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ABSTRACT
Plan recognition aims to discover target plans (i.e., sequences of
actions) behind observed actions, with history plan libraries or do-
main models in hand. Previous approaches either discover plans by
maximally “matching” observed actions to plan libraries, assum-
ing target plans are from plan libraries, or infer plans by execut-
ing domain models to best explain the observed actions, assuming
complete domain models are available. In real world applications,
however, target plans are often not from plan libraries and com-
plete domain models are often not available, since building com-
plete sets of plans and complete domain models are often difficult
or expensive. In this paper we view plan libraries as corpora and
learn vector representations of actions using the corpora; we then
discover target plans based on the vector representations. Our ap-
proach is capable of discovering underlying plans that are not from
plan libraries, without requiring domain models provided. We em-
pirically demonstrate the effectiveness of our approach by compar-
ing its performance to traditional plan recognition approaches in
three planning domains.

1. INTRODUCTION
As computer-aided cooperative work scenarios become increas-

ingly popular, human-in-the-loop planning and decision support
has become a critical planning chellenge (c.f. [5, 6, 17]). An im-
portant aspect of such a support [13] is recognizing what plans the
human in the loop is making, and provide appropriate suggestions
about their next actions [1]. Although there is a lot of work on plan
recognition, much of it has traditionally depended on the availabil-
ity of a complete domain model [21, 31]. As has been argued else-
where [13], such models are hard to get in human-in-the-loop plan-
ning scenarios. Here, the decision support systems have to make
themselves useful without insisting on complete action models of
the domain. The situation here is akin to that faced by search en-
gines and other tools for computer supported cooperate work, and
is thus a significant departure for the “planning as pure inference”
mindset of the automated planning community. As such, the prob-
lem calls for plan recognition with “shallow” models of the domain
(c.f. [11]), that can be easily learned automatically.

There has been very little work on learning such shallow models
to support human-in-the-loop planning. Some examples include
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the work on Woogle system [6] that aimed to provide support to
humans in web-service composition. That work however relied on
very primitive understanding of the actions (web services in their
case) that consisted merely of learning the input/output types of
individual services.

In this paper, we focus on learning more informative models that
can help recognize the plans under construction by the humans, and
provide active support by suggesting relevant actions. To drive this
process, we need to learn shallow models of the domain. We pro-
pose to adapt the recent successes of word-vector models [18] in
language to our problem. Specifically, we assume that we have ac-
cess to a corpus of previous plans that the human user has made.
Viewing these plans as made up of action words, we learn word
vector models for these actions. These models provide us a way to
induce the distribution over the identity of each unobserved action.
Given the distributions over individual unobserved actions, we use
an expectation-maximization approach to infer the joint distribu-
tion over all unobserved actions. This distribution then forms the
basis for action suggestions.

We will present the details of our approach, and will also em-
pirically demonstrate that it does capture a surprising amount of
structure in the observed plan sequences, leading to effective plan
recognition. We further compare its performance to traditional plan
recognition techniques, including one that uses the same plan traces
to learn the STRIPS-style action models, and use the learned model
to support plan recognition.

2. PROBLEM DEFINITION
A plan library, denoted by L, is composed of a set of plans {p},

where p is a sequence of actions, i.e., p = ha1, a2, . . . , an

i where
a

i

, 1  i  n, is an action name (without any parameter) repre-
sented by a string. For example, a string unstack-A-B is an action
meaning that a robot unstacks block A from block B. We denote
the set of all possible actions by ¯A which is assumed to be known
beforehand. For ease of presentation, we assume that there is an
empty action, �, indicating an unknown or not observed action, i.e.,
A =

¯A [ {�}. An observation of an unknown plan p̃ is denoted
by O = ho1, o2, . . . , oM i, where o

i

2 A, 1  i  M , is either
an action in ¯A or an empty action � indicating the corresponding
action is missing or not observed. Note that p̃ is not necessarily in
the plan library L, which makes the plan recognition problem more
challenging, since matching the observation to the plan library will
not work any more.

