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Abstract

In many real world planning scenarios, agents often do
not have enough resources to achieve all of their goals.
Hence, this requires finding plans that satisfy only a
subset of the them. Solving such partial satisfaction
planning (PSP) problems poses several challenges, in-
cluding an increased emphasis on modelling and han-
dling plan quality (in terms of action costs and goal
utilities). Despite the ubiquity of such PSP problems,
very little attention has been paid to them in the plan-
ning community. In this paper, we start by describing
a spectrum of PSP problems and focus on one of the
more general PSP problems, termed PSP NET BENE-
FIT. We develop two techniques, one based on integer
programming, called OptiPlan, and the other based on
regression planning with reachability heuristics, called
AltAlt ps . Our empirical studies with these two plan-
ners show that the heuristic plannerAltAlt ps generates
plans that are quite close to the quality of plans gener-
ated by OptiPlan, while incurring only a small fraction
of the cost. Finally, we also present interesting connec-
tions among our work and over-subscription schedul-
ing.

Introduction
In classical planning the aim is to find a sequence of actions
that transforms a given initial stateI to some goal stateG,
whereG = g1 ∧ g2 ∧ ... ∧ gn is a conjunctive list of goal
fluents. Plan success for these planning problems is mea-
sured in terms of whether or not all the conjuncts inG are
achieved. This all-or-nothing criterion is quite rigorous, no
distinction is being made between plans that achieve some
of the conjuncts and plans that achieve none of them at all.

Often times, real world planning problems are over-
subscribed in the sense that there is an excess of conjuncts
that could possibly be achieved at the same time. Need for
partial satisfaction might arise due to a variety of reasons.
In some cases, the set of goal conjuncts may contain logi-
cally conflicting fluents, and in other cases there might just
not be enough time or resources to achieve all of the goal
conjuncts. Effective handling of partial satisfaction plan-
ning (PSP) problems poses several challenges, including an
added emphasis on the need to differentiate between feasible
and optimal plans. Indeed, for many classes of PSP prob-
lems, a trivially feasible, but decidedly non-optimal solution

would be the “null” plan.
Despite the ubiquity of PSP problems, surprisingly little

attention has been paid to these problems in the planning
community. In this paper, we provide a first systematic anal-
ysis of PSP problems. We will start by distinguishing sev-
eral classes of PSP problems, but focus on one of the more
general PSP problems, called PSP NET BENEFIT. In this
problem, each goal conjunct has a fixed utility attached to
it, and each ground action has a fixed cost associated with
it. The objective is to find a plan with the best “net benefit”
(i.e., cumulative utility minus cumulative cost).

Earlier work by the PYRRHUS system (Williamson &
Hanks 1994) allows for partial satisfaction in planning prob-
lems with goal utilities. However, unlike the PSP problems
discussed in this paper, PYRRHUS requires all goals to be
achieved; partial satisfaction is interpreted by using a non-
increasing utility function on each of the goals. Many NASA
planning problems have been identified as partial satisfac-
tion problems (Smith 2003). In (Smith 2004) a technique
is presented for solving over-subscribed planning problems.
This technique is based on abstracting the planning problem
by using a plan graph to estimate the costs of achieving each
goal. The abstracted version is then used to help the planner
decide on what goals and actions should be considered and
in what order they should be considered.

An important aim of our research is to get an empirical un-
derstanding of the cost-quality tradeoffs offered by optimal
and heuristic approaches. To this end, we develop two differ-
ent techniques for handling PSP NET BENEFIT problems–
one, called “OptiPlan” which solves the problem by encod-
ing it as an integer program; and the other called “AltAlt ps ”
which is based on regression planning with cost-sensitive
reachability heuristics. OptiPlan builds on earlier work on
solving planning problems with IP encodings (Vossenet al.
1999), and models the net benefit optimization in terms of a
more involved objective function.AltAlt ps builds on the Al-
tAlt family of planners (Nguyen, Kambhampati, & Sanchez
2002) which derive reachability heuristics from planning
graphs. The main extensions inAltAlt ps involve techniques
for propagating cost information on planning graphs (Do &
Kambhampati 2002), and a novel approach for heuristically
selecting a subset of goal conjuncts. Selecting such a subset
is a key issue in PSP, if there aren conjuncts then there are
2n goal subsets. In order to avoid an exhaustive search, a
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Figure 1: Hierarchical overview between several types of
complete and partial satisfaction planning problems

good heuristic is needed that evaluates up front which sub-
set of conjuncts is likely to be most useful. Once a subset of
goal conjuncts is selected, it is solved by a regression search
that has cost sensitive heuristics.

