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ABSTRACT
Despite the enormous commercial importance of on-line ad-
vertisements (ads), there has been little work done to clarify
the basis for ranking and displaying them. Most existing
methods rank ads as if the user views each of them in iso-
lation. We will consider a more realistic user model that
induces three mutual influences between displayed ads: (i)
positional bias (for viewing ads placed higher up) (ii) simi-
lar ad fatigue (which reduces interest in an ad when similar
ads have already been displayed above it) and (iii) browsing
impatience (which accounts for the user abandoning the ad
viewing based on the ads already seen). We will show that in
general, when the inter-ad similarity is taken into account,
optimal ranking is NP-hard. Ignoring inter-ad similarity,
we state and prove the optimal ranking function for sort-
ing the ads that is sensitive to the other two factors. We
will show that the known ad ranking strategies correspond
to restricted special cases of our ranking function. We also
provide simulation studies that establish the effectiveness of
its generality.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Online Infor-
mation Services

1. INTRODUCTION
Online keyword advertisements (ads) are a multi-billion

dollar business. The basic idea is to show a ranked list of
advertisements to a user searching for related information.
Individual vendors bid for certain keywords. When these
keywords are seen to be relevant to the user’s search, the
search engines will show, typically in a separate pane, a list
of these ads. If the user clicks on any of the ads that are
shown, then the search engine gets the bid amount as the
revenue.

Confirmed details of the exact ranking strategies used by
the various search engines are of course hard to get. Yahoo!
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is said to rank its ads in terms of their bid amount;1 while
Google and Microsoft are said to rank the ads in terms of the
expected profit [11, 1], assessed as product of relevance and
bid amount. There is little work done towards explaining
which models are optimal under what assumptions.

The few existing academic efforts on ad ranking all im-
plicitly assume that the list of displayed ads can be decided
by selecting individual ads in isolation (see Section 2). Un-
fortunately, such a ranking is insensitive to the mutual in-
fluences between the displayed ads induced by the typical
page browsing patterns of users (c.f. [4, 5, 3]):

Positional Bias: There is a bias for viewing ads positioned
higher up in the list.

Similar Ad Fatigue: The perceived relevance of an ad is
reduced by the presence of similar ads higher up in the
list [9].

Browsing Abandonment: The user is not compelled to
view all the ads and may abandon browsing at any
point of time either because of impatience or satiation.
The abandonment likelihood may thus depend on the
(number and content of the) ads already viewed.

In this paper, we aim to investigate the optimal ranking
of ads, that is sensitive to the mutual influences between
displayed ads induced by the user browsing patterns. We
start by showing that optimal ranking to maximize expected
profit considering similar ad fatigue is NP-hard. For the case
where similarities between the displayed ads can be ignored,
we provide a simple ranking function for displaying ads that
correctly combines the bid amount, ad relevance and aban-
donment probabilities. After proving the optimality of this
ranking, we will show how it subsumes the ranking strate-
gies said to be used by Yahoo!, Google and Microsoft. Our
analysis shows these latter ranking strategies to be optimal
only under significantly restrictive assumptions. Finally, to
gain an understanding of the practical impact of the ranking,
we provide a simulation study that compares the proposed
strategy to the Google and Yahoo! models.

While the immediate motivation for our work is ad rank-
ing, we believe that the methodology can also be adapted
to ranking in other e-commerce scenarios such as vendor
recommendations.

2. RELATED WORK
1This strategy was adapted by Yahoo! from Overture, but
said to have changed in the past year.



Ranking is an extensively researched problem in IR. While
there has been some work in the IR community on browsing
model sensitive ranking of search results, it is not directly
applicable to ad ranking because the latter is influenced by
the competing pulls of ad relevance and ad profit. Robert-
son [12] claimed that a retrieval order based on Probability
Ranking Principle (PRP) leads to the largest number of rel-
evant documents in a set of retrieved documents than any
other policy. Later Gordon and Lenk [7, 8] identified the
required assumptions for the optimality of the ranking ac-
cording to PRP.

The ad placement problem has attracted considerable re-
search, mainly due to the popularity of search engine ad-
vertisements. Feng et al. [6] compare the ad-placement
strategies of different search engines. Richardson et al. [11]
tackle the problem of predicting the click-through rates for
rarely clicked ads and Clarke et al. [2] examine the influ-
ence of caption features on click-through rates of the ads.
Mehta et al. [10] propose a placement of ads that also con-
siders the budget limits of each bidder and the bid amount of
ads, formulating the problem as an online bipartite match-
ing problem. All of these efforts ignore the mutual influence
between ads induced by the user browsing patterns.