We assume that the human is making a plan of at most length
M . We also assume that at any given point, the planner is able to
observe M � k of these actions. The k unobserved actions might
either be in the suffiix (i.e., yet to be formed part) of the plan, or in
the middle (due to observational gaps). Our aim is to suggest, for
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each of the k unobserved actions, m possible choices–from which
the user can select the action. (Note that we would like to keep m

small, ideally close to 1, so as not to overwhelm the user). Accord-
ingly, we will evaluate the effectiveness of the decision support in
terms of whether or not the user’s best/intended action is within the
suggested m actions.

Specifically, our recognition problem can be represented by a
triple < = (L,O,A). The solution to < is to discover the unknown
plan p̃ that best explains O given L and A. An example of our plan
recognition problem in the blocks1 domain is shown below.

Example: A plan library L in the blocks domain is assumed to
have four plans as shown below:

plan 1: pick-up-B stack-B-A pick-up-D stack-D-C
plan 2: unstack-B-A put-down-B unstack-D-C put-down-D
plan 3: pick-up-B stack-B-A pick-up-C stack-C-B pick-up-D
stack-D-C
plan 4: unstack-D-C put-down-D unstack-C-B put-down-C
unstack-B-A put-down-B

An observation O of action sequence is shown below:

observation: pick-up-B � unstack-D-C put-down-D � stack-C-
B � �

Given the above input, our DUP algorithm outputs plans as follows:

pick-up-B stack-B-A unstack-D-C put-down-D pick-up-C stack-
C-B pick-up-D stack-D-C

Although the “plan completion” problem seems to differ super-
ficially from the traditional “plan recognition” problem, we point
out that many earlier works on plan recognition do in fact evaluate
their recognition algorithms in terms of completion tasks, e.g., [22,
28, 31]. While these earlier efforts use different problem settings,
taking either a plan library or action models as input, they share
one common characteristic: they all aim to look for a plan that can
best explain (or complete) the observed actions. This is exactly the
same as our problem we aim to solve.

3. OUR DUP ALGORITHM
Our DUP approach to the recognition problem < functions by

two phases. We first learn vector representations of actions using
the plan library L. We then iteratively sample actions for unob-
served actions o

i

by maximizing the probability of the unknown
plan p̃ via the EM framework. We present DUP in detail in the
following subsections.

3.1 Learning Vector Representations of Actions
Since actions are denoted by a name string, actions can be viewed

as words, and a plan can be viewed as a sentence. Furthermore, the
plan library L can be seen as a corpus, and the set of all possible
actions A is the vocabulary. We thus can learn the vector repre-
sentations for actions using the Skip-gram model with hierarchical
softmax, which has been shown an efficient method for learning
high-quality vector representations of words from unstructured cor-
pora [18].

The objective of the Skip-gram model is to learn vector repre-
sentations for predicting the surrounding words in a sentence or
document. Given a corpus C, composed of a sequence of training
words hw1, w2, . . . , wT

i, where T = |C|, the Skip-gram model
maximizes the average log probability

1

T

T

X

t=1

X

�cjc,j 6=0

log p(w

t+j

|w
t

) (1)

1http://www.cs.toronto.edu/aips2000/

where c is the size of the training window or context.
The basic probability p(w

t+j

|w
t

) is defined by the hierarchical
softmax, which uses a binary tree representation of the output layer
with the K words as its leaves and for each node, explicitly repre-
sents the relative probabilities of its child nodes [18]. For each leaf
node, there is an unique path from the root to the node, and this
path is used to estimate the probability of the word represented by
the leaf node. There are no explicit output vector representations
for words. Instead, each inner node has an output vector v0

n(w,j),
and the probability of a word being the output word is defined by

p(w

t+j

|w
t

) =

L(w
t+j

)�1
Y

i=1

n

�(I(n(w
t+j

, i+ 1) =
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t+j

, i))) · v
n(w

t+j

,i) · vw
t

)

o

, (2)

where

�(x) = 1/(1 + exp(�x)).