PSP have been studied in the scheduling community un-
der the name of over-subscription scheduling. In general,
an over-subscription scheduling problem is one where there
are more tasks to be accomplished than there are time and
resources available. Typical objectives are to maximize re-
source usage or to accommodate as many tasks as possi-
ble (Kramer & Smith 2003). Over-subscription scheduling
problems are resource driven, while PSP planning problems
are more goal driven. Over-subscribed scheduling problems
have been solved by iterative repair (Kramer & Smith 2003),
constructive approaches (Potter & Gasch 1998), greedy
search approaches (Franket al. 2001), and even genetic al-
gorithms (Globuset al. 2003).

Our empirical studies show that the heuristic planner
AltAlt ps can generate plans that are quite close to the qual-
ity of plans generated by OptiPlan, while incurring only a
small fraction of the cost. The empirical study also sheds
light on possible improvements that can be made toAltAlt ps

to make it even more competitive. At the end of this paper
we will try to identify similarities and differences between
techniques for solving over-subscription scheduling prob-
lems and our approach to solving the PSP planning problem.

Definition and complexity
The following notation will be used:F is a finite set of flu-
ents andA is a finite set of actions, where each action con-
sists of a list of preconditions and a list of add and delete
effects. I ⊆ F is the set of fluents describing the initial
state andG ⊆ F is the set of goal conjunctions. Hence
we define a planning problem as a tupleP = (F ,A, I,G).
Having defined a planning problem we can now describe the
following classical planning decision problems.

The problems of PLAN EXISTENCE and PLAN LENGTH
represent the decision problems of plan existence and
bounded plan existence respectively. They are probably the
most common planning problems studied in the literature.

We could say that PLAN EXISTENCE is the problem of de-
ciding whether there exists a sequence of actions that trans-
formsI into G, and PLAN LENGTH is the decision problem
that corresponds to the optimization problem of finding a
minimum sequence of action that transformsI into G.

The PSP counterparts of PLAN EXISTENCE and PLAN
LENGTH are PSP GOAL and PSP GOAL LENGTH respec-
tively. Both of these decision problems require a minimum
number of goals that needs to be satisfied for plan success.

Figure 1 gives a hierarchical overview of several types of
complete (planning problems that require all goals to be sat-
isfied) and partial satisfaction problems, with the most gen-
eral problems listed below. Complete satisfaction problems
are identified by names starting with PLAN and partial satis-
faction problems have names starting with PSP.

Some of the problems given in Figure 1 involve action
cost and/or goal utilities. Basically, PLAN COST corre-
sponds to the optimization problem of finding minimum cost
plans, and PSP UTILITY corresponds to the optimization
problem of finding plans that achieve maximum utility. The
problems of PSP UTILITY COST and PSP NET BENEFIT
are both combinations of PLAN COST and PSP UTILITY .
Here we will formally define PSP NET BENEFIT since it is
the focus of this paper.

Definition PSP NET BENEFIT: Given a planning problem
P = (F ,A, I,G) and, for each action a “cost”ca ≥ 0 and,
for each goal specificationf ∈ G a “utility” uf ≥ 0, and
a positive numberk. Is there a finite sequence of actions
∆ = 〈a1, ..., an〉 that starting fromI leads to a stateS that
has net benefit

∑

f∈(S∩G) uf −
∑

a∈∆ ca ≥ k?

Theorem 1
PSP NET BENEFIT is PSPACE-complete.

Proof We will show that PSP NET BENEFIT is in PSPACE
and we will polynomially transform it to PLAN EXISTENCE,
which is a PSPACE-hard problem (Bylander 1994).

PSP NET BENEFIT is in NPSPACE because if a solution
exists we can generate a solution by nondeterministically
choosing a sequence of actions∆ = 〈a1, ..., an〉 that solves
P. Note that, the size of the states is independent of action
costs and goal utilities, and since the size of each state is
bounded by the number of (binary) fluentsm = |F|, the so-
lution comprised by the minimum action sequence cannot be
greater than2m. Hence, all action sequences greater than2m

must contain duplicate states and therefore contain loops.
The action sequence that is obtained by eliminating these
loops will have a length that will be less then2m. Hence, no
more than2m nondeterministic choices are needed. Since
NPSPACE = PSPACE (Savitch 1970), PSP NET BENEFIT
is in PSPACE.

