 512Meg
RAM, running Linux.
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Problem Graphplan Sum-mutex set-lev partition-1 partition-2 adj-sum combo adj-sum2

bw-large-a - 77/ 12 456/ 108 71/ 13 101/ 19 71/ 13 66/ 12 83/ 16
bw-large-b - 210/ 34 315061/ 68452 15812/ 3662 1088/ 255 271/ 56 171/ 37 1777/ 338
bw-large-c - - - - 1597/ 283 8224/ 1678 747/ 142 8248/ 1399
bw-large-d - - - - 5328/ 925 - - 10249/ 1520

rocket-ext-a - 769/ 82 - 431/ 43 16246/ 3279 658/ 69 464/ 41 3652/ 689
rocket-ext-b - 633/ 66 - 569/ 50 693/ 64 1800/ 173 815/ 72 60788/ 8211

att-log-a - 2978/ 227 - 1208/ 89 3104/ 246 2224/ 157 1159/ 85 1109/ 74
att-log-b - 3405/ 289 - 1919/ 131 2298/ 161 4219/ 289 1669/ 115 1276/ 85

gripper-15 - 1775/ 178 - 1775/ 178 4204/ 1396 1358/ 150 1350/ 150 503/ 95
gripper-20 - 3411/ 268 - 3411/ 263 10597/ 3509 840/ 149 840/ 149 846/ 152

8-puzzle1 - 1078/ 603 99983/ 56922 1343/ 776 1114/ 613 1079/ 603 1980/ 1129 2268/ 1337
8-puzzle2 - 1399/ 828 51561/ 29176 1575/ 926 1252/ 686 1540/ 899 475/ 279 6544/ 3754
8-puzzle3 - 2899/ 1578 1047/ 617 575/ 318 2735/ 1539 1384/ 749 909/ 498 765/ 440

travel-1 - 4122/ 1444 25/ 9 93/ 59 97/ 60 40/ 18 40/ 18 37/ 18
grid3 - - 49/ 16 3222/ 1027 4753/ 1443 1151/ 374 865/ 270 206/ 53
grid4 - - 44/ 18 7758/ 4985 24457/ 14500 1148/ 549 1148/ 549 51/ 18

aips-grid1 - - 108/ 16 5089/ 864 9522/ 1686 835/ 123 966/ 142 194/ 25

Table 2: Number of nodes generated/ expanded. The dash (-) indicates that no solution was found after generating more than 500000 nodes, or runs out of
memory.
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4.1 Partition-k heuristics

When the subgoals are relatively independent, the summation of the cost of each individual gives a much
better estimate, whereas the graph level value of the set tends to underestimate significantly. To avoid this
problem and at the same time keep track of the interaction between subgoals, we want to partition the setS
of propositions into subsets, each of which hask elements:S = S1[S2:::[Sm (if k does not dividejSj, one
subset will have less thank elements), and then apply the set-level heuristic value on each partition. Ideally,
we want a partitioning such that elements within each subsetSi may be interacting with each other, but the
subsets are independent (i.e non-interacting) of each other. Byinteractingwe mean the two propositions
form either a pair of dynamic (level-specific) or static mutex in the planning graph. These notions are
formalized by the following definitions.

Definition 2 The(binary) interaction degree between two propositionsp1 andp2 is defined as
�(p1; p2) = lev(fp1; p2g)�maxflev(p1); lev(p2)g.

When p1 and p2 are dynamic mutex,�(p1; p2) = lev(fp1; p2g) � maxflev(p1); lev(p2)g > 0 but
lev(fp1; p2g) <1. Whenp1 andp2 are static mutex,lev(fp1; p2g) =1. Since we only consider proposi-
tions that are present in the planning graph, i.emaxflev(p1); lev(p2)g <1, it follows that�(p1; p2) > 0 as
well. Whenp1 andp2 are neither type of mutex,lev(fp1; p2g) = maxflev(p1); lev(p2)g, thus�(p1; p2) =
0.

Definition 3 Two propositionsp andq are not interacting with each other if and only if�(p; q) = 0. Two
sets of propositionsS1 andS2 are not interacting with each other if no proposition inS1 is interacting with
a proposition inS2.

We are now ready to state the family of partitioning heuristics:

Heuristic 5 (Partition-k heuristic)
hpart�k(S) :=

P
Si
lev(Si), whereS1; :::; Sm are k-sized partitions ofS.

The question of deciding the partioning parameterk, and how to partition the setS when1 < k < jSj,
however, is interesting. We find out that this knowledge may be largely domain-dependent. For example,
for k = 1, we haveh(S) =

P
p2S lev(p). Thepartition-1heuristic exhibits similar behavior compared to

sum-mutexheuristic in domains where the subgoals are fairly independent (e.g gripper, logistics, rocket),
and it is clearly better than sum-mutex in all other domains except the blocks world (see table 1).

For k = jSj, we have theset-levelheuristic, which is very good in a complementary set of domains,
compared with the sum-mutex heuristic.

For k = 2, we implemented a simple pairwise partitioning scheme as follows. For each propositionp1
in a given setS, we choose the propositionp2 that gives the greatest interaction degree�(p1; p2) with p1 to
make up a pairwise partitionfp1; p2g (breaking ties arbitrarily).

As Table 1 shows, the resulting heuristic exhibits interesting behavior: It can solve many problems that
are either intractable by thesum heuristicor theset-level heuristic. In fact, thepartition-2heuristic can scale
up very well in domains such as the blocks world, returning a 48 steps solution for bw-large-d (19 blocks)
after generating just 5328 nodes and expanding 925 nodes in 2423 sec.

While it is not likely that a single partitioning scheme will be effective across different domains, it would
be interesting to have a fuller account of behavior of the family ofpartition-k heuristics, depending on the
partitioning parameters, with respect to different problem domains.

Another attractive idea is to consider “adaptive partition” heuristics that do not insist on equal sized
partitions. Based on the above definition of subgoal interaction, we attempt a simple procedure that we call
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adaptive partitioning of a given setS as follows. Given a setS, choose any propositionp1 2 S. Initially,
letS1 = fp1g. For each propositionp 2 S1, add to setS1 all propositions inS�S1 that are interacting with
p. This is repeated untilS1 becomes unchanged. Thus we have partitionedS into S1 andS � S1, where
these two subsets are not interacting with each other whereas each proposition inS1 interacts with some
other member in the same set. This procedure is recursively applied on the setS � S1 and so on.

Unfortunately, a partitioning heuristic that uses this adaptive partitioning and then applies the set-level
heuristic on each partitions does not appear to scale up well in most domains that we have tested. The reason,
we think, is that since the set of mutex constraints that we have been able to exploit from the planning graph
so far involve only two state variables (i.e binary mutex), it may not be as helpful to apply the set-level
heuristic on partitions of size greater than two.

4.2 Adjusted Sum Heuristics

We now consider improving the sum heuristic by considering both negative and positive interactions among
propositions. Since fully accounting for either type of interactions alone can be as hard as the planning prob-
lem itself, we circumvent this difficulty by using partial relaxation assumption on the subgoal interactions.
Namely, we ignore one type of subgoal interactions in order to account for the other, and then combine them
both together.

First of all, it is simple to embed the sum heuristic value into the planning graph. We maintain a cost
value for each new proposition. Whenever a new action is introduced into the planning graph, we update
the value for that proposition using the same updating rule 1 in Section 2. Denotecost(p) as the cost of
achieving a propositionp according to the sum heuristic.

We are now interested in estimating the costcost(S) for achieving a setS = fp1; p2; :::; png. Suppose
lev(p1) � lev(p2) � ::: � lev(pn). Under the assumption that all propositions are independent, we have

cost(S) := cost(S � p1) + cost(p1)

Sincelev(p1) � lev(S�p1), propositionp1 is possiblyachieved before the setS�p1.4 Now, we assume that
there are no positive interactions, but there are negative interactions between the propositions. Therefore,
upon achievingS� p1, subgoalp1 may have been deleted and needs to be achieved again. This information
can be extracted from the planning graph. According to the planning graph, setS � p1 andS arepossibly
achieved at levellev(S � p1) and levellev(S), respectively. Iflev(S � p1) 6= lev(S) that means there is
some interaction between achievingS � p1 and achievingp1, because the planning graph has to expand up
to lev(S) to achieve bothS � p1 andp1. To take this negative interaction into account, we assign:

cost(S) := cost(S � p1) + cost(p1) + (lev(S) � lev(S � p1)) (2)

Applying this formula toS � p1; S � p1 � p2 and so on, we derive:

cost(S) :=
X

pi2S

cost(pi) + lev(S) � lev(pn)

Sincelev(pn) = maxpi2S lev(pi) as per our setup, we have the following heuristic:

Heuristic 6 (Adjusted-sum heuristic)
hadjsum(S) :=

X

pi2S

cost(pi)

| {z }
hsum(S)

+ lev(S)| {z }
hlev(S)

�max
pi2S

lev(pi)

| {z }
�hmax(S)

4For brevity, we use the notationS � p1 to meanS � fp1g.
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Figure 3: The cost incurred for ignoring the negative interactions.

Table 1 and 2 show that this heuristic does very well acrossall different types of problems that we have
considered. To understand the robustness of the heuristic, notice that the first term in its formula is exactly
thesumheuristic value, while the second term is theset-level heuristic, and the thirdapproximatelythemax
heuristic.

Definition 4 Theinteraction degreeamong propositions in a setS is captured by
�(S) = lev(S)�maxp2S lev(p)

Therefore, the adjusted-sum heuristic function can be written as:

hadjsum(S) = hsum(S) + �(S) (3)

The heuristic functionhadjsum(S) can be seen as being composed of two different component:hsum(S)
is the estimated cost of achievingS under theindependenceassumption, while�(S) accounts for the
additional cost incurred by thenegativeinteractions.

Notice that the notion of(binary) interaction degreebetween two propositions�(p1; p2) is obviously a
special case of the above definition whenjSj = 2, i.e,�(p1; p2) = �(fp1; p2g). It is simple to see that when
there are no negative interactions among propositions,�(S) = 0, because

hlev(S) = lev(S) = max
p2S

lev(p) � hmax(S)

From table 1 the solutions provided by adjusted sum heuristic are longer than those provided by other
heuristics in many problems. The reason for this is that the first termhsum(S) =

P
pi2S

cost(pi) actually
overestimates, because in many domains achieving some subgoal typically also helps achieve others. We
are interested in improving theadjusted-sumheuristic by replacing the first term in its formula by another
estimationcostp(S) that takes into account this type ofpositive interactions while ignoring the negative
interactions (which are anyway accounted for by�(S)).