L(w) is the length from the root to the word w in the binary tree,
e.g., L(w) = 4 if there are four nodes from the root to w. n(w, i)

is the ith node from the root to w, e.g., n(w, 1) = root and
n(w,L(w)) = w. child(n) is a fixed child (e.g., left child) of
node n. v

n

is the vector representation of the inner node n. v
w

t

is
the input vector representation of word w

t

. The identity function
I(x) is 1 if x is true; otherwise it is -1.

We can thus build vector representations of actions by maximiz-
ing Equation (1) with corpora or plan libraries L as input. We will
exploit the vector representations to discover the unknown plan p̃

in the next subsection.

3.2 Maximizing Probability of Unknown Plans
With the vector representations learnt in the last subsection, a

straightforward way to discover the unknown plan p̃ is to explore
all possible actions in ¯A such that p̃ has the highest probability,
which can be defined similar to Equation (1), i.e.,

F(p̃) =

M

X

k=1

X

�cjc,j 6=0

log p(w

k+j

|w
k

) (3)

where w

k

denotes the kth action of p̃ and M is the length of p̃. As
we can see, this approach is exponentially hard with respect to the
size of ¯A and number of unobserved actions. We thus design an ap-
proximate approach in the Expectation-Maximization framework
to estimate an unknown plan p̃ that best explains the observation
O.

To do this, we introduce new parameters to capture “weights” of
values for each unobserved action. Specifically speaking, assuming
there are X unobserved actions in O, i.e., the number of �s in O is
X , we denote these unobserved actions by ā1, ..., āx

, ..., ā

X

, where
the indices indicate the order they appear in O. Note that each ā

x

can be any action in ¯A. We associate each possible value of ā

x

with a weight, denoted by ¯

�

ā

x

,x

. ¯� is a | ¯A|⇥X matrix, satisfying
X

o2Ā

¯

�

o,x

= 1,

where ¯

�

o,x

� 0 for each x. For the ease of specification, we extend
¯

� to a bigger matrix with a size of | ¯A| ⇥ M , denoted by �, such
that �

o,y

=

¯

�

o,x

if y is the index of the xth unobserved action
in O, for all o 2 ¯A; otherwise, �

o,y

= 1 and �

o

0
,y

= 0 for all
o

0 2 ¯A ^ o

0 6= o. Our intuition is to estimate the unknown plan
p̃ by selecting actions with the highest weights. We thus introduce



the weights to Equation (2), as shown below,

p(w
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where a = �

w

k+j

,k+j

and b = �

w

k

,k

. We can see that the impact
of w

k+j

and w

k

is penalized by weights a and b if they are unob-
served actions, and stays unchanged, otherwise (since both a and b

equal to 1 if they are observed actions). We redefine the objective
function as shown below,

F(p̃,�) =

M

X

k=1

X

�cjc,j 6=0

log p(w

k+j

|w
k

), (5)

where p(w

k+j

|w
k

) is defined by Equation (4). The only parame-
ters needed to be updated are �, which can be easily done by gra-
dient descent, as shown below,

�

o,x

= �

o,x

+ �

@F
@�

o,x

, (6)

if x is the index of unobserved action in O; otherwise, �
o,x

stays
unchanged, i.e., �

o,x

= 1. Note that � is a learning constant.
With Equation (6), we can design an EM algorithm by repeatedly

sampling an unknown plan according to � and updating � based on
Equation (6) until reaching convergence (e.g., a constant number of
repetitions is reached).

An overview of our DUP algorithm is shown in Algorithm 1. In
Step 2 of Algorithm 1, we initialize �

o,k

= 1/M for all o 2 ¯A, if
k is an index of unobserved actions in O; and otherwise, �

o,k

= 1

and �

o

0
,k

= 0 for all o0 2 ¯A ^ o

0 6= o. In Step 4, we view �·,k as
a probability distribution, and sample an action from ¯A based on
�·,k if k is an unobserved action index in O. In Step 5, we only
update �·,k where k is an unobserved action index. In Step 6, we
linearly project all elements of the updated � to between 0 and 1,
such that we can do sampling directly based on � in Step 4. In Step
8, we simply select ā

x

based on

ā

x

= argmax

o2Ā
�

o,x

,

for all unobserved action index x.