PSP NET BENEFIT is PSPACE-hard because we can re-
strict to PLAN EXISTENCE by allowing only instances hav-
ing uf = 0∀f ∈ F , ca = 1∀a ∈ A, andk = −2m. This
restriction obtains

∑

a∈∆ ca ≤ 2m, which is the condition
for PLAN EXISTENCE.

Given that PLAN EXISTENCE and PSP NET BENEFIT
are PSPACE-hard problems, it should be clear that the other
problems given in Figure 1 also fall in this complexity class.



OptiPlan: an IP based approach for solving
PSP problems

OptiPlan is a planning system that provides an extension to
the state change integer programming (IP) model by (Vossen
et al. 1999). The model by Vossen et al. uses the com-
plete set of ground actions and fluents, OptiPlan on the other
hand eliminates many unnecessary variables simply by us-
ing Graphplan (Blum & Furst 1997), in addition OptiPlan
reads PDDL input files. In this respect, OptiPlan is very
similar to the BlackBox planner (Kautz & Selman 1999) but
instead of using a SAT formulation the plan is encoded as an
IP.

The state change formulation is built around the “state
change” variablesxadd

f,i , xpre-add
f,i , xpre-del

f,i , andxmaintain
f,i . These

variables are defined in order to express the possible state
changes of a fluent, withxmaintain

f,i representing the propa-
gation of a fluentf at periodi. Besides the state change
variables the IP model contains action variablesya,i. Where
ya,i = 1 if and only if actiona is executed in periodi. The
constraints of the state change model are as follows:

∑

a∈addf /pref

ya,i ≥ xadd
f,i (1)

ya,i ≤ xadd
f,i ∀a ∈ addf/pref (2)

∑

a∈pref /delf

ya,i ≥ xpre-add
f,i (3)

ya,i ≤ xpre-add
f,i ∀a ∈ pref/delf (4)

∑

a∈pref∪delf

ya,i = xpre-del
f,i (5)

xadd
f,i + xmaintain

f,i + xpre-del
f,i ≤ 1 (6)

xpre-add
f,i + xmaintain

f,i + xpre-del
f,i ≤ 1 (7)

xpre-add
f,i +xmaintain

f,i +xpre-del
f,i ≤ xpre-add

f,i−1 +xadd
f,i−1+xmaintain

f,i−1 (8)

xadd
f,0 =

{

1 if f ∈ I
0 otherwise (9)

xpre-add
f,t + xadd

f,t + xmaintain
f,t ≥ 1 ∀f ∈ G (10)

Where constraints (1) through (5) describe the logical in-
terpretations between the action and state change variables
for all f ∈ F , i ∈ 1, ..., t. Constraints (6) and (7) make sure
that for all f ∈ F , i ∈ 1, ..., t fluents can only be propa-
gated at periodi if and only if there is no action in periodi
that adds or deletes the fluent. Constraints (8) describe the
backward chaining requirements for allf ∈ F , i ∈ 1, ..., t
for the state change variables, and the initial and goal state
constraints are represent by (9) and (10) respectively.

Since the constraints guarantee plan feasibility, the objec-
tive function of the IP model can take on any linear function.
In the case of maximizing net benefit the objective becomes

maxz =
∑

f∈G

uf (xadd
f,t +xpre-add

f,t +xmaintain
f,t )−

∑

i∈T

∑

a∈A

caya,i,

(11)

whereT = 1, ..., t is the set of time periods,A is the set
of actions, andG the set of goal fluents.

Note that the above formulation can easily be changed
to handle any of the other partial satisfaction problems de-
scribed in the previous section, it merely requires changing
the objective function and sometimes adding or removing
some constraints.

Although integer programming finds optimal solutions,
the formulation that was used only finds optimal solutions
for a given parallel lengtht. Hence the global optimum
might not be detected, there could still be solutions of better
quality at higher values oft.

