
Today, I will be talking about refinement planning, the dominant 
paradigm for plan  synthesis in artificial intelligence. 

The area of refinement planning has been around for over twenty five 
years. However, our understanding of the foundations of refinement 
planning have improved markedly in the recent years. 

My aim today is to share this understanding with you and outline several 
current research directions.
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Here is the outline of my talk. I will briefly discuss the classical planning 
problem in Artificial Intelligence, and propose refinement planning as a way 
of unifying the many classical planning algorithms. 

I will then present the formal framework of refinement planning

Next,  I will describe the refinement strategies that correspond to existing 
planners

I will then discuss the tradeoffs among different refinement planning 
algorithms. 

Finally, I will describe some promising directions for scaling up refinement 
planning algorithms.

Overview
✧ Classical planning problem
✧ Refinement Planning: Formal Framework
✧ Existing refinement strategies
✧ Tradeoffs in Refinement Planning
✧ Scaling up Refinement Planning 
✧ Conclusion



Intelligent agency involves controlling the evolution of external environments in 
desirable ways. Planning provides a way in which the agent can maximize its chances of 
effecting this control.  Informally, a plan can be seen as a course of actions that the agent 
decides upon based on its overall goals, information about the current state of the 
environment, and the dynamics of its evolution. 

The complexity of  plan synthesis depends on a variety of properties of the environment 
and the agent. Perhaps the simplest case of planning occurs when the environment is 
static, (in that it changes only in response to the agents actions), observable and the agent’s 
actions have deterministic effects on the state of the environment.

Plan synthesis under these conditions has come to be known as the classical planning 
problem.

Classical planning problem is thus specified by describing the initial state of the world, 
the desired goal state, and a set of deterministic actions. The objective is to find a 
sequence of these actions, which when executed from the initial state leads the agent to 
the goal state.

Despite its limitations, classical planning problem is still computationally hard, and  has 
received a significant amount of attention. Work on classical planning has historically 
helped our understanding of planning under non-classical assumptions.

 

Planning &  Classical Planning

I  = initial state               G =  goal state Oi(prec) (effects)
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Environment

actionperception

Goals
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(perfect) (deterministic)

What action next?  



We shall now look at the way the classical planning problem is modeled. Let us use a 
very simple example scenario -- that of transporting two packets from earth to Moon, 
using a single (and somewhat out-of-shape) rocket. 

States of the world are modeled in terms of a bunch of binary state-variables. Initial state 
is assumed to be completely specified, so negated conditions need not be seen. Goals  
involve achieving the specified  values for certain state variables. 

Actions are modeled as state-transformation functions,  with pre-conditions and effects. 
A widely used action syntax is Pednault’s creatively named Action Description 
Language, where preconditions and effects are first order quantified formulas (with no 
disjunction in the effects formula).  

We have three actions in our rocket domain -- load which makes a package to be IN the 
rocket, unload, which gets it out, and Fly, which takes everything in the rocket over to 
the moon. Notice the quantified and negated effects in the case of FLY. Its second effect 
says that every box that is inside the rocket-- before the FLY action is executed -- will be 
at the moon after the action.

An action can be executed in any state where its preconditions hold and upon execution the state 
is modified such that state-variables named in the effects have the specified values.

Modeling Classical Planning
✧ States are modeled in terms of (binary)
    state-variables
      -- Complete initial state, partial goal state
✧ Actions are modeled as state
    transformation functions
     -- Syntax: ADL language (Pednault)
      -- Apply(A,S) = (S \ eff(A)) + eff(A)
                      (If Precond(A) hold in S)

Load(o1)

In(o1)

At(o1,l1), At(R,l1) At(R,E)

Fly()

At(R,M), ¬At(R,E)
∀ xIn ( x ) ⇒ At ( x, M)

& ¬At(x, E)Unload(o1)

In(o1)

¬In(o1)

EarthEarth

At(A,E), At(B,E),At(R,E)

At(A,M),At(B,M)
¬In(A), ¬In(B)

Effects
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The many brands of classical planners

Planning as Search

Search in the space of States
   (progression, regression, MEA)

(STRIPS, PRODIGY, TOPI)

Search in the space of Plans
(total order, partial order,

protections, MTC)
(Interplan,SNLP,TOCL,

UCPOP,TWEAK)

Search in the space of
  Task networks (reduction 

   of non-primitive tasks)
(NOAH, NONLIN, 

O-Plan, SIPE)Planning as (constraint) Satisfaction
(Graphplan, Descartes,UCPOP-D)

Planning as Theorem Proving
(Green’s planner)

Plan generation under classical assumptions had received wide-spread 
attention and a large variety of planning algorithms have been 
developed. 

These include theorem proving approaches, search in the space of 
states, search in the space of plans, search in the space of task networks 
and more recently, planning as satisfaction.

One of my aims in this talk  is to put these ideas in a logically coherent 
framework so we can see the essential connections between them.

I will use the “refinement planning” framework to effect such a 
unification. 



So, let us move on to the formal foundations of  refinement planning -- 
including the syntax and semantics of partial plans, the refinement 
strategies and finally the generalized algorithm templates for 
refinement planning. 

Overview
✧ Classical planning problem
✧ Refinement Planning: Formal Framework

– Partial plan: Syntax and Semantics
– Refinement strategies
– Refinement planning templates

✧ Existing refinement strategies
✧ Tradeoffs in Refinement Planning
✧ Scaling up Refinement Planning 
✧ Conclusion



Refinement planning can be thought of as a process of narrowing down 
the set of all actions sequences by eliminating the sequences that cannot 
be solutions to the problem. 