Algorithm 1 Framework of our DUP algorithm
Input: plan library L, observed actions O
Output: plan p̃

1: learn vector representation of actions
2: initialize �

o,k

with 1/M for all o 2 ¯A, when k is an unob-
served action index

3: while the maximal number of repetitions is not reached do
4: sample unobserved actions in O based on �

5: update � based on Equation (6)
6: project � to [0,1]
7: end while
8: select actions for unobserved actions with the largest weights

in �

9: return p̃

Our DUP algorithm framework belongs to a family of policy gra-
dient algorithms, which have been successfully applied to complex
problems, e.g., robot control [19], natural language processing [3].
Our formulation is unique in how it recognizes plans, in compari-
son to the existing methods in the planning community.

Note that our current study shows that even direct application of
word vector learning methods provide competitive performance for
plan completion tasks. We believe we can further improve the per-
formance by using the planning specific structural information in
the EM phase. In other words, if we are provided with additional
planning structural information as input, we can exploit the struc-
tural information to filter candidate plans to be recognized in the
EM procedure.

4. EXPERIMENTS
In this section, we evaluate our DUP algorithms in three planning

domains from International Planning Competition, i.e., blocks1,
depots2, and driverlog2. To generate training and testing data, we
randomly created 5000 planning problems for each domain, and
solved these planning problems with a planning solver, such as FF3,
to produce 5000 plans. We then randomly divided the plans into ten
folds, with 500 plans in each fold. We ran our DUP algorithm ten
times to calculate an average of accuracies, each time with one fold
for testing and the rest for training. In the testing data, we randomly
removed actions from each testing plan (i.e., O) with a specific per-
centage ⇠ of the plan length. Features of datasets are shown in Table
1, where the second column is the number of plans generated, the
third column is the total number of words (or actions) of all plans,
and the last column is the size of vocabulary used in all plans.

Table 1: Features of datasets
domain #plan #word #vocabulary
blocks 5000 292250 1250
depots 5000 209711 2273
driverlog 5000 179621 1441

We define the accuracy of our DUP algorithm as follows. For
each unobserved action ā

x

DUP suggests a set of possible actions
S

x

which have the highest value of �
ā

x

,x

for all ā
x

2 ¯A. If S
x

covers the truth action a

truth

, i.e., a
truth

2 S

x

, we increase the
number of correct suggestions g by 1. We thus define the accuracy
acc as shown below:

acc =

1

T

T

X

i=1

#hcorrect-suggestionsi
i

K

i

,

where T is the size of testing set, #hcorrect-suggestionsi
i

is
the number of correct suggestions for the ith testing plan, K

i

is
the number of unobserved actions in the ith testing plan. We can
see that the accuracy acc may be influenced by S

x

. We will test
different size of S

x

in the experiment.
State-of-the-art plan recognition approaches with plan libraries

as input aim at finding a plan from plan libraries to best explain
the observed actions [9], which we denote by MatchPlan. We
develop a MatchPlan system based on the idea of [9] and com-
pare our DUP algorithm to MatchPlan with respect to different
percentage of unobserved actions ⇠ and different size of suggestion
set S

x

. Another baseline is action-models based plan recognition
approach [22] (denoted by PRP, short for Plan Recognition as Plan-
ning). Since we do not have action models as input in our DUP al-
gorithm, we exploited the action model learning system ARMS [26]
to learn action models from the plan library and feed the action
models to the PRP approach. We call this hybrid plan recogni-
tion approach ARMS+PRP. To learn action models, ARMS requires
2http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-
html/JAIRIPC.html
3https://fai.cs.uni-saarland.de/hoffmann/ff.html
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Figure 1: Accuracies of DUP and ARMS+PRP with respect to different percentage of unobserved actions
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Figure 2: Accuracies of DUP and ARMS+PRP with respect to different size of recommendations

state information of plans as input. We thus added extra informa-
tion, i.e., initial state and goal of each plan in the plan library, to
ARMS+PRP. In addition, PRP requires as input a set of candidate
goals G for each plan to be recognized in the testing set, which
was also generated and fed to PRP when testing. In summary, the
hybrid plan recognition approach ARMS+PRP has more input in-
formation, i.e., initial states and goals in plan library and candidate
goals G for each testing example, than our DUP approach.