AltAlt ps : a heuristic approach for solving PSP
problems

In this section we presentAltAlt ps , a variant of the heuristic
state-space search plannerAltAlt (Nguyen, Kambhampati,
& Sanchez 2002). Both these planners are based on a combi-
nation of Graphplan (Blum & Furst 1997; Long & Fox 1999;
Kautz & Selman 1999) and heuristic state-space search tech-
nology (Bonet, Loerincs, & Geffner 1997; Bonet & Geffner
1999; McDermott 1999). However, the design ofAltAlt ps

involves some additional challenges. Specifically, the imple-
mentation of a cost propagation procedure during the plan-
ning graph construction phase. The propagated cost infor-
mation will be used in two different ways: First, we use it to
greedily select a subset of the top-level goals upfront, such
that we can avoid the exponential branching factor of the
search. Second, once the subgoals are selected, then we use
the cost information to drive the search ofAltAlt ps in order
to find a cost-sensitive plan.

In AltAlt ps , the cost of a plan is computed in terms of
the execution costs of its actions, and its heuristics have to
estimate the cost of a state based on the individual cost of
the propositions composing such state. However, only the
execution costs of the actions are given to the planner, and
the propositions in the initial state are known to have zero
cost, but we still need to propagate the cost of every other
single proposition, including the top level goals. We use the
planning graph construction phase ofAltAlt ps to propagate
the costs of the propositions using the execution costs of the
actions that achieve them.

As mentioned earlier, the cost information will be used
not only for heuristics to guide the search, but also for select-
ing the set of subgoals to work on. The basic idea of the goal
set selection procedure is to construct the partial subgoalset
iteratively by adding one goal at a time, ensuring that the
cost of the added subgoal does not degrade our final net ben-
efit. The cost of each subgoal is computed using a general-
ization of the relaxed plan heuristic idea (Nguyen & Kamb-
hampati 2000; Nguyen, Kambhampati, & Sanchez 2002).
The cost propagation procedure in the planning graph, as



well as the goal set selection algorithm are described in more
detail in the next subsections.

Cost propagation procedure and heuristics in
AltAlt ps

Initially, only the execution costs of the actions and the utili-
ties of the top level goals are provided. Propositions that are
in the initial state are assumed to have cost zero. Therefore,
we need to propagate the cost of the rest of the propositions
in the planning graph to estimate the cost of the goals.

Let hl(p) be the cost associated with an individual propo-
sition p at levell of the planning graph. Propositions in the
initial stateI have cost zero, and∞ otherwise. Thus, for
each actiona achievingp, the cost ofp is propagated us-
ing the iterative planning graph construction procedure of
AltAlt ps , as follows:

hl(p) =

{

0 if p ∈ I
min{hl(p), cost(a) + Cl(a)}
∞ otherwise

(12)
Where,cost(a) is the execution cost of the action given

by the user or generated randomly by the planner, andCl(a)
is the aggregated cost of the action computed in terms of
its preconditions, which can be computed admissibly as fol-
lows:

Cl(a) = max{hl−1(q) : q ∈ Prec(a)} (13)

or under independence assumption:

Cl(a) =
∑

{hl−1(q) : q ∈ Prec(a)} (14)

Notice that we use the notion of level of the planning
graph as a unit of time to propagate the costs of propositions.
As a consequence, cost propagation will terminate as soon
as the planning graph has been built. We then let the cost
of a proposition be the final cost of that proposition in the
final level of the planning graph. Similar cost propagation
procedures are developed in the context of metric temporal
planning (Do & Kambhampati 2002). From the cost propa-
gation procedure described above, we can easily derive the
first heuristic for our cost-based planning framework:

Max Cost Heuristic 1 hmaxC(S) = maxp∈S hl(p)

Although thehmaxC heuristic is admissible, it tends to be
too conservative given that it considers the cost of stateS be
equal to the cost of one of the state’s components. The idea
behind thehmaxC heuristic is that by choosing the proposi-
tion with maximum cost we will know at least the minimum
cost to solve the overall state.

We could try to improve the efficiency of our heuris-
tic by considering the positive interactions among the sub-
goals. We adapt the “relaxed plan” heuristic idea fromAl-
tAlt (Nguyen, Kambhampati, & Sanchez 2002), with some
important modifications. Specifically, we will not compute
the relaxed plan length anymore, but the relaxed plan cost,
where the cost of the relaxed plan is given by the execu-
tion costs of the actions in it. Furthermore, we will sort the
supporting actions in increasing value of their accumulative
costs given that we want to consider the cheapest ones first
in building the relaxed planRp.