Sets of action sequences are represented intensionally by a set of 
constraints called partial plans. The action sequences represented by a 
partial plan are called its candidates.

A refinement operation narrows the candidate set of a partial plan by 
adding constraints to it.. 

If no solutions are eliminated in this process,  we will eventually 
progress towards set of all solutions. Termination can occur as soon as 
we can pick up a solution using a bounded time operation. 

To make these ideas precise, we shall now look at the syntax and 
semantics of partial plans and refinement operations. 

Refinement Planning: 
Overview

Search in the space of sets of 
action sequences 

Each set is represented by 
    a partial plan

Refinements narrow the sets
  by adding constraints to 
  partial plans 

All action 
sequences

All Solutions

 ⊆ ⊆

 ⊆

 ⊆

 ⊆

All Sol
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A partial plan can be seen as any set of constraints that together delineate which action 
sequences belong to the plan’s candidate set and which do not.

 One representation that is sufficient for our purposes models partial plans as a set of 
steps, ordering constraints between the steps, and auxiliary constraints. Each plan step 
corresponds to an action. There are two types of ordering constraints -- precedence and 
contiguity constraints. The latter require that two steps come immediately next to each 
other. 

Auxiliary constraints involve statements about truth of certain conditions over time 
intervals. These come in two important types -- interval preservation constraints  which 
require preservation of a condition over an interval, and point truth constraints  that 
require the truth of a condition at a particular time point.

Here is an example plan from our rocket domain in this representation. The steps 0 and 
1 are contiguous, 2 precedes 4, and the condition At(R,E) must be preserved between 0 
and 3. 

Finally, the condition In(A) must hold in the state preceding the execution of step 2. 
(This is in addition to the constraint that all preconditions  of an action must hold in the state 
preceding the action. )

Partial Plans:  Syntax

Auxiliary Constraints:
  Interval preservation constraint (IPC)  ‹ s1 ,  p , s2 ›
      p must  be preserved between s1 and s2

  Point truth Constraint  (PTC)            p@s
       p must hold in the state before s

Steps, Orderings, Aux. ConstraintsPartial plan   =

1: Load(A) 2:Fly() 4:Unload(A)0 ∞
In(A)@2

3: Load(B)

contiguity
precedenceAt(R,E)

IPC

Earth A
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The semantics of  the partial plans are given in terms of candidate sets. An 
action sequence belongs to the candidate set of a partial plan if it contains the 
actions corresponding to all the steps of the partial plan, in an order consistent 
with the ordering constraints on the plan, and  it also satisfies  all auxiliary 
constraints.

For the example plan shown here, the sequences on the left are candidates 
while those on the right are non-candidates. Notice that the candidates may 
contain more actions than are present in the partial plan. 

Candidates that only contain the actions in the plan are called “minimal 
candidates”. These correspond to the syntactic notion of safe linearizations. 

Safe linearizations are linearizations (or topological sorts) of the plan steps 
that also satisfy the auxiliary constraints. The linearization 0-1-3-2-4-infty is a 
safe one while the linearization 0-1-2-3-4-infty is not (since step 2 will violate 
the IPC on At(R,E). 

The sequences on the right are non-candidates because both of them fail to 
satisfy the auxiliary constraints

Partial Plans: Semantics

P: 1: Load(A) 2:Fly() 4:Unload(A)0 ∞
In(A)@2

3: Load(B)
At(R,E)

Candidates (∈ «P») 

 [Load(A),Load(B),Fly(),Unload(A)]  

 [Load(A),Load(B),Fly(),
Unload(B),Unload(A)]

Non-Candidates (∉ «P»)  

 [Load(A),Fly(),Load(B),Unload(B)]  

[Load(A),Fly(),Load(B),
Fly(),Unload(A)]

Minimal candidate. Corresponds to the
safe linearization [ 01324∞ ]

Corresponds to unsafe
 linearization [ 01234∞ ]

Candidate is any action sequence that 
    -- contains actions corresponding to all the steps, 
    -- satisfies all the ordering and auxiliary constraints



Here then is the connection between the syntax and semantics of a 
partial plan. Each partial plan has at most exponential number of 
linearizations, some of which are safe with respect to the auxiliary 
constraints. 

Each safe linearization corresponds to a minimal candidate of the plan. 
Thus, there are at most exponential number of minimal candidates. A 
potentially infinite number of additional candidates can be derived 
from each minimal candidate by padding it with new actions without 
violating auxiliary constraints. 

Thus, a plan with no safe linearizations will have an empty candidate 
set. 

Refinements add new constraints to a partial plan. They thus simultaneously 
shrink the candidate set of the plan, and increase the length of its minimal 
candidates. 

Thus, one incremental way of exploring the candidate set of a plan for 
solutions is to check through its minimal candidates  after refinements. 

Empty candidate set iff no safe linearizations

Linearization 1 Linearization 2 Linearization n 

Safe linearization 1 Safe linearization 2 Safe Linearization m

Linearization 3 

Minimal Cand. 1 Minimal Cand. 2 Minimal Cand. m
+

derived
candidates

+
derived

candidates

+
derived

candidates

Partial Plan

Linking Syntax and Semantics



We will now  formally define a refinement strategy. Refinement strategies operate on 
sets of partial plans. We thus define a plan-set as a set of partial plans, with the 
understanding that the candidate set of the planset is the union of the candidate sets 
of its component plans.