4.1 Comparison between DUP and ARMS+PRP

We first compare our DUP algorithm to ARMS+PRP to see the
advantage of DUP. We varied the percentage of unobserved actions
and the size of recommended actions to see the change of accura-

cies, respectively. The results are shown below.

4.1.1 Varying Percentage of Unobserved Actions
In this experiment we would like to see the change of accuracies

of both our DUP algorithm and ARMS+PRP with respect to ⇠ in O.
We set the window of training context c in Equation (1) to be three,
the number of iterations in Algorithm 1 to be 1500, the size of rec-
ommendations to be ten, and the learning constant � in Equation
(6) to be 0.1. For ARMS+PRP, we generated 20 candidate goals for
each testing example including the ground-truth goal which corre-
sponds to the ground-truth plan to be recognized. The results are
shown in Figure 1.

From Figure 1, we can see that in all three domains, the accu-



racy of our DUP algorithm is generally higher ARMS+PRP, which
verifies that our DUP algorithm can indeed capture relations among
actions better than the model-based approach ARMS+PRP. The ra-
tionale is that we explore global plan information from the plan
library to learn a “shallow” model (distributed representations of
actions) and use this model with global information to best explain
the observed actions. While ARMS+PRP tries to leverage global
plan information from the plan library to learn action models and
uses the models to recognize observed actions, it enforces itself
to extract “exact” models represented by planning models which
are often with noise. When feeding those noisy models to PRP,
since PRP that uses planning techniques to recognize plans is very
sensitive to noise of planning models, the recognition accuracy is
lower than DUP, even though ARMS+PRP has more input informa-
tion (i.e., initial states and candidate goals) than our DUP algorithm.

Looking at the changes of accuracies with respect to the percent-
age of unobserved actions, we can see that our DUP algorithm per-
forms fairly well even when the percentage of unobserved action
reaches 25%. In contrast, ARMS+PRP is sensitive to the percent-
age of unobserved actions, i.e., the accuracy goes down when more
actions are unobserved. This is because the noise of planning mod-
els induces more uncertain information, which harms the recogni-
tion accuracy, when the percentage of unobserved actions becomes
larger. Comparing accuracies of different domains, we can see that
our DUP algorithm functions better in the blocks domain than the
other two domains. This is because the ratio of #word over #vo-
cabulary in the blocks domain is much larger than the other two
domains, as shown in Table 1. We would conjecture that increas-
ing the ratio could improve the accuracy of DUP. From Figure 1 (as
well as Figure 3), we can see that it appears that the accuracy of
DUP is not affected by increasing percentages of unobserved ac-
tions. The rationale is (1) the percentage of unobserved actions is
low, less than 25%, i.e., there is at most one unobserved action over
four continuous actions; (2) the window size of context in DUP is
set to be 3, which ensures that DUP generally has ”stable” context
information to estimate the unobserved action when the percent-
age of unobserved actions is less than 25%, resulting in the stable
accuracy in Figure 1 (likewise for Figure 3).

4.1.2 Varying Size of Recommendation Set
We next evaluate the performance of our DUP algorithm with

respect to the size of recommendation set S
x

. We evaluate the in-
fluence of the recommendation set by varying the size from 1 to 10.
The size of recommendation set is much smaller than the complete
set. For example, the size of complete set in the blocks domain is
1250 (shown in Table 1). It is less than 1% even though we rec-
ommend 10 actions for each unobserved action. We set the context
window c used in Equation (1) to be three, the percentage of unob-
served actions to be 0.25, and the learning constant � in Equation
(6) to be 0.1. For ARMS+PRP, the number of candidate goals for
each testing example is set to 20. ARMS+PRP aims to recognize
plans that are optimal with respect to the cost of actions. We relax
ARMS+PRP to output |S

x

| optimal plans, some of which might be
suboptimal. The results are shown in Figure 2.