More formally speaking, letS be a state to regress.
We consider a propositionp ∈ S such thathl(p) =
maxp∈Shl(p) (hardest to support first). Having found
the propositionp to regress, we sort the set of support-
ing actionsAp of p on increasing value of their accumu-
lative costs. Where the accumulative cost of an action is
defined conservatively asAcumCost(ap) = cost(ap) +
maxq∈Prec(ap)hl(q). So, we select the actionap from Ap

with the lowestAcumCost(ap). The rationale for this is
that we want to consider not only actions with minimum cost
but also actions that are likely going to introduce cheaper
subgoals in the relaxed plans. By regressingS over action
ap we get the stateS′ = S∪Prec(ap)\Eff(ap), obtaining
the following recurrence relation:

relaxCost(S) = cost(ap) + relaxCost(S′) (15)

This regression accounts for the positive interactions in
the stateS given that by subtracting the effects ofap, any
other proposition that is co-achieved whenp is being sup-
ported is not counted in the cost computation. The recursive
application of the last equation is bounded by the final level
of the planning graph, and it will eventually reduce to a state
S0 where each propositionq ∈ S0 is also in the initial state
I, having costhl(q) = 0. Given the last equation, we are
now ready to set up our next heuristic:

RelaxCost Heuristic 2 hrelaxC(S) = relaxCost(S)1

The application of thehrelaxC heuristic indirectly extracts
a sequence of actions (the actionsap selected at each reduc-
tion), which would have achieved the setS from the initial
stateI if there were no negative interactions. Such sequence
of actions is our relaxed planRp. Notice that the value of
the heuristic function is not more than the addition of the
execution costs of the actionsap ∈ Rp.

Goal set selection algorithm
The general idea of our algorithm is to incrementally extend
a partial goal setG′ using the utilities of the top level goals
G and their costs of achievement. We want to consider only
the goals that are likely going to increment our net benefit.
A general description of our algorithm is given in Figure 2.
First, the functiongetBestBenefitialGoal(G) returns the ini-
tial subgoalg ∈ G with maximum remaining utility,2 and we
use it to initializeG′. If no subgoals can be chosen then we
could easily conclude that there is no solution to our prob-
lem.

Then, we extract an initial relaxed planR∗

p for G′ using
the procedureextractRelaxPlan(G′,∅). Notice that two ar-
guments are passed to the function, one is the current par-
tial goal set from where the relaxed plan will be computed,
and the second parameter is another relaxed plan that will
be used as a guideline for computing the returning plan. At
the beginning, no relaxed plan is provided. Notice that our

1The hrelaxC heuristic will be used only in the hardest prob-
lems in our empirical evaluation

2The remaining utility of a goalg is computed byUg − ht(g),
whereUg is the utility of goalg andht(g) is the subgoal cost at the
final levelt of the planning graph



Procedurepartialize(G)
g ← getBestBenefitialGoal(G);
if (g = NULL)

return Failure;
G′ ← {g};
G← G \ g;
R∗

p ← extractRelaxP lan(G′, ∅)
B∗

MAX ← getUtil(G′)− getCost(R∗

p);
BMAX ← B∗

MAX

while(BMAX > 0 ∧G 6= ∅)
for (g ∈ G \G′)

GP ← G′ ∪ g;
Rp ← ExtractRelaxP lan(GP , R∗

p)
Bg ← getUtil(GP )− getCost(Rp);
if (Bg > B∗

MAX )
g∗ ← g;
B∗

MAX ← Bg;
R∗

g ← Rp;
else

BMAX ← Bg −B∗

MAX

end for
if (g∗ 6= NULL)

G′ ← G′ ∪ g∗;
G← G \ g∗;
R∗

p ← R∗

g;
BMAX ← B∗

MAX

end while
return G′;

End partialize;

Figure 2: Goal set selection algorithm.

greedy algorithm incrementally adds subgoals to our partial
goal setG′, in consequence, the relaxed plans among iter-
ations (e.g. those forG′ andG′ ∪ g) are very similar. By
passing the previous computed relaxed plan to our proce-
dure we avoid introducing unnecessary actions as well as
recomputing the similarities among them.