A refinement strategy R maps a plan set P to another plan set P’ such that the 
candidate set of P’ is a subset of the candidate set of P. R is said to be complete if P’ 
contains all the solutions of P. It  is said to be progressive if the candidate set of P’ is a 
strict subset of the candidate set of P.  It is said to be systematic if no action sequence 
falls in the candidate set of more than one component of P’. 

Completeness ensures that we don’t lose solutions by the application of refinements. 
Progressiveness ensures that refinement narrows the candidate set. Systematicity 
ensures that we never consider the same candidate more than once. 

At the bottom is an example refinement, for our rocket problem, which takes the null 
plan, corresponding to all action sequences and maps it  to a plan set containing 3 
components. (In this case, the refinement is complete since no solution can start with 
any other action, progressive since it eliminated action sequences beginning with 
unload(A) etc, and systematic since all the candidates of the three components will 
have different prefixes.)

Refinement Strategies

§ A plan set  P   is a set of partial plans {P1,P2 ... Pm}

 R
1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly()0 ∞

0 ∞

✧ A refinement strategy R : P ➸  P’  ( «P’  » a subset of «P » )
–R  is complete if «P’   » contains all the solutions of «P  »
–R  is progressive if «P’   » is a proper subset of   «P  »
–R  is systematic if  components of P’  don’t share candidates



We are now in a position to present the general refinement planning 
template. It has three main steps.

 If the current plan-set has an extractable solution -- which is found by 
inspecting its minimal candidates, we terminate. 

If not, we select a refinement strategy R and apply it to the current plan 
set to get a new plan set. 

As long as the selected refinement strategy is complete, we will never 
lose a solution. As long as the refinements are progressive, for solvable 
problems, we will eventually reach a planset one of whose minimal 
candidates will be a solution (the figure on the top right illustrates this).

The solution extraction process involves checking an exponential 
number of minimal candidates (corresponding to safe linearizations). 
This can be cast as a model-finding or satisfaction process. 

 Some recent planners like Graphplan and Satplan can be seen as 
instantiations of this general refinement planning template. However, 
most earlier planners use a specialization of this template that we shall 
discuss next. 

Refinement Planning Template

Refine ( P : Plan set)

  0*.  If «P » is empty, Fail.
  1.   If a minimal candidate of P  is a solution, return it. End
  2.   Select a refinement strategy R 
           Apply R to P   to get a new plan set P’
  3.   Call Refine(P’ )

--Termination ensured if R  is complete and progressive

-- Solution extraction (step 2) involves checking exponentially 
    many minimal candidates
    -- Can be cast as propositional model-finding (satisfaction)

All Sol

P

P’



The algorithm template in the previous slide does not have any search in the 
foreground All the search is pushed into the solution extraction function.

It  is possible to add “search” to the refinement process in a straightforward 
way. The usual motivation for doing this is to make the solution construction 
phase cheaper. (Afterall, checking for solution in a single partial plan is cheaper 
than searching for a solution in a plan set.)

The algorithm template shown here introduces search into refinement 
planning. It is worth noting the two new steps that made their way. First, the 
components of the plan set resulting after refinement are pushed in to the 
search space, and are handled separately. We thus confine the application of  
refinement strategies to single plans.

Notice that this search process will have backtracking even for complete refinements 
since we do not know which of the individual components contain a solution.

Second, once we work on individual plans, we can consider solution 
extraction functions that are cheaper than looking at all the minimal 
candidates.  

This simple algorithm template forms the main idea behind all existing 
refinement planners. These planners differ in terms of the specific refinement 
strategies they use in step 2.

Combining Refinement with Search

Motivation: Push complexity of solution extraction into
                    search space 

Refine ( P : Plan)

  0*. If «P » is empty, Fail.
  1.    If SOL(P ) returns a solution,
             terminate with success.
  2.    Select a refinement strategy R 
               Apply R  to P  to get a new plan set P’
  3.    Non-deterministically select a component P’i  of  P’
             Call Refine(P’i   )

State-space, 
Plan-space,
HTN,
Tractability
   



We will now  concentrate on the specific refinement strategies that are 
used in the second step of the refinement planning template. There are 
broadly three types-- state-space, plan space and tractability 
refinements

Overview
✧ Classical planning problem
✧ Refinement Planning: Formal Framework
✧ Existing refinement strategies

– State-space refinements
– Plan-space refinements

» Using non-primitive actions

– Tractability refinements
✧ Tradeoffs in Refinement Planning
✧ Scaling up Refinement Planning 
✧ Conclusion



Forward state space refinement involves growing the plan prefix by 
considering all actions -- whether in the plan or in the library -- whose 
preconditions hold in the state of the world expected at the end of the 
prefix. 

By prefix we mean the steo 0 and any steps contiguous to. 

Here the prefix contains single step 0, and the expected state of the 
world is the same as the initial state. Three actions are applicable in this 
state, and accordingly forward state space refinement produces a plan 
set with three components. 

It is easy to see that forward state space refinement  is complete as it considers 
all exectuable prefixes and every solution must have an executable prefix. 
Similarly, it eliminates sequences with non-exectuable prefixes, thus giving 
progressiveness, and its components have candidates  with different prefixes, 
thus giving systematicity.