Since we are ignoring the negative interactions, once a subgoal is achieved, it will never be deleted again.
Furthermore, the order of achievement of the subgoalspi 2 S would be roughly in the order oflev(pi). Let
pS be the proposition inS such thatlev(pS) = maxpi2S lev(pi). pS will possiblybe the last proposition
that is achieved inS. LetaS be an action in the planning graph that achievespS in the levellev(pS), where
pS first appears. ( If there is more than one such action, none of them would be noop actions, and we would
select one randomly.)

By regressingS over actionaS, we have stateS+Prec(aS)�Add(aS). Thus, we have the recurrence
relation (assuming unit cost for the selected actionaS)

costp(S) := 1 + costp(S + Prec(aS)�Add(aS)) (4)
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Figure 4: Extracting the length of a plan that ignores the negative interactions.

The positive interactions are accounted for by this regression in the sense that by subtractingAdd(aS)
from S, any proposition that is co-achieved whenpS is achieved is not counted in the cost computation.
Sincelev(Prec(aS)) is strictly smaller thanlev(pS), recursively applying equation 3 to its right hand side
will eventually reduce to stateS0 wherelev(S0) = 0, andcostp(S0) is 0.

It is interesting to note that the repeated reductions involved in computingcostp(S) indirectly extract a
sequence of actions (theaS selected at each reduction), which would have achieved the setS from the initial
state if there were no negative interactions. In this sense,costp(S) is similar in spirit to the “relaxed plan”
heuristic recently proposed by Hoffman[15].

Replacinghsum(S) with costp(S) in the definition ofhadjsum, we get an improved version of adjusted
sum heuristic that takes into account both positive and negative interactions among propositions.

Heuristic 7 (Adjusted-sum2 heuristic) hadjsum2(S) := costp(S) + �(S)
wherecostp(S) is computed using equation 4, and�(S) is defined by equation 4.

Table 1 shows that adjusted-sum2 heuristic can solve all types of problems considered. The heuristic
is only slightly worse compared to the adjusted-sum heuristic in term of speed, but gives a much better
solution quality. In our experiments, with the exception of problems in the rocket domains, the adjusted-
sum2 heuristic value is usually admissible and often gives optimal or near optimal solutions.

Finally, another way of viewing the adjusted-sum heuristic is that, it is composed ofhsum(S), which
is good in domains where subgoals are fairly independent, andhlev(S), which is good in a complementary
set of domains (see table 1). Thus the summation of them may yield a combination ofdifferential power
effective in wider range of problems, while discarding the third termhmax(S) may sacrifice the solution
quality.

Heuristic 8 (Combo heuristic) h(S) := hsum(S) + hlev(S), wherehsum(S) is the sum heuristic value
andhlev(S) is the set-level heuristic value.

Surprisingly, as shown in table 1 the Combo heuristic is even slightly faster than adjusted-sum heuristic
across all types of problems while the solution quality remains comparable.
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Since the family of adjusted-sum heuristics turns out to be the most effective, we devote the next sub-
section to further analysis of and possible avenues of improvement for this heuristic family.

4.3 Improvements of the adjusted-sum heuristic functions

So far, we have started from the sum heuristic and tried to improve it by accounting for both negative
and positive subgoal interactions extracted from the planning graph. The formulation, culminated in the
derivation ofadjusted-sum2heuristic, is quite interesting in the way it supposedly accounts for subgoal
interactions. This heuristic function is composed of two components:costp(S), which estimates the cost
of the plan by trying to accounting for the positive interactions while ignoring the negative interactions,
and�(S), which intends to measure the “penalty” cost for ignoring such negative interactions. In this
subsection, we will discuss several ways in which this type of heuristic functions can be further improved.
Naturally, it involves improving the componentcostp(S) as well as�(S).

The first component,costp(S), returns the cost of a plan that solves the relaxed version of the problem
in which the negative effects of actions are completely ignored. Although the positive interactions are
accounted for in its computation,costp(S) is by no means guaranteed to be a lower bound of the optimal
solution the original problem.5 The reason for this is that there may be more than one plan satisfying the
relaxed problem. Taking the minimum-length plan amongall possible solutions to the relaxed problem
would ensure a lower bound of the original problem’s optimal plan. However, this task is known to be NP-
hard. We can see that improving the admissibility of the heuristic functionhadjsum2(S) directly involves
improving the admissibility of the componentcostp(S), i.e lowering its value. Thus, one way to do this
would be considering more than one plan for the relaxed problem and then taking the minimum plan cost.
This will make the computation more costly.

The second component in adjusted-sum2 heuristic functionhadjsum2(S),�(S) = lev(S)�maxpi2S lev(pi),
accounts for the negative interactions among subgoals. Improving the informedness of the heuristic function
involves a more accurate account of the negative interactions captured by�(S), i.e increasing its value. One
way to do this is to improve the accuracy oflev(S). Recall that thelev(S), by definition, is the index of
the first level in the planning graph that all propositions inS are present and not mutex with one another.
Following the proposition 1, improving the accuracy oflev(S) involves computing and propagating more
mutexes, including higher order ones. Unfortunately, this task is also computationally intensive.6 In sec-
tion 5 we shall investigate this in detail in the quest to improve theadmissibleset-level heuristic for efficient
optimalplanning.

For now, let us consider improving�(S) given only binary mutex constraints. In fact, the effectiveness
of the adjusted-sum2 heuristic, evidenced by the very low number of nodes the search needs to expand to
reach anapproximatelyoptimal solution, shows that binary mutex constraints are often quite sufficient to
account for subgoal interactions in most typical planning domains of reasonable sizes. The challenge is how
to exploit this set of constraints most effectively. The answer may, again, depends on the nature of each
specific domain in question.

Note that the term�(S) = lev(S) �maxpi2S lev(pi) gives an intuitive measure for the cost incurred
by the negative interactions, in the sense that at least as many actions are needed to account for the in-
teractions. Since we are given only the set ofbinary mutex constraints, i.elev(S) is simply computed as
lev(S) = maxp1;p22S lev(fp1; p2g), according to proposition 1. In this case, we may want to improve
the negative penalty cost function�(S) by accounting for the interactions more aggressively. Specifically,
we might explicitly consider the interactions between everypair of individual propositions in a given set
S = fp1; p2; :::; png. For each pair ofp andq, the interaction is reflected by itsinteraction degree, as de-

5Although, in practice,costp(S) often returns the cost estimate that is admissible.
6Even computing all binary mutexes can be as hard as the planning problem [3].
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fined in definition 2 as�(p; q) = lev(fp; qg)�maxflev(p); lev(q)g. A conservative estimation for the total
cost incurred by negative interactions would be:

�max(S) = max
p;q2S

�(p; q) (5)

Heuristic 9 (Adjsum2M heuristic) hadjsum2M (S) := costp(S) + �max(S)
wherecostp(S) is computed using equation 4, and�(S) is as given in Equation 5.

It is simple to see that�max(S) � �(S). 7 In addition, when there are no interactions among any pair
of propositions,�max(S) = �(S) = 0. In table 3 we compare the relative effectiveness of adjusted-sum2
and adjusted-sum2M heuristics using� and�max, respectively. It is interesting to note that both heuristic
functions tend to give admissible estimates in most problems. Furthermore, since�max(S) � �(S) for
all S, hadjsum2M tend to give closer cost estimate thanhadjsum2, resulting in overall improvement in most
problems considered. In particular, the lower number of nodes expanded and generated in the rocket domain
is quite significant.

In the domains where theinteractionsthemselves are relativelyindependentto one another, the interac-
tions among subgoals might be better captured by summing the interaction degree of all pairs of the propo-
sitions. To avoid overcounting such interactions too much, we might want to partition the setS into pairwise
subsetsSi = fpi1; pi2g and summing the interaction degree of all these pairs, i.e�(pi1; pi2) = �(Si). Thus
we would have:

�sum(S) =
X

i

�(Si)

In our experiment however, the adjusted-sum2 heuristic using�sum does not result in any significant
improvement over adjsum2M heuristic on most problems. It is actually worse in several domains. The
reason, we think, is that in most domains, theinteractionsthemselves tend to interact among one another in
complex ways that make it unreasonable to assume that they are independent.

5 Finding optimal plans with admissible heuristics

We now focus on admissible heuristics that can be used to produce optimal plans. While works in the AI
search literature concentrate entirely on admissible heuristics (and finding optimal solutions), traditionally,
efficient generation of optimal plans has received little attention in the planning community. In [17] Kamb-
hampatiet. al. point out that Graphplan algorithm is guaranteed to find optimal plans when the planning
graph is serial. In contrast, none of the known efficient state space planners [34, 5, 4, 38] can guarantee
optimal solutions.8

In fact, it is very hard to find an admissible heuristic that is effective enough to be useful across different
planning domains. As mentioned earlier, in [5], Bonet et al. introduced themax heuristicthat is admissible.
In the previous section, we introduced theset-levelheuristic that is admissible and gives closer cost estimate
than the max heuristic. We tested the set-level heuristic on a variety of domains using A* search’s cost
functionf(S) = g(S) + h(S). The results are shown in table 4, and clearly establish that set-level heuristic
is significantly more effective than max heuristic. Grid, travel and mprime are domains where the set-
level heuristic gives very close estimates (see table 1). Optimal search is less effective in domains such as
the 8-puzzle and blocks world problem. Domains such as logistics and gripper remain intractable under
reasonable limits in time and memory.

7Indeed, supposepm and pr are two propositions such thatlev(fpm; prg) = maxpi;pj2S lev(fpi; pjg). Since we
only consider binary mutexes,maxpi;pj2S lev(fpi; pjg) = lev(S). Thus, �max(S) � �(pm; pr) = lev(fpm; prg) �
maxflev(pm); lev(pr)g = lev(S)�maxflev(pm); lev(pr)g � lev(S)�maxpi2S lev(pi) = �(S).