From Figure 2, we find that accuracies of the three approaches
generally become larger when the size of the recommended set in-
creases in all three domains. This is consistent with our intuition,
since the larger the recommended set is, the higher the possibility
for the truth action to be in the recommended set. We can also see
that the accuracy of our DUP algorithm are generally larger than
ARMS+PRP in all three domains, which verifies that our DUP al-
gorithm can indeed better capture relations among actions and thus
recognize unobserved actions better than the model-learning based

approach ARMS+PRP. The reason is similar to the one given for
Figure 1 in the previous section. That is, the “shallow” model learnt
by our DUP algorithm is better for recognizing plans than both the
“exact” planning model learnt by ARMS for recognizing plans with
planning techniques. Furthermore, the advantage of DUP becomes
even larger when the size of recommended action set increases,
which suggests our vector representation based learning approach
can better capture action relations when the size of recommended
action set is larger. The possibility of actions correctly recognized
by DUP becomes much larger than ARMS+PRP when the size of
recommendations increases.

4.2 Comparison between DUP and MatchPlan

In this experiment we compare DUP to MatchPlan which is
built based on the idea of [9]. Likewise we varied the percentage of
unobserved actions and the size of recommended actions to see the
change of accuracies of both algorithms. The results are exhibited
below.

4.2.1 Varying Percentage of Unobserved Actions
To compare our DUP algorithm with MatchPlan with respect

to different percentage of unobserved actions, we set the window of
training context c in Equation (1) of DUP to be three, the number of
iterations in Algorithm 1 to be 1500, the size of recommendations
to be ten, and the learning constant � in Equation (6) to be 0.1. To
make fair the comparison (with MatchPlan), we set the matching
window of MatchPlan to be three, the same as the training con-
text c of DUP, when searching plans from plan libraries L. In other
words, to estimate an unobserved action ā

x

in O, MatchPlan
matches previous three actions and subsequent three actions of ā

x

to plans in L, and recommends ten actions with the maximal num-
ber of matched actions, considering observed actions in the context
of ā

x

and actions in L as a successful matching. The results are
shown in Figure 3.

From Figure 3, we find that the accuracy of DUP is much bet-
ter than MatchPlan, which indicates that our DUP algorithm can
better learn knowledge from plan libraries than the local match-
ing approach MatchPlan. This is because we take advantage
of global plan information of the plan library when learning the
“shallow” model, i.e., distributed representations of actions, and
the model with global information can best explain the observed
actions. In contrast, MatchPlan just utilizes local plan informa-
tion when matching the observed actions to the plan library, which
results in lower accuracies. Looking at all three different domains,
we can see that both algorithms perform the best in the blocks do-
main. The reason is similar to the one provided in the last subsec-
tion (for Figure 1), i.e., the number of words over the number of
vocabulary in the blocks domain is relatively larger than the other
two domains, which gives us the hint that it is possible to improve
accuracies by increasing the ratio of the number of words over the
number of vocabularies.

4.2.2 Varying Size of Recommendation Set
Likewise, we also would like to evaluate the change of accuracies

when increasing the size of recommended actions. We used the
same experimental setting as done by previous subsection. That
is, we set the window of training context c of DUP to be three, the
learning constant � to be 0.1, the number of iterations in Algorithm
1 to be 1500, the matching window of MatchPlan to be three. In
addition, we fix the percentage of unobserved actions to be 0.25.
The results are shown in Figure 4.