Forward State-space Refinement

✧ Grow plan prefix by 
adding applicable actions
– Complete

» consideration of all 
executable prefixes

– Progressive
» elimination of 

unexecutable prefixes
– Systematic

» each component has a 
different prefix

0 1: Unload(A) ∞

2: Load(A)0 ∞

2: Load(B)0 ∞

2: Fly()0 ∞1: Unload(A)

1: Unload(A)

1: Unload(A)

At(A,E)
At(B,E)
At(R,E)



FSR refinement, as stated, considers all actions executable in the state after the prefix. 
In real domains, there may be a large number of applicable actions, very few of which 
are relevant to the top level goals of the problem. We can make the state-space 
refinements goal-directed in one of two ways.

First, we can force FSR to consider only those actions which are going to be relevant to 
the top level goals. The relevant actions can be recognized by examining a subgoaling 
tree of the type shown below. Here the top level goal can be helped by the actions 
Unload(A), and Fly, and their preconditions in turn are helped by  the action Load(a). 
This idea is known as Means-ends-analysis and has been used by one of the first 
planners called STRIPS. More recently, a powerful heuristic for focusing means-ends-
analysis has been proposed by McDermott. 

The second way of making state-space refinements goal directed is to consider 
growing suffixes by applying actions in the backward direction. Here, the state of the 
world before the suffix, which can be seen as the set of weakest conditions for ensuring 
goal satisfaction, are shown in the brown oval. Two actions, Unload(A) and Unload(B) 
are useful in that they can give some of the conditions of the state, without violating 
any others. Fly action is not useful since it can violate the ¬In(x) goals. (This analysis can 
be done by comapring the action effects to the regressed state at the beginning of the suffix).

Goal-directed State-space Refinements

Force FSR to consider only
   relevant  actions
       -- Use subgoaling structure
              (operator graphs,
              Greedy regression graphs) 

Consider Backward State-
    space refinements
      -- Grow suffixes by adding
            “useful” actions

( Fikes & Nilsson, 1972; Veloso et. al. 1992,  McDermott, 1996)

0 ∞

0 ∞2: Unload(B)

2: Unload(A)1: Fly()

1: Fly()

At(A,M)
At(B,M)
¬In(A)
¬In(B)

0 1: Fly() ∞At(A,M)

Unload(A)

In(A)

Fly()

 Load(A)

At(R,E)At(A,E)

¬In(A)



Position, Relevance
and  Commitment

FSR and BSR must commit
 to both position and 
 relevance of actions
       
      +  Gives state information

       -  Leads to premature 
               commitment  

Plan-space refinement  (PSR) 
 avoids constraining position
   
     + Reduces commitment

     -  Increases plan-handling
        costs

1: Fly()0 ∞
1: Fly()0 ∞

1: Fly()0 ∞

Pf

Pb

Pp

The state space refinements have to decide both the “position” and
“relevance” of a new action to the overall goals. Often times, we 
may know that a particular action is relevant, but not know where
exactly in the eventual solution it will come. (For example,  we know that a fly action is  going 
to be present in the solution for the rocket problem, but do not know exactly where in the plan it will
occurs)

In such cases, it helps to introduce an action into the plan, without constraining its  
absolute position. This is what the plan-space refinement does. Of course, the  
disadvantage of not fixing the position is that  we will not have state information. This 
makes plan-handling costly.

The difference between FSR,BSR and PSR has traditionally been understood
in terms of least commitment, which in turn is related to candidate set size. Plans with 
precedence relations have larger candidate sets than those with contiguity constraints. For 
example, it is easy to see that although all three plans shown here contain the single fly 
action, the solution sequence load(a),load(b), fly, unload(A), unload(B), belongs only to the 
candidate set of the plan with precedence constraints.

Since each search branch corresponds to a component of the plan set produced by
the refinement,  planner using  state-space refinements  are  more likely to backtrack from a search 
branch.

One other point worth noting is that  the  backtracking  is an artificat of  splitting plan set 
components into the search space. Since all refinements are complete, backtracking will never be 
required if we had worked with plan sets without splitting. 



This brings us to the specifics of plan-space refinement. A plan space refinement starts 
by picking any precondition of any step in the plan, introducing step,ordering 
constraints to ensure that the precondition is provided by some step and is preserved 
by the intervening steps.

In this example, we pick the precondition At(A,M) of the last step (which stands for 
the top level goal). We add the new step Fly() to support this condition. In order to 
force Fly to give At(A,M), we add the condition In(A) as a precondition to it. This is 
called a causation precondition. At this point we need to make sure that any step 
possibly intervening between Fly and the last step preserves At(A,M). In this example, 
only Unload(A) intervenes and it does preserve the condition, so we are done. 

If we had a different action that can delete the condition, we must handle this conflict by either 
putting the action out of the interval between Fly and the last step, or adding preservation 
preconditions to the step to force it to preserve At(A,M).

A third optional part of plan-space refinement involves adding IPCs to preserve this 
establishment during subsequent refinement oprations (when new actions may come 
between Fly and the last step). This is done by adding either one or both of the Interval 
preservation constraints At(A,M) and ¬At(A,M). 

If we add both,we can show that the refinement is systematic, despite the fact that the 
positions of none of the steps are fixed. 

PSR has many instantiations depending on whether bookkeeping strategies are used.