8But see also a recent work by Haslum & Geffner[14].
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Problem Opt h(S) = costp(S) + �(S) h(S) = costp(S) + �max(S)
Est Length/Time #N-gen/#N-exp Est Length/Time #N-gen/#N-exp

bw-large-a 12 13 12/ 19.56 83/ 16 14 12/ 19.96 71/ 13
bw-large-b 18 17 18/ 87.11 1777/ 338 18 18/ 82.56 489/ 95
bw-large-c 28 26 28/ 738.00 8248/ 1399 27 28/ 851.68 6596/ 1131
bw-large-d 36 35 36/ 2350.71 10249/ 1520 35 36/ 2934.11 8982/ 1310

rocket-ext-a 26 26 31/ 43.63 3652/ 689 26 29/ 21.95 438/ 43
rocket-ext-b 25 26 28/ 554.78 60788/ 8211 26 26/ 21.75 401/ 37

att-log-a 52 50 56/ 36.71 1109/ 74 50 55/ 79.22 1069/ 69
att-log-b 44 40 47/ 53.28 1276/ 85 40 45/ 105.09 1206/ 78

gripper-15 45 32 45/ 14.08 503/ 95 32 45/ 33.64 501/ 94
gripper-20 59 42 59/ 38.18 846/ 152 42 59/ 106.80 840/ 149
8puzzle-1 31 26 31/ 143.75 2268/ 1337 28 31/ 659.55 5498/ 3171
8puzzle-2 30 22 30/ 348.27 6544/ 3754 24 30/ 561.80 4896/ 2822
8puzzle-3 20 17 20/ 62.56 765/ 440 19 20/ 67.46 479/ 272

travel-1 9 9 9/ 0.53 37/ 18 9 9/ 0.57 37/ 18
grid3 16 13 16/ 15.12 206/ 53 13 16/ 20.73 382/ 97
grid4 18 18 18/ 30.47 51/ 18 18 18/ 32.80 51/ 18

Table 3:Evaluating the relative effectiveness of adjusted-sum2 heuristic using� and�max to account for negative
interactions. Column Opt shows the length of the optimal sequential plan. Column Est shows the estimated distance
from goal to the initial state according to the heuristic. Length/Time shows the length of found plan and total run time
in seconds. #N-gen and #N-exp are number of nodes generated and expanded during the search, respectively.

The main problem once again is that the set-level heuristic still hugely underestimates the cost of a set
of propositions. The reason for this is that there are manyn-ary (n > 2) level-specificmutex constraints
present in the planning graph, that are never marked during planning graph construction, and thus cannot
be used by set-level heuristic. This suggests that identifying and using higher order mutexes can improve
the effectiveness of the set-level heuristic. Suppose that we consider computing and propagating mutex
constraints up to orderk-ary in the planning graph. The mutex computation and propagation corresponds to
computing the set-level valuelev(S) for jSj � k. For jSj > k, the set-level heuristic value becomes:

h(S) := lev(S) = max
p1;p2;:::;pk2S

lev(fp1; p2; :::; pkg) (6)

We have presented a family of admissibleset-levelheuristics, whose informedness can be improved
by increasing the size (order) of mutexes one wants to utilize. In practice, propagating all higher order
mutexes is likely to be an infeasible idea [3, 17], as it essentially amounts to full consistency enforcement
of the underlying CSP. According to Blum, even computing and propagating 3-ary mutexes can be very
expensive. A seemingly zanier idea is to use a limited run of Graphplan’s own backward search, armed with
EBL [19], to detect higher order mutexes in the form of “memos”. Detecting that a setS of propositions
is a memo at levell basically means thatlev(S) � l + 1. Computing this information is less costly that
computing the “exact” value oflev(S). On the other hand, knowing the lower bound oflev(S) may often be
enough to avoid (or delay) branching on nodeS. Thus the rationale behind this idea is that we only search
for mutexes of different orders (binary and higher) within a limited number of levels without losing much
useful information one can provide for the set-level heuristic by full-blown computation of higher-order
mutexes. Even within each level, such amount of search involved is limited to control the cost of heuristic
computation.

We have implemented this idea by restricting the backward search to a limited number of backtracks
lim = 1000. This lim can be increased by a factor� > 1 as we expand the planning graph to next
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Problem Len max set-level w/ memo GP
Est Time Est Time Est Time

8puzzle-1 31 - 14 4658 28 1801 2444
8puzzle-2 30 10 - 12 2411 28 891 1545
8puzzle-3 20 8 144 10 68 19 50 50

bw-large-a 12 6 34 8 21 12 16 14
bw-large-b 18 8 - 10 10735 16 1818 433
bw-large-c 28 12 - 14 - 20 - -

grid3 16 16 13 16 13 16 5 4
grid4 18 10 33 18 30 18 22 22

rocket-ext-a - 5 - 6 - 11 - -

Table 4: Column titled “Len” shows the length of the found optimal plan (in number of actions). Column titled “Est”
shows the heuristic value the distance from the initial state to the goal state. Column titled “Time” shows CPU time in
seconds. “GP” shows the CPU time forSerial Graphplan

level. Table 4 shows the performance of the set-level heuristic using a planning graph adorned with learned
memos. We note that the heuristic value (of the goal state) as computed by this heuristic is significantly
better than the set-level heuristic operating on the vanilla planning graph. For example in 8-puzzle2, the
normal set-lev heuristic estimates the cost to achieve the goal as 12, while using memos pushes the cost to
28, which is quite close to the true optimal value of 30. This improved informedness results in a speedup
in all problems we considered (up to 3x in the 8-puzzle2, 6x in bw-large-b), even after adding the time for
memo computation using limited backward search.

We also compared the performance of the two set-level heuristics with the serial Graphplan, which
also produces optimal plans. The set-level heuristic is better in the 8-puzzle problems, but not as good in
the blocks world problems (See table 4). We attribute this difference to the fact that more useful mutexes
are probably captured by the limited search of memos in the 8-puzzle problems than in the blocks world
problems. To capture more useful memos, one could increase the amount of backward search involved.

6 Implementational issues in extracting heuristics from planning graphs

6.1 Improving the efficiency of the heuristic computation

The main cost of heuristic computation lies in the construction of a leveled-off serial planning graph. Once
this planning graph is constructed, the useful information necessary for computing a heuristic value of a
given set can be accessed quickly from the graph data structure.

Although the planning graph structure is in principle polynomial in terms of time and memory, the cost
of its computation in fact varies according to different domains. In the parallel domains where there is
little interactions among subgoals, the planning graph consumes very little memory and building time. For
example, it takes only seconds to build a planning graph for the att-log-a problem, which has a solution of
length 56. On the other hand, in domains where there are strong interactions among subgoals, the resulting
planning graph can be very big and costly to build, for having to store many more mutex constraints. The
blocks world or grid world are examples of these domains. For instance, the planning graph for bw-large-c
takes about 400 seconds to build out of 535 seconds of total run time for partition-2 heuristic (in Lisp). The
planning graph may also grow so big that it takes all the memory available.

There are a variety of techniques for improving the efficiency of planning graph construction in terms of
both time and space, including bi-level representations that exploit the structural redundancy in the planning
graph in STAN planner[31], as well as (ir)relevance detection techniques such as RIFO [35] that ignore ir-
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Problem Normal PG Bi-level PG Speedup
bw-large-b 63.57 20.05 3x
bw-large-c 444.79 114.88 4x
bw-large-d - 11442.14 100x

rocket-ext-a 4.72 1.26 4x
rocket-ext-b 7.38 1.65 4x

att-log-a 11.96 2.27 5x
att-log-b 11.09 3.58 3x

gripper-20 20.92 7.26 3x
8puzzle-1 119.54 20.20 6x
8puzzle-2 50.45 7.42 7x
8puzzle-3 63.23 10.95 6x

travel-1 0.44 0.12 4x
grid-3 18.82 3.04 6x
grid-4 37.12 14.15 3x

aips-grid-1 640.47 163.01 4x
mprime-1 79.55 67.75 1x

Table 5: Total CPU time improvement from efficient heuristic computation forComboheuristic

relevant literals and actions while constructing the planning graph. These techniques can be used to improve
the cost of our heuristic computation. In fact, in one of our recent experiments, we have used a bi-level
planning graph as a basis for our heuristics.9 Our experiment results show significant speedups (up to 7x)
in all problems, and we are also able to solve more problems than before because our planning graph takes
less memory (described in table 5).

By trading off heuristic quality for reduced cost, we can aggressively limit the heuristic computation
costs. Specifically, in the previous section, we discussed the extraction of heuristics from a completed
leveled planning graph. Since the state search does not operate on the planning graph directly, there is
no strict need to use the full leveled graph to preserve completeness. Informally,any subgraphof the full
leveled planning graph can be gainfully utilized as the basis for the heuristic computation. There are at least
three ways of computing a smaller subset of the leveled planning graph:

1. Grow the planning graph to some length that is less than the length where it levels off. For example,
we may grow the graph until the top level goals of the problem are present without any mutex relations
in the final proposition level of the planning graph.

2. Spend only limited time on marking mutexes on the planning graph.

3. Introduce only a subset of the “applicable” actions at each level of the planning graph. For example,
we can exploit the techniques such as RIFO [35] and identify a subset of the action instances in the
domain that are likely to be “relevant” for solving the problem.

Any combination of the above three techniques can be used to limit the space and time resources ex-
pended on computing the planning graph. What is more, it can be shown that the admissibility and com-
pleteness characteristics of the heuristic will remain unaffected as long as we do not use the third approach.

We have implemented the first technique in a planner calledAltAlt (see next section 7. Specifically,
we build the planning graph up to the level that all of the subgoals appear non-mutex, e.g levellev(S),
whereS is the set of subgoals being considered. The rationale for limiting the level of the graph tolev(S)
is that the child states resulted from regressing from the goal stateS are likely to have thelev values well

9The Lisp source code for fast bi-level planning graph construction is provided by Terry Zimmerman

20



belowlev(S). Therefore, the heuristic estimates based onlev values for these states tend to remain the same
(should we expand the graph to level-off). In such cases, expanding the graph further does not necessarily
give more information. When a graph is not grown to level-off, the notion oflev has to be redefined as
follows:

Definition 5 (Level in a partially constructed graph) Let l be the index of the last level that the planning
graph has been grown to. Given a setS of propositions, denotelev(S) as the index of the first level in the
planning graph in which all propositions inS appear and are non-mutexed with one another. If no such
level exists, thenlev(S) = l + 1. Similarly, denotelev(p) as the index of the first level that a propositionp
comes into the planning graph.

In principle, the resulting heuristic may not be as informed as the original heuristic from the full planning
graph. We shall see in the section 7 that in many problems the loss of informedness is more than offset by
the improved time and space costs of the heuristic.