We can observe that the accuracy of our DUP algorithm are gen-
erally larger than MatchPlan in all three domains in Figure 4,
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Figure 3: Accuracies of DUP and MatchPlan with respect to different percentage of unobserved actions
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Figure 4: Accuracies of DUP and MatchPlan with respect to different size of recommendations

which suggests that our DUP algorithm can indeed better capture re-
lations among actions and thus recognize unobserved actions better
than the matching approach MatchPlan. The reason behind this
is similar to previous experiments, i.e., the global information cap-
tured from plan libraries by DUP can indeed better improve accura-
cies than local information exploited by MatchPlan. In addition,
looking at the trends of the curves of both DUP and MatchPlan,
we can see the performance of DUP becomes much better than
MatchPlan when the size of recommendations increases. This
indicates the influence of global information becomes much larger
when the size of recommendations increasing. In other words,
larger size of recommendations provides better chance for “shal-
low” models learnt by DUP to perform better.

4.2.3 Varying Size of Training Set
To see the effect of size of training set, we ran both DUP and

MatchPlan with different size of training set. We used the same
setting as done by last subsection except fixing the size of recom-
mendations to be 10, when running both algorithms. We varied the
size of training set from 2500 to 4500. The results are shown in
Figure 5.

We observed that accuracies of both DUP and MatchPlan gen-
erally become higher when the size of training set increases. This
is consistent with our intuition, since the larger the size of training
set is, the richer the information is available for improving the ac-
curacies. Comparing the curves of DUP and MatchPlan, we can
see that DUP performs much better than MatchPlan. This further
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Figure 5: Accuracies of DUP and MatchPlan with respect to different size of training set

verifies the benefit of exploiting global information of plan libraries
when learning the shallow models as done by DUP.
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Figure 6: Accuracy with respect to different number of itera-
tions in the blocks domain

4.3 Accuracy w.r.t. Iterations
In the previous experiments, we set the number of iterations in

Algorithm 1 to be 1500. In this experiment, we would like to see the
influence of iterations of our DUP algorithm when running the EM-
style procedure. We changed the number of iterations from 300
to 3000 to see the trend of accuracy. We exhibit the experimental
result in the blocks domain (the results of the other two domains
are similar) in Figure 6.

From Figure 6, we can see the accuracy becomes higher at the
beginning and stays flat when reaching the size of 1500. This ex-
hibits that the EM procedure converges and has stable accuracies
after the iteration reaches 1500. Similar results can also be found
in the other two domains.

5. RELATED WORK
Our work is related to planning with incomplete domain models

(or model-lite planning [12, 29]). Figure 7 shows the schematic
view of incomplete models and their relationships in the spectrum
of incompleteness. In a full model, we know exactly the dynam-
ics of the model (i.e., state transitions). Approximate models are
the closest to full models and their representations are similar ex-
cept that there can be incomplete knowledge of action descriptions.
To enable approximate planners to perform more (e.g., providing
robust plans), planners are assumed to have access to additional
knowledge circumscribing the incompleteness [25]. Partial mod-
els are one level further down the line in terms of the degree of
incompleteness. While approximate models can encode incom-
pleteness in the precondition/effect descriptions of the individual
actions, partial models can completely abstract portions of a plan
without providing details for them. In such cases, even though
providing complete plans is infeasible, partial models can provide
“planning guidance” for agents [27]. Shallow models are essen-
tially just a step above having no planning model. They provide
interesting contrasts to the standard precondition and effect based
action models used in automated planning community. Our work
in this paper belongs to the class of shallow models. In develop-
ing shallow models, we are interested in planning technology that
helps humans develop plans, even in the absence of any structured
models or plan traces. In such cases, the best that we can hope for is
to learn local structures of the planning model to provide planning
support, similar to providing spell-check in writing. While some
work in web-service composition (c.f. [7]) did focus on this type
of planning support, they were hobbled by being limited to sim-
ple input/output type comparison. In contrast, we expect shallow
models to be useful in “critiquing” the plans being generated by
the humans (e.g. detecting that an action introduced by the human
is not consistent with the model), and “explaining/justifying” the
suggestions generated by humans.

Our work is also related to plan recognition. Kautz and Allen
proposed an approach to recognizing plans based on parsing ob-
served actions as sequences of subactions and essentially model
this knowledge as a context-free rule in an “action grammar” [14].