Plan-space Refinement

PSR

0 1:Unload(A) ∞

At(A,M)@∞

2:Fly() 3:Unload(A)0 ∞
In(A)@2

At(A,M)

At(A,M)@∞

causation 
precondition
∀ x In(x) ⇒ At(x,M)

¬At(A,M)

Goal selection:
     Select a precondition
Establishment:  
    Select a step and make
     it give the condition
De-clobbering:
    Force intervening steps to 
     preserve the condition
Book-keeping: (Optional)
    Add IPCs to preserve
    the establishment
      ⇒  Systematicity

(PSR is  complete, and progressive)

(Sacerdoti, 1972; Pednault, 1988; McAllester, 1991)



The refinements that we have seen till now consider all action sequences that reach 
the goal state as equivalent. In many domains, the users may have significant 
preferences  among the solutions. For example, when I call my travel-agent, I may 
not want a travel plan that involves hitch-hiking to travel from Phx to Portland. The 
question is how do we communicate these biases to the planner such that it will not 
waste any time progressing towards bad solutions? 

One natural way turns out to be to introduce non-primitive actions, and restrict their 
reduction to primitive actions through user-supplied reduction schemas. Here the 
non-primitive action SHIP has a reduction schema that translates it to a plan-
fragment containing three actions. Typically, there may be multiple possible legal 
reductions for a non-primitive action. The reduction schemas restrict the planners 
access to the primitive actions and thus stop progress towards undesirable solutions.

For this method to work however, we do need the user to provide us reduction 
schemas over and above domain dynamics. The experience of people who used 
refinement planners for large scale applications has been that in most real domains, 
where humans routinely build plans, such reduction knowledge is available 
naturally. Of course, checking whether the reduction schemas are “correct” can be a 
tricky proposition. 

PSR with non-primitive actions

✧ Not all solutions are created equal.
✧ How do we bias search towards desirable solutions?

– Use non-primitive actions during establishment, and 
replace them later with user supplied schemas

✙ Reduction schemas naturally available
✙ Communicate user preferences 
—Tricky to ensure correctness of reduction schemas

(Sacerdoti, 1972; Tate, 1978; Wilkins, 1985; Erol, 1995; Barrett, 1995; Chien, 1995)

Ship(o1)

At(o1,M)

At(o1,E), At(R,E)

Load(o1)

Fly()

Unload(o1)



All the refinements we have looked at until now are progressive in that they narrow 
the candidate set. Many planners also use a variety of refinements that are not 
progressive. The motivation for their use is to reduce the plan handling costs further 
by splitting any implicit disjunction in the plan into the search space -- we thus call 
them tractability refinements.

We can classify the tractability refinements into three categories. The first attempt to 
reduce the number of linearizations of the plan. In this category, we have pre-ordering 
refinements which order two unordered steps, and pre-positioning refinements 
which constrain the relative position of two steps. Pre-ordering refinements are 
illustrated in the figure to the right -- the single partially ordered plan above is 
converted into two totally ordered plans below.

The second category of tractability refinements attempts  to make all linearizations 
safe with respect to auxiliary constraints. Here we have Pre-satisfaction refinements, 
which split a plan in such a way that a given auxiliary constraint is satisfied by all 
linearizations of the resulting components.

The third category attempts to reduce uncertainity in the action identity. An example 
is pre-reduction refinement, which converts a plan containing a non-primitive action 
into a set of plans each containing a different reduction of that non-primitive action.

It is interesting to note that most of the prominent differences between existing 
algorithms boil down to differences in the use of tractability refinements.

Tractability Refinements

✧ Reduce number of linearizations
– Pre-ordering 
– Pre-positioning

✧ Make all linearizations safe
– Pre-satisfaction

» Resolve threats to auxiliary constraints

✧ Reduce uncertainity in action identity
– Pre-reduction

» Replace a non-primitive action with the 
help of reduction schemas

Aim:  Reduce plan handling costs by splitting (implicit)
          disjunction into the search space

1: Fly()0 ∞

1: Fly()
0 ∞

2: Load(A)

2: Load(A)0 ∞1: Fly()

2: Load()

Pre-ordering



One of the advantages of the treatment of refinement planning that I 
have presented to you is that it naturally allows for interleaving of a 
variety of refinement strategies in solving a single problem.  Here is an 
example of solving our rocket problem with the use of several 
refinements-- we start with backward state-space, then plan-space, then 
forward state-space and then a pre-position refinement. 

Based on the specific interleaving strategy used, we can device a whole 
spectrum of refinement planners, which differ from the existing single 
refinement planners. Our empirical studies show that interleaving 
refinements this way can lead to superior peformance over single-
refinement planners. 

It must be noted however that the issue of how one selects a refinement 
is largely open. W e have tried refinement selection based on the 
number of components produced by each refinement, or the amount of 
narrowing of candidate set each refinement affords, with limited 
success.

Interleaving Refinements

✧ Combine  different 
refinements opportunistically
– Can be more efficient than 

single-refinement planners 
– Refinement selection 

criteria?
» # Components produced
» “Progress” made 

(Kambhampati & Srivastava, 1995)

∞0

1: Unload(A)0 ∞

2: Fly() 1: Unload(A)0 ∞

BSR

PSR

FSR

2: Fly() 1: Unload(A)0 3: Load(A) ∞

2: Fly() 1: Unload(A)0 ∞3: Load(A)

Pre-position

At(A,M)@∞



We have described a parameterized refinement planning template that 
allows for a variety of  specific algorithms depending on which 
refinement strategies are selected and how they are instantiated. 

We shall now attempt to understand the tradeoffs governing  some of 
these choices, and see how one can go about choosing a planner, given 
a specific population of problems to solve. 