Craswell et al. [3] empirically evaluated different models
of user search result browsing to analyze the positional bias
of click-through rates. They found that the cascade model—
a model assuming linear traversal through the results ending
with a clicked result—predicts the observed bias accurately.
We adapt this model with extensions for our work.

3. PROBLEM SETUP
Our aim is to rank the ads to maximize expected profit.

The ranked placement of ads is denoted as an ordered set A,
A = 〈a1, a2, .., an〉, where the subscripts denote the position
of ai in the ranked list starting from the highest ranked
result first. The profit of ad ai is denoted by $(ai).

We use the basic cascade browsing model suggested by
Craswell et al. [3] augmented by two extensions. In the
basic cascade model the user views search results from top to
bottom, deciding whether to click each result before moving
to the next. Each ad ai in the ranked list, is either clicked
with probability equal to its relevance R(ai) or skipped with
probability (1−R(ai)). A user who clicks an ad never comes
back, and a user who skips always continues. Clicking on a
result means the user must have skipped the results above
and decided to click on the result. That is, in this model,
probability of clicking ai (Pc(ai)) is,

Pc(ai) = R(ai)

i−1∏
j=1

(1−R(aj)) (1)

The static distribution of rapidly decreasing view probabil-
ities in eye tracking studies [5], and the dynamic behavior
of eye fixations gradually disseminating down the search re-
sults [4] are direct implications of cascade model.

Three unrealistic assumptions in this model, as partly ac-
knowledged by Craswell et al. [3] are:

A1. The user keeps going down until he clicks a result. (In
reality, user may abandon checking the search results
without finding the required results.)

A2. The click probability of an ad is dependent only on
its position and is independent of the ads above it.

(In reality, the presence of similar ads in the higher
position reduces the click probability.)

A3. The user will always click only one document. (In
reality, multiple clicks are commonly observed in ads
and search.)

We base our analysis on a model that relaxes all three as-
sumptions. To relax A1, we allow for the user abandoning
search without finding a relevant result. The abandonment
probability, γ(ai), is modeled as a function of the result ai

at the position. Incorporating this probability, Equation 1
changes as,

Pc(ai) = R(ai)

i−1∏
j=1

[
1−

(
R(ai) + γ(ai)

)]
(2)

Since the abandonment probability and number of ads clicked
may vary depending on the nature of the application, we
make no assumptions about the nature of the function γ(ai)
or the number of selections in deriving the proposed ranking
strategy.2

To relax A2, we generalize the relevance function R(ai)
to include the mutual influence of similar ads on relevance.
The relevance of an ad for the user is reduced by a similar ad
placed above in the list, and this reduced residual relevance
is denoted by Rr. Residual relevance depends on the set
of results higher in the ranked list. Formally, the residual
relevance Rr(ai|〈a1, a2, .., ai−1〉) is the probability of user
clicking ai, after seeing ai and all the ads above ai. Sub-
stituting residual relevance Rr for relevance function R in
Equation 2 gives us context dependent click probabilities.
For brevity we denote Rr(ai|〈a1, a2, .., ai−1〉) by Rr(ai) in
the rest of this paper.

Using the residual relevance we can rewrite click proba-
bility Pc as

Pc(ai) = Rr(ai)

i−1∏
j=1

[
1−

(
Rr(ai) + γ(ai)

)]
(3)

Regarding A3, though we derive our initial ranking model
assuming single click, we prove that the proposed ranking is
also optimal for multiple clicks.

The user model may be schematically represented as a
flow graph as shown in Figure 1. Labels on the edges refer to
the probability of the user traversing them. Each vertex in
the figure corresponds to a view epoch (see below), and the
flow balance holds at each vertex. Starting from the top ad,
the probability of the user clicking the first ad is R(a1) and
probability of him abandoning browsing is γ(a1). The user
goes beyond the first ad with probability 1−(R(a1)+γ(a1))
and so on for the subsequent results.