6.2 Limiting the branching factor of regression search using planning graphs

Although the preceding discussion focused on the use of the planning graphs for computing the heuristics
for guiding the state search, as mentioned earlier in section 3, we see that planning graph is also used to
pick the action instances considered in expanding the regression search tree. The advantages of using the
action instances from the planning graph are that in many domains there are a prohibitively large number
of ground action instances, only a very small subset of which are actually applicable in any state reachable
from the initial state. Using all such actions in regression search can significantly increase the cost of node
expansion (and may, on occasion, lead the search down the wrong paths). In contrast, the action instances
present in the planning graph are more likely to be applicable in states reachable from the initial state.

The simplest way of picking action instances from the planning graph is to consider all action instances
that are present in the final level of the planning graph. If the graph has been grown to level off, it can
be proved that limiting regression search to this subset of actions is guaranteed to preserve completeness.
A more aggressive selective expansion approach, that we callsel-exp , involves the following. Suppose
l is the first level at which the literals of the top-level goal are all present in the planning graph without
being pairwise mutex.Sel-exp approach involves expanding the planning graph up to levell, as opposed
to level-off. Suppose that we are trying to expand a stateS in the regression search, then only the set
of actions appearing in the action levellev(S) is considered to regress the stateS. The intuition behind
sel-exp strategy is that the actions in levellev(S) comprise the actions that are likely to achieve the
subgoals ofS in the most direct way from the initial state. While this strategy may in principle result in the
incompleteness of the search, because some actions needed for the solution plan that appear much later at
levels of index greater thanl are not considered, we have not found a single instance in which our strategy
fails to find a solution that can be found considering full set of actions. As we shall see in the next section,
the sel-exp strategy, this strategy has significant effect on the performance ofAltAlt in some domains
such as the Schedule World[1].

We have recently incorporated these ideas into a planner calledAltAlt , implemented in C, that took part
in the AIPS-2000 planning competition [1]. The details on the performances of this planner is described in
the section 7.

6.3 Comparing time and space complexity of graph construction vs. dynamic programming
style computation

Most of our heuristic functions developed in the previous sections are based upon the level value of some set
of propositions,lev(S). This function can be computed using dynamic programming (DP) style computation
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as well. Specifically, according to the proposition 1, this computation boils down to computinglev function
value for all pairs of propositions (assuming that only binary mutexes are computed). The mutex marking
and propagation in the planning graph directly correspond to the updating procedure of thelev function.
In addition, the convergence oflev values directly corresponds to thelev values extracted from a planning
graph that levels off. In fact, in a recent work, Haslum & Geffner [14] have started from the DP formulation
to derive a family of heuristics that are closely connected to the set-level heuristic functionh(S) = lev(S)
developed in section 4. The heuristics used in HSP and HSP-R planners are also computed using bottom-up
DP approach.

Given thelev function value, it is simple to see that the heuristics developed in the previous sections can
also be computed using the DP style approach. It is straightforward to compute the partitioning heuristic
family, as they involve only the level information. Theadjusted-sumandcomboheuristics involve comput-
ing the level information, as well as thesum heuristicvalue, which were already computed in a DP fashion.
The adjusted-sum2 heuristic additionally involves computingcostp(S), which essentially returns the length
of a plan extracted from the planning graph that achievesS from the initial state under the assumption that
there are no delete effects of actions. A planning graph that ignores the delete effects of actions can be built
cheaply in terms of both time and memory.

The bottom line is that, unlike the Graphplan algorithm, which needs to construct the planning graph
structure in order to search for a solution subgraph, we might not need to compute the planning graph in
order to compute our heuristics. Thus, one might wonder whether building the planning graph would be
more costly both in terms of time and space, compared with using DP style computation. We will show that
this is not the case. Specifically, using a bi-level representation of the graph and efficient mutex marking
procedures such as those in STAN [31], the time it takes for the building the graph tends to be lower than
the time it takes for the updating procedures to converge. Furthermore, the additional amount of memory
required to store such a graph is often not very significant.

Indeed, notice that the graph level-by-level expansion can be seen as the updating procedures oflev
values. The interesting point is that, only actions that are applicable in the previous level are considered
in the updating procedures, and only pairs of propositions whoselev value changes are actually updated.
Thus, the expansion of the planning graph can be seen as a selective and directional way of updating thelev
values efficiently, improving the convergence time of such values.

Now, in terms of memory. LetP andA be the total number of (grounded) propositions and actions,
respectively. Let�; �, and be the average amount of memory needed to store a single proposition, a mutex
relation, and an action, respectively. Using the DP style computation, only thelev values of all propositions
and the pair of propositions – there areP (P�1)=2 of those – are stored, taking(�P+�P (P�1)=2) amount
of memory. In the bi-level representation of planning graph, the set of propositions, pairs of mutexes, and
the set of actions are all that need to be stored. These numbers are essentially independent of the number
levels the planning graph needs to expand, since the value of any of these entities with respect to each
particular level is represented by one bit, not by duplicating as in the original Graphplan’s planning graph.
Thus, the amount of memory needed to store the bi-level graph structure is(�P +�P (P �1)=2+A). The
additional amount of memory the planning graph actually has to store is the set of all actions, which isA.
It is important to emphasize that this amount is often not very significant, as it is independent of the number
of graph levels. Moreover, the set of actions are very helpful in focusing the search (see subsection 6.2).

Therefore, contrary to the initial impressions, the planning graph does not take much more memory than
using DP style procedure to come up with the same heuristic functions. Furthermore, that additional amount
of memory needed by the planning graph actually stores the action information, which is very useful in
improving the relevance of the search. In addition, the graph tends to level off faster than the convergence
rate of thelev values using dynamic programming approach. This underscores the fact that the planning
graph can serve not only as a powerfulconceptualmodel, but also an efficientimplementationalmodel for
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computing effective admissible heuristics.

7 AltAlt, a state search planner using planning graph based heuristics

Until now, we concentrated on analyzing the tradeoffs among the various heuristics one can extract from
the planning graph. The implementation used was aimed primarily at normalized comparisons among these
heuristics. To see how well a planner based on these heuristics will compare with other highly optimized
implementations, we builtAltAlt 10 planner implemented in C programming language. Empirical results
show thatAltAlt 11 can be orders of magnitude faster thanbothSTAN and HSP-r, validating the effectiveness
of the heuristic being used. Furthermore, it turns out thatAltAlt is also very competitive with some of the
best planners at the planning competition.

AltAlt is implemented on top of two highly optimized existing planners–STAN [31] that is a very effec-
tive Graphplan style planner is used to generate planning graphs, and HSP-r [4], a heuristic search planner
provides an optimized state search engine. We use one of the most effective heuristics developed earlier to
guide the search – theadjsum2Mheuristic (section 4.3).

The high-level architecture ofAltAlt is shown in Figure 5. The problem specification and the action
template description are first fed to a Graphplan-style planner, which constructs a planning graph for that
problem in polynomial time. We use the publicly available STAN implementation [31] for this purpose as it
provides a fast mutex marking routines and highly memory efficient implementation of planning graph (see
below). This planning graph structure is then fed to a heuristic extractor module that is capable of extracting
a variety of effective and admissible heuristics, described in section 4. This heuristic, along with the problem
specification, and the set of ground actions in the final action level of the planning graph structure (see below
for explanation) are fed to a regression state-search planner. The regression planner code is adapted from
HSP-R [4].

7.1 Evaluating the performance of AltAlt

AltAlt ’s performance on many benchmark problems, as well as the test suite used in the recent AIPS-2000
planning competition, is remarkably robust. Our initial experiments suggest thatAltAlt system is compet-
itive with some of the best systems that participated in the AIPS competition[1]. The evaluation studies
presented here are however aimed at establishing two main facts: First,AltAlt convincingly outperforms
both Graphplan (STAN) and HSP-r systems that it is based on in a variety of domains. Second,AltAlt is
able to reduce the cost of its heuristic computation with very little negative impact on the quality of the
solutions produced (see subsection 7.2).

Our experiments were all done on a Linux system running on a 500 mega hertz pentium III CPU with 256
megabytes of RAM. We comparedAltAlt with the latest versions of both STAN and HSP-R system running
on the same hardware. We also compareAltAlt to FF and HSP2.0, which are two of the best planners
at the competition. HSP2.0 is a recent variant of the HSP-R system that opportunistically shifts between
regression search (HSP-R) and progression search (HSP). FF is an extremely efficient state search planner
using a novel local search style algorithm and many useful pruning techniques. The problems used in our
experiments come from a variety of domains, and were derived primarily from the AIPS-2000 competition
suites [1], but also contain some other benchmark problems known in the literature. Unless noted otherwise,

10A Little of this and aLittle of That.
11An earlier version ofAltAlt took part in the automated track in the recent AIPS-2000 planning competition[1]. At the time

of competition it was still not completely debugged. In the competition,AltAlt managed to stay in the middle range among the
12 competitors. The current debugged and optimized version, on the other hand, is able to compete favorably with the top four
planners in the competition, including Hoffman’s FF[15], Bonet and Geffner’s HSP2.0 [5, 4], and Refanidis’s GRT [38].
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Figure 5: Architecture ofAltAlt

in all the experiments,AltAlt was run with the heuristichAdjSum2M , and with a planning graph grown only
until the first level where top level goals are present without being mutex (see discussion in Section 6). For
each node representing a stateS, only the action instances present in the action levellev(S) of the planning
graph are used to expand nodes in the regression search (see Section 6).

Table 6 shows some statistics gathered from head-on comparisons betweenAltAlt , STAN, HSP-R,
HSP2.0 and FF across a variety of domains. For each system, the table gives the time taken to produce the
solution, and the length (measured in the number of actions) of the solution produced. Dashes show problem
instances that could not be solved by the corresponding system under a time limit of 10 minutes. We note
that AltAlt demonstrates robust performance across all the domains. Itdecisively outperformsSTAN and
HSP-R in most of the problems, easily solving both those problems that are hard for STAN as well as those
that are hard for HSP-R. We also note that the quality of he solutions produced byAltAlt is as good or better
than those produced by the other two systems in most problems. The table also shows a comparison with
HSP2.0 and FF. While HSP2.0 predictably outperforms HSP-R, it is still dominated byAltAlt , especially
in terms of solution quality. FF is clearly shown to be very fast here, but it fails to solve some problems.
AltAlt gives better solution quality in most problems.