Overview

✧ Classical planning problem
✧ Refinement Planning: Formal Framework
✧ Existing refinement strategies
✧ Tradeoffs in Refinement Planning

– Asymptotic tradeoffs and empirical evaluation
– Selecting a refinement planner

✧ Scaling up Refinement Planning 
✧ Conclusion



Eager Solution extraction :    C ↑   F↓   (d↓)

Effect of... 

Tractability Refinements:    C ↓   F↑    ( b↑)

Protection/Bookkeeping:     C ↑   F↓    ( ρ↓)

Least commitment:      C ↑ F↓    ( k ↑)

Asymptotic Tradeoffs

k  : Avg cand set
      size of fringe plan
F  : Fringe size
ρ   :  Redundancy factor (≥ 1)
p   : Progress factor (≤ 1)
K  : Cand set size of 
        null plan
b  :  Branching factor (# comp)
d  :  depth (# refinements)
C  :  Plan handling costs

Fringe

K

k k

k

T  = C * F

Size of explored
search space :

Time complexity:

   
F =

K * ρ
k

= O bdpd*

Let us start with an understanding of the asymptotic trade-offs. To do this, we shall use 
an estimate of the search space size in terms of properties of fringe nodes. 

Suppose big-K is the total number of action sequences (below a certain length, say).  Let 
F be the number of nodes on the fringe of the search tree generated by the refinement 
planner, and small-k the average number of candidates in each of the plans on the 
fringe. Let rho be the number of times a given action sequence enters the candidate sets 
of fringe plans, and p be the progress factor -- the fraction by which candidate set 
narrows each time a refinement is done. We then have F = p^d * K * rho /k.  Since F is 
approximately the size of the search space, the time complexity is C times F, where C is 
the cost of plan handling. This formula can be used to understand the asymptotic 
tradeoffs. 

For example, using refinement strategies with lower commitment leads to plans with 
higher candidate set sizes and thus reduces F, but it can increase C. Using tractability 
refinements increases b and thus increases F, but may reduce C. The protection 
strategies reduce the redundancy factor, and thus reduce F. But, they may increase C 
since protection is done by adding additional constraints. 

While instructive, this analysis does not make conclusive predictions on practical 
performance since the latter depends on the relative magnitudes of changes in F and C. 
For this, we look at empirical evaluation.



Empirical Evaluation of Tradeoffs

(Kambhampati, Knoblock and Yang, 1995)

✧ Stronger tractability refinements improve performance 
if increased linearization reduces the #of simple 
establishments
✧ Happens in domains with high frequency conditions

✧ Strong protection strategies improve performance 
    only when the  solution density is low

✧ Planner is forced to explore a significant part of its 
search space

The parameterized and unified understanding of refinement planning 
allows us to ask specific questions about the utility of specific design 
choices, and answer them through normalized empirical comparisons. 

Here, we look at two choices -- use of tractability refinements and 
protection strategies -- since many existing planners differ along these 
dimensions. 

Empirical results show that tractability refinements lead to reductions 
in search time only when the additional  linearization they cause,  has 
the side-effect of reducing the number of establishment possibilities 
significantly. This happens in domains where there are conditions that 
are asserted and negated by many actions.

Results also show that protection strategies have an effect on 
performance only in the cases where solution density is so low as to 
make the planner look at the full search space. 

In summary, for problems with normal solution density, peformance 
differentials between planners are often attributable to differences in 
tractability refinements. 



Let us now turn to the general issue  of selecting among  refinement planners, given a set of 
problems. If we make the reasonable assumption that planners will solve a conjunctive goal 
problem by solving the subgoals serially, we can answer this question in terms of the 
subgoal interactions.

A subplan for a goal is a partial plan all of whose linearizations will execute and achieve 
the goal. On the right are two subplans for the AT(A,M) goal in the rocket problem. 

Every refinement planner R can be associated with a class CR of plans it is capable of 
producing. For example, for the goal At(A,M) in the rocket problem. a planner using purely 
state-space refinements will produce the prefix plans of the sort shown on top while a pure 
plan-space planner will produce an elastic plan of the sort shown in the bottom. 

The key question is whether a subplan in the given plan class is likely to be extended to a 
solution for the whole problem. Two goals G1 and G2 are said to be trivially serializable 
with respect to a class of plans C,  if every subplan for solving one goal belonging to C is 
extendable to a subplan for solving both goals. Turns out that the level of commitment 
inherent in a plan class is a very important factor in deciding trivial serializability.

Clearly, the lower the commitment of plans in a given class, the higher the chance of trivial 
serializability. THe lower this commitment, the higher also is the cost of handling plans, in 
general. 

Thus, a heuristic is to select the refinement planner with the highest commitment, and with 
respect to whose class of plans, most goals are trivially serializable. Empirical studies show 
this to be an effective strategy.  (Least commitment is not the only factor)

Subgoal Interactions and
Planner Selection

✧ Every refinement planner R can be 
associated with a class CR of partial plans

✧ G1 and G2 are trivially serializable w.r.t. a 
plan class C if  every subplan PGi ∈ C is 
extendable to a plan for solving both. 
–  commitment↓⇒  trivial serializability ↑
– commitment ↓⇒  plan handling cost↑

➯ Select the planner producing the class of 
highest commitment plans w.r.t. which 
most problems are trivially serializable 

(Korf, 1987; Barrett & Weld, 1994; Kambhampati, Ihrig and Srivastava, 1996)

Load(A)

Fly

Unload(A)

0

∞

Load(A)

Fly

Unload(A)

0

∞



Although refinement planning techniques have been applied to 
complex real world problems like beer-brewing, electrical power 
production, and space craft assembly, their wide-spread use has been 
inhibited by the fact that most existing planners scale up poorly when 
presented with large problems. There has thus been a significant 
emphasis on techniques for improving their performance. 