4. OPTIMAL AD RANKING
Using the notations introduced, we formally define the

ranking problem and derive optimal ranking in this section.
The formal problem statement is,

Choose the optimal ranking Aopt = 〈a1, a2, .., aN 〉 of N

2Other than the assumption that the probability of user
leaving the search results at a position is independent of the
results above.
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Figure 1: Flow Graph for user browsing the first
two ads. The labels are the view probabilities and
ai denotes the ad at the ith position

ads to maximize the expected profit

E($) =

N∑
i=1

$(ai)Pc(ai) (4)

where N is the total number of ads to be ranked.
Substituting click probability Pc from Equation 2 in Equa-

tion 4 we get,

E($) =

N∑
i=1

$(ai)Rr(ai)

i−1∏
j=1

[1− (Rr(ai) + γ(ai))] (5)

Note that we use residual relevance Rr here instead of ab-
solute relevance R.

Now we consider the optimal ranking of ads to maximize
the objective function in Equation 5. Unfortunately, optimal
ranking considering residual relevance turns out to be NP-
Hard as proved below.

Theorem 1. Ranking to optimize expected profit in Equa-
tion 5 considering inter-ad similarities is NP-Hard.

The proof is by reduction from the independent set prob-
lem. See Appendix A-1 for complete proof.

We now focus on optimal placement ignoring similarity.
Replacing Rr by R, Equation 5 becomes,

E($) =

N∑
i=1

$(ai)R(ai)

i−1∏
j=1

[1− (R(ai) + γ(ai))] (6)

The optimal ranking maximizing this expected profit can
be shown to be a sorting problem with a special ranking
function:

Theorem 2. The expected profit in Equation 6 is maxi-
mum if the ads are placed in descending order of the value
of the ranking function RF ,

RF (ai) =
$(ai)R(ai)

R(ai) + γ(ai)
(7)

Proof Sketch: The proof is by induction on the number of
ads in the set of ads to be ranked. We consider two place-
ments P1 and P2, where P1 is the placement according to the
proposed strategy and P2 is a competing placement. We for-
mulate the difference of expected profit of P2 from expected
profit of P1 as (E($(P1)) − E($(P2))). We show that this
difference is always greater than or equal to zero, based on

inductive hypothesis and on the fact that P1 is ordered in
descending order of RF . See Appendix A-2 for complete
proof.2
RF can be understood as the profit generated per unit

click probability consumed by the ad. Referring to Figure 1,
this ordering is intuitive since the top ads in the ranked list
have more view probabilities, and placing ads with higher
profit per consumed view probability is likely to increase
profit.

The expected profit in Theorem 2 considers ranking for
single click case, and Theorem 3 extends the results to mul-
tiple clicks.

Theorem 3. The expected profit is maximum even for
multiple clicks if the ads are placed in descending order of
value of RF as proposed in Theorem 2.

Proof Sketch: We proved that ordering according to RF
provides maximum expected profit for single click. Multiple
clicks are the same as the user restarting her browsing from
the result immediately below the last clicked ad. A simple
induction on number of clicks based on this idea, using single
click as base case, is sufficient to prove that the proposed
placement provides maximum expected profit for multiple
clicks. See Appendix A-3 for the complete proof.2

Mining the parameters for RF: Since the existing ad
ranking strategies already have to mine the ad relevance, the
only additional parameter needed to implement RF is the
abandonment probability γ(ai). These can be mined from
click logs, similar to click through rates [11]. For example,
assuming a single click model, the abandonment probability
of the first ad a1 is,

γ(a1) = 1−
[
OCP2(a2)

R(a2)
+R(a1)

]
where OCP2(a2) is the observed click probability on a2 when
a2 is displayed in the second position, i.e. if the ad a is
displayed 100 times in the second position and is clicked 5
times, OCP2(a) is 5

100
. As the computation progresses, the

abandonment probabilities will converge to unique values ir-
respective of the position used to compute OCP . Similarly,
the abandonment probabilities of the ads in the lower posi-
tions can be mined once we know the abandonment probabil-
ities and relevance of the ads above. Initially, the abandon-
ment probabilities can be calculated for all the ads placed
in the top positions. The ads in the positions below can be
used to mine probabilities—knowing abandon probabilities
of ads above—as computation progresses.

5. ANALYZING EXISTING STRATEGIES
In this section we compare the existing ad placement strate-

gies to the ranking function RF in Equation 7. We will see
that they all correspond to specific assumptions on the aban-
donment probability γ(ai).

Special Case 1: Ranking by Bid Amount: If we assume
that the user never abandons browsing (i.e., ∀iγ(ai) = 0),
then Equation 7 reduces to RF (ai) = $(ai)

This means that the ads are ranked purely in terms of
their bid amount, a strategy that was attributed to Yahoo!
(and Overture) until last year.