Figure 7: Schematic view of incomplete models and their relationships in the spectrum of incompleteness

All actions, plans are uniformly referred to as goals, and a recog-
nizer’s knowledge is represented by a set of first-order statements
called event hierarchy encoded in first-order logic, which defines
abstraction, decomposition and functional relationships between
types of events. Lesh and Etzioni further presented methods in
scaling up activity recognition to scale up his work computation-
ally [16]. They automatically constructed plan-library from domain
primitives, which was different from [14] where the plan library
was explicitly represented. In these approaches, the problem of
combinatorial explosion of plan execution models impedes its ap-
plication to real-world domains. Kabanza and Filion [10] proposed
an anytime plan recognition algorithm to reduce the number of gen-
erated plan execution models based on weighted model counting.
These approaches are, however, difficult to represent uncertainty.
They offer no mechanism for preferring one consistent approach to
another and incapable of deciding whether one particular plan is
more likely than another, as long as both of them can be consis-
tent enough to explain the actions observed. Although we exploit
a library of plans in our DUP approach, we aim to learning shallow
models and utilize the shallow models to recognize plans that are
not necessarily in the plan library, which is different from previ-
ous approaches that assume the plans to be recognized are from the
plan library.

Instead of using a library of plans, Ramirez and Geffner [22] pro-
posed an approach to solving the plan recognition problem using
slightly modified planning algorithms, assuming the action mod-
els were given as input (note that action models can be created by
experts or learnt by previous systems [26, 30]). Except previous
work [14, 4, 8, 22] on the plan recognition problem presented in
the introduction section, Saria and Mahadevan presented a hierar-
chical multi-agent markov processes as a framework for hierarchi-
cal probabilistic plan recognition in cooperative multi-agent sys-
tems [24]. Amir and Gal addressed a plan recognition approach
to recognizing student behaviors using virtual science laboratories
[2]. Ramirez and Geffner exploited off-the-shelf classical plan-
ners to recognize probabilistic plans [23]. Different from those ap-
proaches, we do not require any domain model knowledge provided
as input. Instead, we automatically learn shallow domain models
from previous plan cases for recognizing unknown plans that may
not be identical to previous cases.

6. CONCLUSION AND DISCUSSION
In this paper we present a novel plan recognition approach DUP

based on vector representation of actions. We first learn the vector
representations of actions from plan libraries using the Skip-gram
model which has been demonstrated to be effective. We then dis-

cover unobserved actions with the vector representations by repeat-
edly sampling actions and optimizing the probability of potential
plans to be recognized. We also empirically exhibit the effective-
ness of our approach.

While we focused on a one-shot recognition task in this paper,
in practice, human-in-the-loop planning will consist of multiple it-
erations, with DUP recognizing the plan and suggesting action ad-
dition alternatives; the human making a selection and revising the
plan. The aim is to provide a form of flexible plan completion
tool, akin to auto-completers for search engine queries. To do this
efficiently, we need to make the DUP recognition algorithm “incre-
mental.”

The word-vector based domain model we developed in this pa-
per provides interesting contrasts to the standard precondition and
effect based action models used in automated planning community.
One of our future aims is to provide a more systematic compari-
son of the tradeoffs offered by these models. Although we have
focused on the “plan recognition” aspects of this model until now,
and assumed that “planning support” will be limited to suggesting
potential actions to the humans. In future, we will also consider
“critiquing” the plans being generated by the humans (e.g. detect-
ing that an action introduced by the human is not consistent with the
model learned by DUP), and “explaining/justifying” the sugges-
tions generated by humans. Here, we cannot expect causal expla-
nations of the sorts that can be generated with the help of complete
action models (e.g. [20]), and will have to develop justifications
analogous to those used in recommendation systems.

Another potential application for this type of distributed action
representations proposed in this paper is social media analysis. In
particular, work such as [15] shows that identification of action-
outcome relationships can significantly improve the analysis of so-
cial media threads. The challenge of course is that such action-
outcome models have to be learned from raw and noisy social me-
dia text containing mere fragments of plans. We believe that ac-
tion vector models of the type we proposed in this paper provide a
promising way of handling this challenge.
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