Let me now survey the directions that are being taken--one of these 
involves improving performance by customizing the planner’s 
behavior to the problem population, and the second involves using 
disjunctive representations.

Overview

✧ Classical planning problem
✧ Refinement Planning: Formal Framework
✧ Existing refinement strategies
✧ Tradeoffs in Refinement Planning
✧ Scaling up Refinement Planning

– Customizing planners to domains
– Use of disjunctive representations 

✧ Conclusion



Customization can be done in a variety of ways. The first is to bias the search of the 
planner with the help of control knowledge acquired from the user. As we discussed 
earlier, non-primitive actions and reduction schemas are used for the most part to 
support such customization in the existing planners. There is now more research on 
the protocols for acquring and analyzing reduction schemas.

There is evidence that not all control knowledge of the users is available in terms of 
reduction schemas. In such cases, incorporating the control knowledge into the 
planner can be very tricky. One intriguing idea is to “fold in the control knowledge” 
into the planner by automatically synthesizing planners from domain specification, 
and the declarative theory of refinement planning using interactive software synthesis 
tools. We have  started a project on implementing this approach using kestrel 
interactive software synthesis system, and the preliminary results have been 
promising. 

Another way of doing customization is to use learning techniques and make the 
planner learn from its failures and successes. The object of learning may be acquisition 
of  search control rules that advise the planner what search branch to pursue or the 
acquisition of typical planning cases, which can then be instantiated and extended to 
solve new problems. This is a very active area of research and a sampling of papers 
can be found in the machine learning sessions at AAAI and IJCAI.

Improving Performance
through Customization

✧ Biasing the search with control knowledge 
acquired from experts
– Non-primitive actions and reduction schemas 
– Automated synthesis of customized planners

» Combine formal theory of refinement planning and 
domain-specific control knowledge

✧ Use of learning techniques
– Search control rule learning
– Plan reuse

» Learning /planning sessions at AAAI/IJCAI

(Minton, 1988; Katukam and Kambhampati, 1994; Veloso, 1994; Ihrig, 1996; Srivastava, 1



Another way of scaling up refinement planners to directly address the question of 
search space explosion. Much of this explosion is due to the fact that all existing 
planners reflexively split the plan set components  into search space. We have seen 
earlier that this  is not required for completeness of refinement planning.

So, let us look at what happens if we don’t split plan sets. Of course, we reduce the 
search space size and avoid the premature commitment to specific plans. We also 
separate the action selection and action sequencing phases, so that we can apply 
scheduling techniques for the latter. 

There can be two potential problems however. First off, keeping plan sets together 
may lead to very unwieldy data structures. The way to get around this is to 
“internalize” the disjunction in the plan sets so that we can represent them more 
compactly. The second potential problem  is that we may just be transfering the 
complexity from one place to another -- from search space size to solution extraction. 
This may be true. However, there are two reasons to believe that we may still win. 

First, as we mentioned earlier,  solution extraction can be cast as a model-finding 
activity, and there have been a slew of very efficient search strategies for  
propositional model finding.  Second, we may be able to do even better by using 
constraint propagation techniques  that simplify plans and reduce refinement 
possibilities. 

Let me illustrate these ideas.

Reducing Search through 
Disjunctive Representations

✧ What if we handle plan sets without splitting?
✙ Reduced commitment
✙ Separation of action selection and action 

sequencing
– Unwieldy plan sets

» Use disjunctive representations
– Transfer of complexity to solution-extraction

» Use efficient SAT solvers
» Use incremental constraint propagation



The general idea of disjunctive representations is to allow disjunctive 
step, ordering, and auxiliary constraints into the plan. Here are two 
examples that illustrate the compaction we can get through them. 

The two plans on the top left corner can be compacted by using a single 
disjunctive step constraint, a disjunctive precedence constraint, a 
disjunctive IPC and a disjunctive PTC. 

Similarly, the three plans in the bottom right can be compacted into a 
single disjunctive step, with disjunctive contiguity constraints. 

Candidate set semantics  can be given naturally from the interpretation of 
disjunctive constraints.

Disjunctive Representations
Allow disjunctive step, ordering and auxiliary constraints

1: Load(A)0 ∞

1: Load(B)0 ∞

1: Fly(R)0 ∞

1: Load(A)

2 : Load(B)0 ∞

3 : Fly(R)

In(A)

In(B)

At(R,M)

1: Load(A)0 ∞

1: Load(B)0 ∞

In(x)@∞

In(x)@∞

In(B)

In(A)

or

or

1: Load(A)
0 ∞

or
2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2



Disjunctive representations clearly lead to a significant increase in the cost of plan 
handling. For example, in the left  plan, we don’t know whether steps 1 or 2 or both 
will be present in the eventual plan. Thus we don’t know whether we should work on 
At(A,E) precondition or the At(B,E) precondition. Similarly, in the right hand side we 
don’t know which of the steps will be coming next to 0 and thus we don’t quite know 
what the state of the world will be after the disjunctive step. 

At first glance this might look hopeless as the only reasonable way seems to be to split 
the disjunction into the search space again or depend solely on ultra-efficient solution 
extraction strategies. However, it turns out that we are underestimating the power of 
what we do know, and how that knowledge can be used to constrain further 
refinements.