The plots in Figures 6, 7, 8 compare the time performance of STAN, HSP-R, HSP2.0 andAltAlt in
specific domains. The plot in figure 6 summarizes the problems from blocks world and the plot in figure 7
refers to the problems from logistics domain, and plot in figure 8 to the problems from the scheduling world,
three of the standard benchmark domains that have ben used in the recent planning competition [1]. We see
that in all domains,AltAlt clearly dominates STAN. It dominates HSP2.0 in logistics and is very competitive
with it in blocks world. Scheduling world was a very hard domain for most planners in the recent planning
competition [1]. We see thatAltAlt scales much better than both STAN and HSP2.0. HSP-R is unable to
solve any problem in this domain. Although not shown in the plots, the length of the solutions found by
AltAlt in all these domains was as good or better than the other two systems.

7.2 Trading quality for cost in heuristic computation in AltAlt

We mentioned earlier that in all these experiments we used a partial (non-leveled) planning graph that was
grown only until all the goals are present and are non-mutex in the final level. As the discussion in Section 6
showed, deriving heuristics from such partial planning graphs trades cost of the heuristic computation with
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Schedule Domain (AIPS-00)
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Figure 9: Results on trading heuristic quality for cost by extracting heuristics from partial planning graphs.
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STAN3.0 HSP-r HSP2.0 FF AltAlt(AdjSum2M)
Problem Time Length Time Length Time Length Time Length Time Length

gripper-15 - - 0.12 45 0.19 57 0.02 45 0.31 45
gripper-20 - - 0.35 57 0.43 73 0.02 57 0.84 57
gripper-25 - - 0.60 67 0.79 83 0.03 67 1.57 67
gripper-30 - - 1.07 77 1.25 93 0.08 77 2.83 77

tower-3 0.04 7 0.01 7 0.01 7 0.02 7 0.04 7
tower-5 0.21 31 5.5 31 0.04 31 0.02 31 0.16 31
tower-7 2.63 127 - - 0.61 127 0.15 127 1.37 127
tower-9 108.85 511 - - 14.86 511 1.92 511 48.45 511

8-puzzle1 37.40 31 34.47 45 0.64 59 0.19 47 0.69 31
8-puzzle2 35.92 30 6.07 52 0.55 48 0.15 84 0.74 30
8-puzzle3 0.63 20 164.27 24 0.34 34 0.08 42 0.19 20
8-puzzle4 4.88 24 1.35 26 0.46 42 0.05 44 0.41 24

aips-grid1 1.07 14 - - 2.19 14 0.06 14 0.88 14
aips-grid2 - - - - 14.06 26 0.29 39 95.98 34

mystery2 0.20 9 84.00 8 10.12 9 0.12 10 3.53 9
mystery3 0.13 4 4.74 4 2.49 4 0.03 4 0.26 4
mystery6 4.99 16 - - 148.94 16 - - 62.25 16
mystery9 0.12 8 4.8 8 3.57 8 0.20 8 0.49 8

mprime2 0.567 13 23.32 9 20.90 9 0.14 10 5.79 11
mprime3 1.02 6 8.31 4 5.17 4 0.04 4 1.67 4
mprime4 0.83 11 33.12 8 0.92 10 0.03 10 1.29 11
mprime7 0.418 6 - - - - - - 1.32 6
mprime16 5.56 13 - - 46.58 6 0.10 7 4.74 9
mprime27 1.90 9 - - 45.71 7 0.41 5 2.67 9

Table 6: Comparing the performance ofAltAlt with STAN, a state-of-the-art Graphplan system, HSP-R, a
state-of-the-art heuristic state search planner, and HSP2.0 and FF, two planning systems that competed at
the AIPS-2000 competition.

quality. To get an an idea of how much of a hit on solution quality we are taking, we ran experiments
comparing the same heuristichAdjSum2M derived once from full leveled planning graph, and once from the
partial planning graph stopped at the level where goals first become non-mutexed.

The plots in Figure 9 show the results of experiments with a large set of problems from the scheduling
domain. Plot a shows the total time taken for heuristic computation and search together, and Plot b compares
the length of the solution found for both strategies. We can see very clearly that if we insist on full leveled
planning graph, we are unable to solve problems beyond 81, while the heuristic derived from the partial
planning graph scales all the way to 161 problems. The time taken by the partial planning graph strategy is
significantly lower, as expected. Plot b shows that even on the problems that are solved by both strategies,
we do not incur any appreciable loss of solution quality because of the use of partial planning graph. The
few points below the diagonal correspond to the problem instances on which the plans generated with the
heuristic derived from the partial planning graph were longer than those generated with heuristic derived
from the full leveled planning graph. This validates our contention in Section 6 that the heuristic computation
cost can be kept within limits. It should be mentioned here that the planning graph computation cost depends
a lot upon domains. In domains such as Towers of hanoi, where there are very few irrelevant actions, the
full and partial planning graph strategies are almost indistinguishable in terms of cost. In contrast, domains
such as grid world and scheduling world incur significantly higher planning graph construction costs, and
thus benefit more readily by the use of partial planning graphs.
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8 Planning Graph-based heuristics for CSP Search, and their application to
Graphplan’s Backward Search

In the previous sections we have formulated a family of heuristics extracted from the planning graph and
showed that these heuristics can be very effective in guiding thestate space searchof the planner. In this
section we shall demonstrate that these heuristics can also be applied to improve the Graphplan algorithm’s
CSP-stylebackward search significantly.

This section is organized as follows. First we shall give a brief review and critique of Graphplan’s
variable and value ordering in its backward search. Then we shall present several heuristics for variable
and value ordering based on the level information on the planning graph. Finally, the effectiveness of these
heuristics is evaluated and many of their interesting advantages are discussed.

8.1 Variable and Value ordering in Graphplan’s backward search

As briefly reviewed in section 3, the Graphplan algorithm consists of two interleaved phases – a forward
phase, where a data structure called “planning-graph” is incrementally extended, and a backward phase
where the planning-graph is searched to extract a valid plan.

The search phase on ak level planning-graph involves checking to see if there is a sub-graph of the
planning-graph that corresponds to a valid solution to the problem. This involves starting with the propo-
sitions corresponding to goals at levelk (if all the goals are not present, or if they are present but a pair
of them are marked mutually exclusive, the search is abandoned right away, and planning-graph is grown
another level). For each of the goal propositions, we then select an action from the levelk action list that
supports it, such that no two actions selected for supporting two different goals are mutually exclusive (if
they are, we backtrack and try to change the selection of actions). At this point, we recursively call the same
search process on thek� 1 level planning-graph, with the preconditions of the actions selected at levelk as
the goals for thek� 1 level search. The search succeeds when we reach level0 (corresponding to the initial
state).

Previous work [17, 43, 21] had explicated the connections between this backward search phase of Graph-
plan algorithm and the constraint satisfaction problems (specifically, the dynamic constraint satisfaction
problems, as introduced in [23]). Briefly, the propositions in the planning graph can be seen as CSP vari-
ables, while the actions supporting them can be seen as their potential values. The mutex relations specify
the constraints. Assigning an action (value) to a proposition (variable) makes variables at lower levels “ac-
tive” in that they also now need to be assigned actions.

The order in which the backward search considers the (sub)goal propositions for assignment is what
we term thevariable ordering heuristic. The order in which the actions supporting a goal are considered
for inclusion in the solution graph is thevalue ordering heuristic. In their original paper, Blum & Furst
argue that the goal ordering and value ordering heuristics are not particularly useful for improving Graph-
plan, mainly because no solution is found in the levels before the solution-bearing level anyway. There are
however reasons to pursue goal ordering strategies for Graphplan. First of all, in many problems, the search
done at the final level does account for a significant part of the overall search. Thus, it will be useful to
pursue variable ordering strategies, even if they improve only the final level search. Secondly, there may
be situations where one might have lower bound information about the length of the plan, and using that
information, the planning graph search may be started from levels at or beyond the minimum solution bear-
ing level of the planning graph. Indeed, we will show later on that Graphplan’s search can be significantly
improved using certain types of variable and value ordering heuristics. What is more interesting is that these
heuristics are directly drawn from a number of heuristic functions extracted from the planning graph that we
had derived earlier for state space search. We shall briefly show the ineffectiveness of the existing heuristics
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for Graphplan search in the next subsection, motivating the derivation of a family of heuristics extracted
from the planning graph.

8.2 The ineffectiveness of existing heuristics for Graphplan’s search

The original Graphplan algorithm did not commit to any particular goal or value ordering heuristic. The
implementation however does default to a value ordering heuristic that prefers to support a proposition by
a noop action, if available. Although the heuristic of preferring noops seems reasonable (in that it avoids
inserting new actions into the plan as much as possible), and has mostly gone unquestioned,12 it turns out that
it is hardly infallible. In [20], our experiments with Graphplan implementations show that using noops first
heuristic can, in many domains, drastically worsen the performance. Specifically, in most of the problems,
considering noops first worsened performance over not having any specific value ordering strategy (and
default to the order in which the actions are inserted into the planning graph).

In CSP literature, the standard heuristic for variable ordering involves trying most constrained variables
first. A variable is considered most constrained if it has least number of actions supporting it. Although some
implementations of Graphplan, such as SGP [43] include this variable ordering heuristic, empirical studies
elsewhere have shown that by and large this heuristic leads to at best marginal improvements. In particular,
the results reported in [16] show that the most constrained first heuristic leads to about 4x speedup at most.

One reason for the ineffectiveness of most-constrained-first variable ordering is that, the number of
actions that can achieve a given goal, i.e the number of values that can be assigned for a given variable,
does not adequately capture the “difficulty” of finding an assignment for that variable. Specifically, since
a variable with fewer actions supporting it may actually be much harder to handle than another with many
actions supporting it, if each of the actions supporting the first one eventually lead to activation of many
more and harder to assign new variables, then it is actually the more difficult one to find an assignment.
Thus, a strategy such as “most-constrained-variable first” that quickens the process of assigning values to
the variables at the current level, may not be effective as it does not concern itself with the question of what
types of variables get activated at the lower levels based on the current level assignments.

8.3 Extracting heuristics from the planning graph for Graphplan’s search

In contrast to standard CSP search, the Graphplan search process does not end as soon as we find an assign-
ment for the current level variables. Instead, the current level assignments activate specific goal propositions
at the next lower level and these need to be assigned; this process continues until the search reaches the
first level of the planning graph. Therefore, what we need to improve this search is a heuristic that finds
an assignment to the current level goals, which is likely to activate fewer and easier to assign variables at
the lower levels. Fortunately, the family of state space heuristics developed earlier in section 4 are exactly
concerned with this type of information, i.e the difficulty (cost) of achieving a subgoal, or a set of subgoals
that are present in the same world state.