When γ(ai) = 0, we essentially have a user with infinite
patience and will keep browsing downwards until he finds the



relevant ad. So, to maximize profit, it makes perfect sense
to rank ads by bid amount. More generally, for small aban-
donment probabilities, ranking by bid amount (the erstwhile
Yahoo! placement) is near optimal.

Special Case 2: Ranking by Expected Bid Amount:
Another approximation to γ(ai) is to assume that it is neg-
atively proportional to the relevance of the ad ai–the more
relevant the current result, the less likely the user is to aban-
don the search. Specifically, if we have ∀iγ(ai) ≈ k − R(ai)
(for some constant k between 0 and 1), then the Equation 7
reduces to,

RF (ai) ≈
$(ai)R(ai)

k
∝ $(ai)R(ai)

This shows that ranking ads by their individual expected
profit, as is supposedly done by Google and Microsoft, is
near optimal as long as abandonment probability is nega-
tively proportional to the relevance.

6. SIMULATION STUDIES
The discussion in the previous section shows that the ex-

isting ad placement strategies are optimal only under more
restrictive assumptions on the abandonment probabilities.
This suggests that the revenues (and profits) may be im-
proved by ranking using RF . To quantify the potential in-
creases in expected profits offered by RF , we performed a
large number of simulation runs comparing it with the other
two existing strategies. In our experiments we assigned the
relevance values as a uniform random number between 0 and
α (0 ≤ α ≤ 1) and values of abandonment probabilities as
uniform random between 0 and 1 − α (This will make sure
that ∀i

(
R(ai) + γ(ai)

)
≤ 1). The profits (bid amounts)

for ads are assigned uniformly random between $0 and $10.
Note that uniform random distribution is the maximum en-
tropy probability distribution and makes least assumptions
about the distribution of bid amounts. The number of rele-
vant ads (corresponding to the number of bids on a query) is
set to 50. Simulated users are made to click between 1− 10
ads. We performed the simulation for multiple clicks. The
number of ads clicked is set as a random number generated
in a zipf distribution with exponent 1.5, with ranks increas-
ing from 1 to 10. This is reasonable since a power law is
most intuitive for the distribution of the number of clicks.

Simulated users browse down the list. Users click an ad
with probability equal to the relevance of the ad and aban-
don search with a probability equal to the abandonment
probability of the ad. The set of ads to be placed is created
at random for each run. For the same set of ads, three runs—
one with each placement strategy—are performed. For each
value of α, 200,000 rounds with each placement strategy are
executed.

The results for the three strategies are shown in Figure 2.
We see that the proposed strategy (RF ) is the winner for all
values of α. Ranking by profit strategy loses for low values
of α and reaches the optimal value for large values of α, as
discussed in Section 5. Note that for α = 1 (γ(ai) = 0)
ranking by profit placement gives exactly the same profit
as the optimal placement. The profit from RF exceeds the
profit from competing strategy by 40− 50% for some values
of α. For example for α = 0.3 Profit × Relevance (com-
peting strategy) gives an expected profit of $5.36 while RF
gives a profit of $7.81 (exceeds by 45.7%) and for α = 0.4
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Figure 2: Comparison of proposed placement (RF )
with the existing ad placement strategies. Each
point corresponds to 2 × 105 simulation runs. Rel-
evances are uniformly random in [0, α] and aban-
donment probabilities are a uniformly random in
[0, 1− α].

Profit×Relevance gives a profit of $7.47, as against $10.15
by RF (exceeds by 35.9%). This is highly significant for a
multi billion dollar market and millions of users.

7. CONCLUSION
This paper addresses the problem of the optimal ranking

of ads considering (i) relevance of ads (ii) reduction of click
probability of ads due to the other relevant ads above (iii)
abandonment of search due to user impatience (iv) reduc-
tion of click probability due to similar ads above. We prove
that optimal ranking considering the inter-ad similarity (iv)
is NP-Hard. Further, we propose an optimal and tractable
ad placement strategy considering the other factors—factors
(i), (ii), and (iii). We prove optimality of the expected profit
from the proposed placement strategy. We compare the ex-
isting placement strategies to the proposed strategy and enu-
merate the assumptions under which the existing strategies
are optimal. A simulation study verifies our results and gives
an idea of the amount by which the proposed strategy can
outperform the existing ones.