For example, knowing that either 1 or 2 must precede the last step and give the 
condition  tells us that if 1 doesn’t then 2 must. This is an instance of  constraint 
propagation on orderings and reduces the number of establishment possibilities that 
PSR has to consider at the next iteration.

Similarly, knowing that only 1, 2 or three can be the first steps in the plan tells us that 
the state after the first step can only contain the conditions In(A), In(B) and At(R,M). 
This, coupled with the knowledge that both 1 and 3 can’t occur in the first step (since 
their preconditions and effects are mutually exclusive) tells us that the second state 
may either have In(A) or At(R,M), but not both. This is an instance of propagation of 
mutual exclusion constraints and can be used to reduce the number of actions 
considered in the next step by FSR  (actions that require both In(A) and At(R,M) can be 
ignored. 

Controlling Refinement 
through constraint propagation

1: Load(A)

2 : Load(B)0 ∞

3 : Fly(R)

In(A)

In(B)

At(R,M)

or

or

1: Load(A)
0 ∞

or
2 : Load(B)

< 1,In(A),∞ > V < 2 ,In(B),∞ >

At(A,E)@1 V At(B,E)@2

Propagation of ordering &
   binding constraints     
 e.g. 
   (s1< s2) & ((s2 < s1) V (s3 < s4))
                    => (s3 < s4)

  Propagation of mutual 
     exclusion constraints    

       e.g.
           Actions whose preconditions
           are mutually exclusive will not
           be applicable
      

Simplify partial plans without splitting them



Lest  all this sounds like a pipe-dream, let me hasten to add that in the 
last year or so several efficient planners have been developed which use 
disjunctive representations. Some of these are listed here. 

There are however many issues that need careful attention. For 
example, research in constraint satisfaction literature shows that 
propagation and refinement can have synergistic interactions. (A case in 
point is  8-queens problem. .) This raises the possibility that best planners 
may be doing controlled splitting of plan sets (rather than no splitting 
at all) to facilitate further constraint propagation. (Extent of propagation 
depends on the amount of shared sub-structure between the disjoined plans.)

The relative support provided by various types of refinements for 
planning with disjunctive representations needs to be understood. The 
old analyses based on least commitment etc. are mostly inadequate 
when we don’t split plan set components. 

Finally, the interaction between the solution extraction process and the 
constraint propagation process needs to be better understood so we can 
make them synergistic. 

Planning with Disjunctive 
Representations

✧ Disjunction over state-space refinements
– Graphplan (Blum & Furst, 1995)
– SATPLAN  (Kautz & Selman, 1996)

✧ Disjunction over plan-space refinements
– Descartes (Joslin & Pollack, 1995) 
– UCPOP-D (Kambhampati & Yang, 1996)

Issues:
    1. Tradeoffs in eliminating splitting
          -- Splitting may facilitate further constraint propagation
 
    2. Relative support provided by various refinements
         
    3. Integrating solution-extraction and constraint propagation



Let me now conclude by re-iterating that refinement planning 
continues to provide the theoretical backbone to most of the AI 
planning techniques. 

The general framework I presented in this talk allows a coherent 
unification of all classical planning technqieus, provides insights into 
design tradeoffs and also outlines avenues for the development of more 
efficient planning algorithms. 

Perhaps equally important, I believe that a clearer understanding of 
refinement planning under classical assumptions will provide us 
valuable insights on planning under non-classical assumptions.

 As evidence for this last statement, let me name several non-classical 
planners described in the literature, whose operation can be 
understood from refinement planning point of view. 

.

Conclusion
✧ Refinement planning continues to provide the 

theoretical backbone to the AI Planning 
techniques
– Allows a coherent unification of all classical 

planning techniques
– Facilitates a clear analysis of tradeoffs
– Outlines avenues for the development of 

efficient planning algorithms 
– Provides insights into planning under non-

classical assumptions
» Simultaneous action: Zeno
» Stochastic dynamics: Buridan, SUDO
» Partially accessible environments: XII, Cassandra



There are a variety of exciting  avenues open for further research in refinement planning. 
Let me list a few of them with the hope that they might inspire a smart graduate student 
to run off and get busy solving them. 

To begin with, we have seen that despite the large number of planning algorithms, there 
are really only two fundamentally different refinement strategies -- plan-space and state-
space ones. It would be very interesting to see if there are novel refinement strategies 
with better properties.  To some extent this might depend on the type of representations 
we use for partial plans. (In a paper to be presented at KR-96, Matt Ginsberg describes a partial 
plan representation and refinement strategy that differs significantly from the state-space and 
plan-space ones.  It will be interesting to see how it relates to the classical refinements.)

We also do not understand enough about what factors govern the selection of specific 
refinement strategies. 

We need to take a fresh look at tradeoffs in plan synthesis, given the availability of 
planners using disjunctive representations. Concepts like subgoal interactions do not 
make too much sense in these scenarios. 

Finally, there is a lot to be gained by porting the refinement planning techniques to 
planning under non-classical scenarios. As I mentioned earlier, already a lot of work has 
been done in this area, but new developments in classical scenarios continue. 

Research Issues

✧ Are there better refinement strategies than FSR, 
BSR and PSR? 

✧ How should we select between refinement 
strategies?

✧ Understanding the trade-offs in planning with 
disjunctive representations.

✧ Porting refinement planning techniques and 
insights to non-classical planning scenarios.