To make this connection clearer, let us consider a planning graph in the left of figure 10, and the corre-
sponding CSP-style backward search on the right. Consider thevariable orderingin a given level, say, level
2 in the planning graph, where we have two variables (goals)g1 andg2. Intuitively, since the search is done
in the backward direction, we might want to choose the goal that is achieved the last. This is directly related
to the difficulty (cost) of achieving a subgoalp from the initial state, which can be captured by the notion of
level value ofp, namelylev(p), as defined in definition 1.

Considering thevalue orderinggiven a variableg2, there are two possible value assignments forg2,
corresponding to two actionsa4 anda5. The likelihood that such a value assignment would activate easier-

12In fact, some of the extensions of Graphplan search, such as Koehler’s incremental goal sets idea [22] explicitly depend on
Graphplan using noops first heuristic.
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Figure 10: A planning graph example and the CSP-style regression search on it. To avoid cluttering, we do
not show all the no-ops and mutex relations.

to-assign variables in the next lower levels is directly related to the cost of making the corresponding actions
a4 anda5 become applicable in a plan executed from the initial state. This cost in turn is directly related
to the cost of achieving the set of preconditions of the corresponding actions, namelyPrec(a4) = fp2; p3g
andPrec(a5) = fp4g. We can apply the family of heuristic functions developed earlier for measuring the
cost of achieving a set of preconditions for a given action.

Now, we are ready to state the variable and value ordering heuristics for Graphplan search:

Propositions are ordered for consideration in decreasing value of their levels. Actions support-
ing a proposition are ordered for consideration in increasing value of their costs. (The cost of
actions are defined below)

These heuristics can be seen as using a “hardest to achieve goal (variable) first/easiest to support action
(value) first” idea, where hardness is measured in terms of the level of the propositions.

We use three different heuristic functions developed in section 4 for estimating the cost of actions:Max,
partition-1andset-levelheuristic. The reason these heuristics are used is that they are derived directly of the
level information extracted from the planning graph and thus very cheap to compute.

Max heuristic: The cost an action is the maximum of the cost (distance) of the individual propositions
making up the precondition list of that action, namely,costMax(a) = maxp2Prec(a) lev(p). For
example, the cost ofA3 supportingG1 in Figure 10 is 1 becauseA3 has two preconditionsP2 andP3,
and both have level 1 (thus maximum is still 1). This heuristic is adapted from themax heuristic(see
section 2).

Sum heuristic: The cost of an action is the sum of the costs of the individual propositions making up that
action’s precondition list, namely,costSum(a) =

P
p2Prec(a) lev(p). For example, the cost ofA4

supportingG2 in Figure 10 is 2 becauseA4 has two preconditionsP2 andP3, and both have level 1.
This heuristic is adapted from thepartition-1 heuristic(see section 4).

Level heuristic: The cost of an action is the index if the first level at which that set of that action’s precon-
ditions are present and are non-mutex, namely,costLevel(a) = lev(Prec(a)). For example, the cost
of A5 supportingG2 in Figure 10 is 1 becauseA5 has one preconditionP4, and it occurs in level 1 of
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Problem Normal GP Max GP Lev GP Sum GP Speedup
Length Time Length Time Length Time Length Time Max Lev Sum

bw-large-a 12/12 .008 12/12 .005 12/12 .005 12/12 .006 1.6x 1.6x 1.3x
bw-large-b 18/18 .76 18/18 .13 18/18 .13 18/18 .085 5.8x 5.8x 8.9x

BW-large-C - >30 28/28 1.15 28/28 1.11 - >30 >26x >27x -
huge-fct 18/18 1.88 18/18 .012 18/18 .011 18/18 .024 156x 171x 78x

bw-prob04 - >30 8/18 5.96 8/18 8 8/19 7.25 >5x >3.7x >4.6x
rocket-ext-a 7/30 1.51 7/27 .89 7/27 .69 7/31 .33 1.70x 2.1x 4.5x
rocket-ext-b - >30 7/29 .003 7/29 .006 7/29 .01 10000x 5000x 3000x

att-log-a - >30 11/56 10.21 11/56 9.9 11/56 10.66 >3x >3x >2.8x
gripper-6 11/17 .076 11/15 .002 11/15 .003 11/17 .002 38x 25x 38x
gripper-8 - >30 15/21 .30 15/21 .39 15/23 .32 >100x >80 >93x

ferry41 27/27 .66 27/27 .34 27/27 .33 27/27 .35 1.94x 2x 1.8x
ferry-5 - >30 33/31 .60 33/31 .61 33/31 .62 >50x >50x >48x

tower-5 31/31 .67 31/31 .89 31/31 .89 31/31 .91 .75x .75x .73x

Table 7:Effectiveness of level heuristic in solution-bearing planning graphs. The columns titled Level GP, Max GP
and Sum GP differ in the way they order actions supporting a proposition. Max GP considers the cost of an action to be
the maximum cost of any if its preconditions. Sum GP considers the cost as the sum of the costs of the preconditions
and Level GP considers the cost to be the index of the level in the planning graph where the preconditions of the action
first occur and are not pair-wise mutex.

the planning graph, for the first time, and it is not mutex with anyone else. This heuristic is adapted
from theset-levelheuristic (see section 4).

It is easy to see that the cost assigned by level heuristic to an actionA is just 1 less than the index of the
level in the planning graph whereA first occurs in the planning graph. Thus, we can think of level heuristic
as using the uniform notion of “first level” of an action or proposition to do value and variable ordering.

In general, the Max, Sum and Level heuristics can give widely different costs to an action. For example,
consider the following entirely plausible scenario: an actionA has preconditionsP1 � � �P10, where all 10
preconditions appear individually at level 3. The first level where they appear without any pair of them being
mutually exclusive is at level 20. In this case, it is easy to see thatA will get the cost 3 by Max heuristic, 30
by the Sum heuristic and 20 by the Level heuristic. In general, we have:costMax(A) � costSum(A) and
costMax(A) � costLevel(A), but depending on the problemcostLevel(A) can be greater than, equal to or
less thancostSum(A). We have experimented with all three heuristics.

8.4 Evaluation of the effectiveness of level-based heuristics

We have implemented the three level-based heuristics described in the previous section for Graphplan back-
ward search and evaluated its performance as compared to normal Graphplan. Our extensions were based
on the version of Graphplan implementation bundled in the Blackbox system [21], which in turn was de-
rived from Blum & Furst’s original implementation. Tables 7 and 8 show the results on some standard
benchmark problems. The columns titled “Max GP”, “Lev GP” and “Sum GP” correspond respectively
to Graphplan armed with the Max, Level and Sum heuristics for variable and value ordering. Cpu time is
shown in minutes. For our Pentium Linux machine 500 MHZ with 256 Megabytes of RAM, Graphplan
would normally exhaust the physical memory and start swapping after about 30 minutes of running. Thus,
we put a time limit of 30 minutes for most problems (if we increased the time limit, the speedups offered by
the level-based heuristics get further magnified).
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Problem Normal GP Max GP Lev GP Sum GP Speedup
Length Time Length Time Length Time Length Time Max Lev Sum

bw-large-a 12/12 .008 12/12 .006 12/12 .006 12/12 .006 1.33x 1.33x 1.33x
bw-large-b 18/18 .76 18/18 0.21 18/18 0.19 18/18 0.15 3.62x 4x 5x

huge-fct 18/18 1.73 18/18 0.32 18/18 0.32 18/18 0.33 5.41x 5.41x 5.3x
bw-prob04 8/20 30 8/18 6.43 8/18 7.35 8/19 4.61 4.67x 4.08x 6.5x

rocket-ext-a 7/30 1.47 7/26 0.98 7/27 1 7/31 0.62 1.5x 1.47x 2.3x
rocket-ext-b - >30 7/28 0.29 7/29 0.29 7/28 0.31 >100x >100x >96x

tower-5 31/31 0.63 31/31 0.90 31/31 0.89 31/31 0.88 .70x .70x .71x

Table 8: Effectiveness of level-based heuristics for standard Graphplan search (including failing and succeeding
levels).

Problem Normal GP Max GP +3 levels +5 levels +10 levels
Length Time Length Time Length Time Length Time Length Time

bw-large-a 12/12 .008 12/12 .005 12/12 .007 12/12 .008 12/12 .01
bw-large-b 18/18 .76 18/18 .13 18/18 .21 18/18 .21 18/18 .25

BW-large-C - >30 28/28 1.15 28/28 4.13 28/28 4.18 28/28 7.4
huge-fct 18/18 1.88 18/18 .012 18/18 0.01 18/18 .02 18/18 .02

bw-prob04 - > 30 8/18 5.96 - >30 - >30 - >30
rocket-ext-a 7/30 1.51 7/27 .89 8/29 0.006 8/29 0.007 8/29 .009
rocket-ext-b - > 30 7/29 .003 9/32 0.01 9/32 .01 9/32 .01

att-log-a - >30 11/56 10.21 13/56 8.63 13/56 8.43 13/56 8.58
gripper-6 11/17 .076 11/17 .002 11/17 0.003 11/17 .003 11/15 .004
gripper-8 - > 30 15/23 .30 15/23 0.38 15/23 0.57 15/23 0.33

ferry41 27/27 .66 27/27 .34 27/27 0.30 27/27 0.43 27/27 .050
ferry-5 - > 30 33/31 .60 31/31 0.60 31/31 .60 31/31 .61

tower-5 31/31 .67 31/31 .89 31/31 0.91 31/31 .91 31/31 .92

Table 9:Results showing that level-based heuristics are insensitive to the length of the planning graph being searched.

Notice that the heuristics are aimed at improving the search only in the solution bearing levels (since
no solution exists in the lower levels anyway). Table 7 compares the effectiveness of standard Graphplan
(with noops-first heuristic), and Graphplan with the three level-based heuristics in searching the planning
graph containing minimum length solution. As can be seen, the final level search can be improved by 2 to 4
orders of magnitude with the level-based heuristics. Looking at the Speedup columns, we also note that all
level-based heuristics have approximately similar performance on our problem set (in terms of cpu time).

Table 8 considers the effectiveness when incrementally searching from failing levels to the first success-
ful level (as the standard Graphplan does). The improvements are more modest when you consider both
failing and succeeding levels (see Table 8). This is not surprising since in the failing levels, we have to ex-
haust the search space, and thus we will do the same amount of search no matter which heuristic we actually
use.