In future, we hope to investigate approximation schemes
for considering inter-ad similarity. We are also exploring the
possibility of validating the ranking model on actual search
ad data. Another interesting direction would be to general-
ize our analysis to consider the advertiser budget limits (c.f.
[10]). Finally, although we focused on ad placement, the
ranking can be extended to other related e-commerce scenar-
ios such as vendor recommendations (e.g. Amazon’s product
recommendations), and search results in e-commerce por-
tals.

Acknowledgements: This research is supported in part by
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APPENDIX
A-1 Proof of Theorem 1

Proof. Independent set problem can be formulated as a
ranking problem considering similarities. Consider an un-
weighed graph G of n vertices {a1, a2, ..an} represented as
an adjacency matrix with a value 1 in forward diagonal.
This conversion is clearly polynomial time. Now, consider
the values in the adjacency matrix as binary similarity val-
ues between the ads to be ranked. Let the ads have the
same relevance, profitability and abandonment probability.
In this set of n ads from {a1, a2, .., an}, the optimal ranking
will have k pairwise independent ads as the top k ads. But
the set of k independent ads corresponds to an independent
set in graph G.

A-2 Proof of Theorem 2
Proof. Induction on number of ads in the set to be

ranked.
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Figure 3: Two ad-placement, P1 optimal for n+1 ads
according to the proposed strategy, and P2 maximal
profit ordering based on inductive hypothesis and
the (n + 1)th newly added ad al out of order. diff1
is decrease in profit due to change in position of al

downwards, and diff2 is increase in in profit due to
raise in position of ads—au to a(n+1)—by one in P2.

Base Case: single ad, ordering does not matter, true.
Inductive Hypothesis: The profit for a set of n ads is max-

imized if they are are ordered in the proposed order.
Induction: For a set of n+ 1 ads, Consider two sequences

of placements

P1 = 〈a1, a2, .., an+1〉
P2 = 〈a′1, a′2, a′n+1〉

Let P1 be the placement in proposed order and P2 be the
placement out of order. We have to prove E($1) ≥ E($2)
where E($1) and E($2) are expected profits from P1 and P2

respectively.
Since P1 is in the proposed order, RF (an+1) ≤ ∀iRF (ai).

As our proof is to handle the worst case scenario, we have
to prove the hypothesis for the maximum value of E($2).
Inductive hypothesis says that the profit is maximum for
the set of size n if they are in descending order of RF . So
for a worst case scenario we assume that the n ads in P2 are
in order of descending RF , and (n+1)th out of order. Since
we are having the same set of ads in P1 and P2 we name
them using the position in P1. This placement is shown in
Figure 3. Here P1 and P2 are same except for the fact that
au is present in the last position in P2. instead of at the uth

position in P1. The entire set of ads au+1 to an+1 in P1 is
shifted up by one position in P2. So we need to prove that
the reduction in profit due to change in position in au (which
is denoted by diff1 in Figure 3) is greater than increase in
profit due to lifting of one position for au+1 to an+1 (diff2

in Figure 3). Note that the profit generated by a1 to au−1

is exactly same for P1 and P2.
We have to prove diff1 ≥ diff2. Let us denote the expected

profit of an ad ai (or a group of ads) from P1 as $1(ai) and
expected profit from P2 by $2(ai).

$1(au) = R(au)$(au)

u−1∏
i=1

[
1−

(
R(ai) + γ(ai)

)]
$2(au) = R(au)$(au)

∏n+1
i=1

[
1−

(
R(ai) + γ(ai)

)]
1−

(
R(au) + γ(au)

)
(Denominator accounts for the absence of au)



diff1 = $1(au)− $2(au)

Substituting by values of $1(au) and $2(au),

= R(au)$(au)

[
u−1∏
i=1

[
1−

(
R(ai) + γ(ai)

)]
−

∏n+1
i=1

[
1− (R(ai) + γ(ai))

]
1−

(
R(au) + γ(au)

) ]
Taking the common factor outside,

= R(au)$(au)

u−1∏
i=1

[
1−

(
R(ai) + γ(ai)

)]
×[

1−
n+1∏

i=u+1

[
1−

(
R(ai) + γ(ai)

)]]
(A-1)(

Note:

∏n
i=u

[
1−

(
R(ai) + γ(ai)

)]
1−

(
R(au) + γ(au)

)
=

n+1∏
i=u+1

[
1−

(
R(ai) + γ(ai)

)])
Let S be sequence of ads from au+1 to an+1

$1(S) =

n+1∑
i=u+1

R(ai)$(ai)

i−1∏
j=1

[
1−

(
R(ai) + γ(ai)