The impressive effectiveness of the level-based heuristics for solution bearing planning graphs suggests
an alternative (inverted) approach for organizing Graphplan’s search–instead of starting from the smaller
length planning graphs and interleave search and extension until a solution is found, we may want to start
on longer planning graphs and come down. One usual problem is that searching a longer planning graph is
both more costly, and is more likely to lead to non-minimal solutions. To see if the level-based heuristics
are less sensitive to these problems, we investigated the impact of doing search on planning graphs of length
strictly larger than the length of the minimal solution.
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Lev GP SUM GP
Problem +3 levels +5 levels +10 levels +3 levels +5 levels +10 levels

Length Time Length Time Length Time Length Time Length Time Length Time

BW-large-A 12/12 .007 12/12 .008 12/12 0.01 12/12 .007 12/12 .008 12/12 .008
BW-large-B 18/18 0.29 18/18 0.21 18/18 0.24 20/20 0.18 20/20 0.28 20/20 0.18
BW-large-C 28/28 4 28/28 3.9 28/28 4.9 - >30 - >30 - >30

huge-fct 18/18 .014 18/18 .015 18/18 .019 18/18 .014 18/18 .015 18/18 .019
bw-prob04 11/18 18.88 - >30 - >30 - >30 - >30 - >30

Rocket-ext-a 9/28 .019 9/28 0.02 9/28 0.02 8/28 .003 8/28 .004 8/28 .006
Rocket-ext-b 9/32 .007 9/32 .006 9/32 0.01 7/28 .011 7/28 .012 7/28 .014

Att-log-a 13/56 8.48 14/56 8.18 13/56 8.45 13/56 8 13/56 8.18 13/56 8.45
Gripper-6 11/15 .003 11/15 .003 11/15 .003 11/15 .004 11/15 .004 11/15 .004
Gripper-8 15/21 0.4 15/21 0.47 15/21 0.4 15/21 0.47 15/21 0.47 15/21 0.4
Ferry41 27/27 0.30 27/27 0.30 27/27 0.34 27/27 0.30 27/27 0.30 27/27 0.34
Ferry-5 31/31 0.60 31/31 0.60 31/31 0.60 31/31 0.59 31/31 0.60 31/31 0.61
Tower-5 31/31 0.89 31/31 0.89 31/31 0.89 31/31 0.87 31/31 0.87 31/31 0.87

Table 10:Performance of Level and Sum heuristics in searching longer planning graphs

Table 9 shows the performance of Graphplan with the Max heuristic, when the search is conducted
starting from the level where minimum length solution occurs, as well as 3, 5 and 10 levelsabovethis
level. Table 10 shows the same experiments with with the Level and Sum heuristics. The results in these
tables show that Graphplan with a level-based variable and value ordering heuristic is surprisingly robust
with respect to searching on longer planning graphs. We note that the search cost grows very little when
searching longer planning graphs. We also note that the quality of the solutions, as measured in number
of actions, remains unchanged, even though we are searching longer planning graphs, and there are many
non-minimal solutions in these graphs. Even the lengths in terms of number of steps remain practically
unchanged–except in the case of the rocket-a and rocket-b problems (where it increases by one and two
steps respectively) and logistics problem (where it increases by two steps). (The reason the length of the
solution in terms of number of steps is smaller than the length of the planning graph is that in many levels,
backward search armed with level-based heuristics winds up selecting noops alone, and such levels are not
counted in computing the number of steps in the solution plan.)

This remarkable insensitivity of level-based heuristics to the length planning graph means that we can get
by with very rough information (or guess-estimate) about the lower-bound on the length of solution-bearing
planning graphs.

A way of explaining this behavior of the level-based heuristics is that even if we start to search from
arbitrarily longer planning graph, since the heuristic values of the propositions remain the same, we will
search for the same solution in the almost the same route (modulo tie breaking strategy). Thus the only cost
incurred from starting at longer graph is at the expansion phase and not at the backward search phase.

It must be noted that the default “noops-first” heuristic used by Graphplan implementations does already
provide this type of robustness with respect to search in non-minimal length planning graphs. In particular,
the noops-first heuristic is biased to find a solution that winds up choosing noops at all the higher levels–
thereby ensuring that the cost of search remains the same at higher length planing graphs. However, as the
results in [20] point out, this habitual postponement of goal achievement to earlier levels is an inefficient
way of doing search in many problems. Other default heuristics, such as the most-constrained first, or the
“consider goals in the default order they are introduced into the proposition list”, worsen significantly when
asked to search on longer planning graphs. By exploiting the structure of the planning graph, our level-based
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heuristics give us the robustness of noops-first heuristic, while at the same time avoiding its inefficiencies.

9 Related work

We have shown that the planning graph provides a rich structure that can be exploited to develop a variety
of different effective heuristics for domain-independent planning. The needs for such different domain-
independent heuristics was persuasively argued in [26].

In this section, we briefly reflect on some important techniques for deriving effective admissible heuris-
tics in the AI search literature, which provides interesting perspectives on the family of heuristics that we
have developed. We specifically show how many of our heuristics can be viewed as adapting from powerful
techniques in the search literature into the general setting of planning. This sheds some light into the source
of strength of the heuristics developed, as well as some possible avenues for further development of effective
and admissible heuristics in planning. We also discuss the interesting relation between deriving effective
heuristics to the constraint enforcement of the underlying CSP of the problem in planning.

9.1 Deriving effective admissible heuristics in AI search literature

Extracting effective and admissible heuristics has traditionally been a central problem in the AI search
literature [37]. The standard explanation for computing these heuristic functions is to compute the cost of
exact solutions to a simplified version of the original problem. For example, in the 8-puzzle problem we
solve a relaxed version of the problem by assuming that any tile can be moved to an adjacent square and
multiple tiles can occupy in the same square, resulting in the well-known Manhattan heuristic function,
which is the sum of all Manhattan distances of each individual tile positions in the initial and goal states.
Since each individual tiles can move independently of each another in the relaxed problem, this sum heuristic
is admissible. However, this heuristic estimate is still not very accurate when we move to bigger problems
such as 15-puzzle, because the interactions among the tiles are not accounted for.

Culberson and Schaeffer[6] introduced the notion ofpattern databasesas a method for accounting for
such interactions. For instance, in the 15-puzzle problem, they consider any subset of tiles, such as the
seven tiles in the right column and bottom row, which they called thefringe patterns. The minimum number
moves required to get the fringe tiles from their initial state to the goal state, including any required moves
of other (non-patterned) tiles as well, is obviously a lower bound on the distance from the initial state to the
goal state of the original problem. Since the number of such patterns are limited, they can be computed in
the preprocessing phase and then stored efficiently in the memory. Furthermore, multiple pattern databases
can be exploited, and the heuristic function takes on the maximum values in all different patterns stored
in a given state. This technique was effectively used for solving problem with large search space such as
15-puzzle [6], Rubik’s Cube [28].

The idea of pattern databases can be pushed further by identifyingdisjoint patterns, in the sense that
each disjoint pattern involves disjoint subsets of tiles as in the 15-puzzle problem, and only moves involving
the tiles in the patterns are counted for each pattern. The summation of the distance values corresponding to
each disjoint patterns existed in a given state gives a much more accurate distance estimate of that state than
taking the maximum. A trivial example of the disjoint pattern database is the Manhattan distance, wherein
each individual disjoint pattern can be seen as a single tile position.

While the summation of disjoint pattern databases provides a very powerful rule for raising the accuracy
of the heuristic estimate, the problem with this idea is that it is not easy to identify the disjoint patterns in
a given domain. Indeed, the existence of these disjoint patterns requires the actions to affect only subgoals
within a given pattern, which is not a general characteristic across different problems. As noted by Korf[30],
disjoint databases cannot be used on the Rubik’s cube.
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In between the two extremes (i.e the max and sum of the pattern databases) lies a technique that attempts
to combine the two ideas in a different way. The basic idea is that, as in the example of the 15-puzzle
problem, consider a database that contains the number of moves required to correctly position ever pair of
tiles. While most of the pairs would return the value which is exactly the Manhattan distance, some special
positions return a longer pairwise distance due to the subgoal interactions that are considered explicitly.
This increased distance value is added into the Manhattan distance, providing a significant improvement
into the Manhattan heuristic which basically assumes the subgoal independence. This is the basic idea
behind thelinear-conflictheuristic function, first proposed by Hansson et al [13]. Korf and Taylor[27] have
applied this idea into solving 24-puzzle successfully and along the way they introduced several important
ideas for accounting for the subgoal interactions. For instance as in the 24-puzzle, there may be many pairs
whose pairwise distances are longer than their respective Manhattan distances. Given a state corresponding
to a configuration of tiles positions, the set tiles have to be partitioned into disjoint subsets in a way that
maximize the sum of all the pairwise distances. Furthermore, the same idea can be generalized to distances
of triples or quadruples of tiles as well.

In the following we draw some parallel on the derivation of heuristics in the AI search literature and
domain-independent planning.

9.2 Deriving effective and admissible heuristics in planning: Relations with the search lit-
erature

Computing effective and/or admissible heuristics for planning is perhaps even more challenging than in the
AI search literature, not because the planning problems present larger search spaces compared to standard
problems considered in the search literature, but because the heuristics have to be extracted from a general
representation that can accommodateall planning domains. In contrast, most accurate admissible heuristics
in the search literature often exploit the explicit structure and representation of a particular domain in ques-
tion that can not be easily applied in other domains. Naturally, one should consider applying the powerful
insights for computing effective and admissible heuristics in the AI search literature into the general setting
of planning.

Surprisingly, deriving effective heuristics for domain-independent planning started to receive attention
only recently. Ghallab and his colleagues first used the graph-based heuristic in IxTeT[11], a plan-space
based planner. However the effectiveness of their heuristic was not investigated adequately. Subsequently
the idea is independently explored by McDermott[34], and Bonet and Geffner[5]. Their work helped revive
the heuristic state search tradition in planning.

All of these early heuristics essentially assume the subgoal independence. For example, Bonet &
Geffner’ssumheuristic can be seen as an adaptation of Manhattan heuristic in the slide puzzle problems.
More recently, Refanidis[38] and Hoffman[15] have considered thepositiveinteractions while ignoring the
negative interactions among subgoals to improve the heuristics in many problem domains. Specifically,
Hoffman [15] uses the length of the first relaxed plan found in a relaxed planning graph (without mutex
computation) as the heuristic value, which can be seen as a special case of the adjusted-sum2 heuristic
h(S) = costp(S) + �(S), where�(S) = 0, completely ignoring the negative interactions. However, FF
uses a novel local search style algorithm, armed with many useful pruning techniques to overcome its heuris-
tic limitations and make it anextremelyefficient (albeit theoretically incomplete) planner. Refanidis [38]
extracts the co-achievement relation among subgoals from the first relaxed plan to account for the positive
interactions. In fact, the extraction of the co-achievement relation among subgoals does consider the delete
effects of the actions. However, this is not sufficiently considered as accounting for the negative interactions
among the subgoals because thefirst relaxed plan corresponding to which the co-achieveness relations are
extracted may or may not be the correct plan to be found. These heuristics were reported to provide both
significant speedups and improved solution quality. Note that none of these heuristics are admissible.
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In our work, we consider both negative and positive interactions among subgoals aggressively. While
our heuristic families were independently discovered in the context of domain-independent planning under
the general STRIPS representation, it turns out that many of these heuristics are closely related to many
powerful techniques in the AI search literature. Our work can be interpreted as having explicitly shown
that the planning graph, with its rich structure, can serve as a powerful conceptual model for applying the
important techniques in the search literature into computing domain-independent heuristics for planning.

The admissibleset-levelheuristic can actually be seen as being adapted from and inspired by the idea of
pattern databases, wherein each pair of subgoals can be seen as a “pattern”. The difference here is that the
lev(fp1; p2g) is not the exact cost (distance) of achieving the pairfp1; p2g, but the graph construction and
mutex computation ensures that it provides a lower bound for achievingfp1; p2g

13. The set-level heuristic
thus involves taking the maximum values among all the “patterns” existing in a given set. Furthermore, the
accuracy of the admissible set-level heuristic can be improved by increasing the size of the patterns, corre-
sponding to the computation of the higher-order mutexes. The set-level heuristic is also closely related to the
family of heuristics introduced by Haslum and Geffner[14] using dynamic programming style formulation
(see also subsection 6.3)..

The improvement of the admissible set-level heuristic by running limited backward search on the Graph-
plan’s planning graph to pick up useful memos can also be seen as an interesting way of actively detecting
and evaluating useful patterns, which are to be used in the subsequent state search.

The family ofpartition-kheuristics is related to the disjoint pattern database idea. However, the partition-
k heuristics are not guaranteed to be admissible, as it is not clear how to efficiently partition a set into subsets
that are strictly independent to each other.

The family of adjusted-sumheuristics are related to the works by Hasson et al [13] and Korf et al
[27]. These heuristics provide a powerful way of improving the effectiveness as well as quality of the
sum heuristic by accounting for both positive and negative subgoal interactions. Specifically, we deal with
one type of subgoal interactions by systematically ignoring the other type of interactions. The heuristic
functions are composed of two separate components that are responsible for improving the informedness
and admissibility of the heuristics. These heuristics are empirically shown to be superior to most existing
state space heuristics in the planning literature both in terms of effectiveness and solution quality.

One problem with these heuristics is that the sum heuristic (unlike the Manhattan in the domain-specific
slide puzzle problems) is not admissible to begin with. Thus the family of adjusted-sum heuristic is also
not guaranteed to be admissible, although they become significantly more informed for accounting for the
negative interactions among subgoals. By replacing the sum heuristic function by a value that manages to
account for the positive subgoal interactions, we have adjusted-sum2 heuristics that empirically give very
close estimate to the goal, and the quality of the solutions they help find was shown to be often optimal or
close to optimal in our experiments.

9.3 Relations with consistency enforcement in CSP

Our work also reveals an interesting connection between computing effective heuristics for state space search
and the constraintedness of the CSP. In state space search, havingperfectheuristic function enables the
search to find the solution without backtracking. Similarly the solution for aglobally consistentconstraint
network can also be found in a backtrack-free manner. This shows the direct connection between the amount
of search involved with the informedness of the heuristic estimate in state space search, and the constraint-
edness of the constraint networks in CSP search.

In planning, a planning problem can be formulated both as a state space search problem as well as

13Computing the exact cost of achieving a pair of subgoals may not be any easier than the original problem itself. In fact, may
planning problems have only one or two subgoals to begin with.
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CSP problem. In particular, the planning graph can be seen as a CSP-based representation of the problem.
with the (binary) mutex constraints computation and propagation corresponds directly to a form of directed
partial 1- and 2-consistency enforcement. Furthermore, our heuristics are shown to benefit from the compu-
tation and propagation of higher order mutexes, corresponding to stronger consistency enforcement of the
underlying CSP. We thus exploit the these constraints in the planning graph to improve the informedness of
heuristics for the problem’s formulation as state space search.

The set of mutex constraints play very important role in improving the informedness of our graph-
based heuristics. Thelevel-specificmutexes can be used to give finer (longer) distance estimates, while
staticmutexes help prune more invalid and/or unreachable states. Thus, our heuristics can be improved by
detecting more mutexes. Indeed, more level-specific mutexes can be discovered through more sophisticated
mutex propagation rules [8] , while binary and/or higher order static mutexes can be discovered using a
variety of different techniques[12, 39, 10].

While the heuristic derivation was focused mostly on state search planning, in section 8 we have shown
that similar insights can be applied to other approach such as Graphplan’s backward search, which can be
viewed as (dynamic) CSP search. In a separate work, we also showed that the same Graph-based heuristics,
coupled with efficient handling of the mutual exclusion constraints among subgoals, can help improve plan-
space planners such as the UCPOP[42] remarkably. Indeed, the UCPOP planner, enhanced with effective
heuristics was shown to be able to find 100-length plans for planning problems that had previously been
untouchable[25].

9.4 Relation with Forward State Search planners

We have presented a family of heuristics for backward state space search. The heuristics are extracted from
the planning graph that is built in forward direction from the initial state.

It is the conventional wisdom in planning literature that it is natural to search for the solution in back-
ward direction from goal. Indeed, this also agrees with the goal-directed behavior of intelligent agents that
plan. Technically, backward search is favored over forward search because backward search considers only
relevant actions to the goal, thus reducing the branching factor. However, most current classical planning
systems work with representation such as STRIPS, where only relevant propositions are encoded in each
domain in question. Thus the advantage the backward branching factor is no longer obvious. One the other
hand, since the goal state are often incomplete, the regression from goal over a sequence of some arbitrary
sequence of actions may often result into an inconsistent state that is not easily be detected. Representa-
tion language such as STRIPS do not readily reveal any such inconsistency information. For example, in
the blocks-world, it is not immediately known upfront that the two propositionson(a,b)andclear(b)are
inconsistent in the first place regardless of the initial state.

This inconsistency can be considered as an extreme form of negative interactions among subgoals, as it
says the two (or more) subgoals cannot be achieved together at any point. We have shown that the planning
graph can be used to detect this through static (binary) mutexes. We have showed that it is very costly to
compute and propagate higher-order static mutexes. Even computing the complete set of binary static mutex
is known to be NP-hard. Thus it is computationally prohibitive to prune all inconsistent states encountered
in the backward search. This is one fundamental disadvantage of searching in backward direction.

In classical planning, forward search does not encounter this problem at all, because at any point of
the progression, the state is always assumed to be complete. This is one of main reason behind the current
dominance of forward state search planners over planners that search in backward direction. The question
is, can the same insights obtained from extracting heuristics from the planning graph, which are used for
backward search, be applied to deriving effective graph-based heuristics for forward search?

McDermott’s UNPOP planner [34] actually worked in this direction, where the heuristic function is
extracted from a so-called regression graph that is built from the goal state. As mentioned earlier, no subgoal
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interactions are considered, and thus UNPOP thrashed on problems with such strong subgoal interactions.
We conjecture that a similar scheme for mutex constraint propagation can also be applied for a planning
graph built from the goal state. And while we no longer have to deal with the inconsistent states, the level-
specific (dynamic) mutexes can be exploited to improve the cost estimate of the states in a similar way.

10 Concluding Remarks

In this paper, we showed that the planning graph structure used by Graphplan provides a rich source for
deriving heuristics for guiding both state space search and CSP-style search.

In the case of state space search, we described a variety of heuristic families, that use the planning
graph in different ways to estimate the cost of a set of propositions. Our empirical studies show that many
of our heuristics have attractive tradeoffs in comparison with existing heuristics. In particular, we provided
three heuristics– “adjusted-sum2”, “adjusted-sum2M” and “combo”–which when used in conjunction with a
regression search in the space of states, provide performance that is superior to both Graphplan and existing
heuristic state search planners, such as HSP-r. We discussed many ways of improving the cost-quality
tradeoffs offered by these heuristics–with the prominent among them being derivation of heuristics from
partially grown planning graphs. Our empirical studies demonstrate that this approach often cuts down the
cost of heuristic computation significantly, with little discernible loss in the effectiveness of the heuristic.
Finally, we showed thatAltAlt , a hybrid planning system based on our heuristics, is very competitive with
the state-of-the-art plan synthesis systems. Specifically, our evaluation ofAltAlt on the AIPS 2000 planning
competition data puts its performance on par with the top tier planners in the competition.

In the case of CSP search, we showed how we can derive highly effective variable and value ordering
heuristics, which can be used to drive Graphplan’s own backward search. We showed that search with these
heuristics has the attractive property of being largely insensitive to the length of the planning graph being
searched. This property makes it possible to avoid the exhaustive search in non-solution bearing levels by
starting with a planning graph that is longer than the minimal length solution.

Our work also makes several pedagogical contributions. To begin with, we show how the strengths
of two competing approaches–heuristic state search and Graphplan planning–can be harnessed together to
synthesize a family of planners that are more powerful than either of the base approaches. Secondly, we show
that cost estimates of sets of subgoals, that have hither-to been used primarily as the basis for heuristics in
the context of state-space search, can also be used in the context of CSP search to give rise to very effective
variable and value ordering heuristics. Our discussion of relations between our work and the work on
memory-based heuristics in the search community shows how the planning graph can be seen as playing the
same role for planning, as pattern databases play for usual state space search problems such as 15-puzzle.
In particular, the main attraction of planning graph from the point of view of heuristic derivation is that it
provides a systematic and graded way of capturing the subgoal interactions. Finally, our discussion of the
effect of mutex constraint propagation on the effectiveness of the heuristics points out the close relation
between the degree of consistency of the CSP encoding of a planning problem, and the informedness of the
heuristics derived from that planning graph.
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