)]
$2(S) =

∑n+1
i=u+1R(ai)$(ai)

∏i−1
j=1

[
1−

(
R(ai) + γ(ai)

)]
1−

(
R(au) + γ(au)

)
diff2 = $2(S)− $1(S)

diff2 =

n+1∑
i=u+1

R(ai)$(ai)

i−1∏
j=1

[
1−

(
R(aj) + γ(aj)

)]
×

[
1

1−
(
R(au) + γ(au)

) − 1

]
(A-2)

Dividing diff1-diff2 by common factor, Let

∆ =
diff1 − diff2∏u−1

i=1

[
1−

(
R(ai) + γ(ai)

)]
∆ = R(au)$(au)

[
1−

n+1∏
i=u+1

[
1−

(
R(ai) + γ(ai)

)]]
−

{
n+1∑

i=u+1

R(ai)$(ai)

i−1∏
j=u

[
1−

(
R(aj) + γ(aj)

)]
×

[
1

1−
(
R(au) + γ(au)

) − 1

]}
We have to prove ∆ > 0

Simplifying and dividing by R(au) + γ(au)

r∆ =
R(au)$(au)

R(au) + γ(au)

[
1−

n+1∏
i=u+1

[
1−

(
R(ai) + γ(ai)

)]]
−

{
n+1∑

i=u+1

R(ai)$(ai)

i−1∏
j=u+1

[
1−

(
R(aj) + γ(aj)

)]}
(A-3)

Since au+1 to an+1 is placed below au in P1,

∀n+1
i=u+1

R(ai)$(ai)

R(ai) + γ(ai)
≤ R(au)$(au)

R(au) + γ(au)

⇒ ∀n+1
i=u+1R(ai)$(ai)

≤ R(au)$(au)

R(au) + γ(au)

(
R(ai) + γ(ai)

)
(A-4)

Note that the value of r∆ in A-3 is strictly decreasing with
value of $(ai)R(ai) factor in second term. Using the con-
dition in constraint A-4 for $(ai)R(ai) in second term of
Equation A-3 we get,

r∆ ≥ R(au)$(au)

R(au) + γ(au)

[
1−

n+1∏
i=u+1

[
1−

(
R(ai) + γ(ai)

)]]
−

{
n+1∑

i=u+1

R(au)$(au)

R(au) + γ(au)

(
R(ai) + γ(ai)

)
i−1∏

j=u+1

[
1−

(
R(aj) + γ(aj)

)]}
Canceling Common Factor from RHS,

1−
n+1∏

i=u+1

[
1−

(
R(ai) + γ(ai)

)]
−

n+1∑
i=u+1

(
R(ai) + γ(ai)

) i−1∏
j=u+1

[
1−

(
R(aj) + γ(aj)

)]
For the above function, substitute the values

ri = 1−
(
R(au+i) + γ(au+i)

)
Now, RHS is,

RHS = 1− (r1.r2....rn)− [(1− r1) + (1− r2).r1 +

(1− r3).r1.r2 + ...+ (1− rn).r1.r2.rn−1]

= 1− (r1.r2....rn) + [(1− r1) + (r1 − r1.r2) +

(r1.r2 − r1r2r3) + ...

+r1.r2..rn−1 − r1.r2..rn−1.rn]

Terms will cancel out and this function will be 0 on simpli-
fication, irrespective of the values of the ris. This means

r∆ ≥ 0

i.e the difference E($1) − E($2) ≥ 0. This completes the
induction.

A-3 Proof of Theorem 3
Proof. Induction on number of clicks.
Base Case: Single click, proved in Theorem 2.
Inductive Hypothesis: True for n clicks.
For n+1th click, user starts browsing down at the position

next to the nth clicked ad. let nth clicked ad be ac. Since
there is only one click remaining, optimal ordering of ads is
in the descending order of RF by base case. But we know
that the ads above ac+1 (a1 to ac) are no longer relevant to
the user since he has seen them already. Since the relevance
values of these ads are zero now (hence RF s of these ads are
also zero), the optimal order is to remove the ads from a1 to
ac and reorder the remaining ads in descending order of RF .
Since the relevance and abandonment probabilities of these
ads—ads except a1 to ac—remain unchanged, the resulting
optimal sequence will be the sub-sequence of original ranking
starting from ac to the end of the list, which is exactly the
sequence the user traverses in original ranked list after nth

click on ac i.e. the original ranked list is optimal for n + 1
clicks.