Having found the initial partialized setG′ and its corre-
spondent relaxed planR∗

p, we compute the current best net
benefitB∗

MAX by subtracting the costs of the actions in the
relaxed planR∗

p from the total utility of the goals inG′.3

B∗

MAX will work as a threshold for our iterative procedure,
in other words, we would continue adding subgoalsg ∈ G
to G′ only if our overall net benefitB∗

MAX increases. This
can be seen in the main loop of our algorithm. Basically, we
consider one goal at a time and compute its correspondent
relaxed planRp and benefitBg. Notice that we use now the
relaxed planR∗

p found in a previous iteration to compute
Rp. If the benefitBg of the current subgoalg is greater than
our current best benefitB∗

MAX then we mark the current
subgoal as a possible candidateg∗ for G′. Notice that the
same procedure is followed for the remaining subgoals, and
it is not until we have considered all of them that we add the
subgoalg∗ with the best net benefit to our partial goal set

3The descriptions of the functions aregetUtil(G) =
∑

g∈G
Ug andgetCost(Rp) =

∑

a∈Rp
cost(ap)

G′. Then, we update our current best relaxed planR∗

p and
our new best benefit thresholdB∗

MAX . This iterative proce-
dure will end when we can not improve the net benefit any
more or when there are no more subgoals to add, returning
our partial goal setG′. Notice that the procedure above
is greedy, so we are not immune from selecting a bad subset.

Example Let’s assume that we have an initial set of
goalsG = {g1, g2, g3, g4}, and their final costs and util-
ities are respectivelyhl = {40, 60, 30, 70}, and U =
{50, 30, 40, 100}. Following our algorithm, our starting
goal would beg4, because it is the one with the highest
net benefit, soG′ = {g4} andG = {g1, g2, g3}. Assume
that the relaxed plan found forg4 is Rp4 with cost of 70.
Then, for each of the remaining subgoals inG we compute
their benefits the following way:Bg = getUtil(g4 ∪ g) −
getCost(extractRelaxP lan(g4∪g,Rp4)) for eachg ∈ G.
Suppose that any of the subgoals adds more actions to the
relaxed planRp4 (they come for free), so we can assume the
following benefits,Bg1

= 150, Bg2
= 130, andBg3

= 140.
We can conclude then that our best subgoal to add isg1, so
we setG′ = g1 ∪ g4. The relaxed plan also gets updated to
Rp4∪1, which this time no new action has been added. No-
tice that in most of the cases new actions could be added to
the relaxed plans when we consider new subgoals, decreas-
ing then their benefits, and in consequence pruning some of
the top level goals when no benefit is found. The procedure
gets called again, this time having two subgoals (g1 andg4)
in our partial goal setG′.

Experimental Results
It is not that straightforward to obtain a clear compari-
son betweenAltAlt ps and OptiPlan. For instance, Opti-
Plan searches in the planning graph and gives optimal so-
lutions for the level at which the planning graph was grown.
AltAlt ps on the other hand, searches in the space of states
and uses the planning graph only to derive efficient heuris-
tics, hence the solution obtained byAltAlt ps is not directly
related to a particular planning graph level. To overcome
this discrepancy, we post-process the solution ofAltAlt ps

by using techniques introduced in (Sanchez & Kambham-
pati 2003). We compareAltAlt ps with OptiPlan by running
AltAlt ps first, then post-process its plan to obtain a paral-
lel plan, and then use the parallel length of this plan as the
input for OptiPlan. (We could have given the serial length
of AltAlt ps as input level for OptiPlan, but this would have
caused a blowup in the IP encoding size.)

The IP encodings in OptiPlan were solved using ILOG
CPLEX8.1, a commercial linear programming solver. De-
fault settings were used except the start algorithm was set to
the dual problem, the variable select rule was set to pseudo
reduced cost, and a 600 seconds limit was set to the CPLEX
solver. Both OptiPlan andAltAlt ps ran the problems on a
2.67Ghz CPU with 1.0GB RAM.

One problem that we faced is that there are no bench-
mark PSP problems. Therefore, we used existing STRIPS
planning domains from the last International Planning Com-
petition (Long & Fox 2002), and randomly generated costs
and utilities for each particular planning problem. However,
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the range of the random values generated were different for
each particular planning domain. In other words, aswithOn
action from the Satellite domain will have execution costs
much lower than afly action from the Zenotravel domain.
So, we decided upfront the range of execution costs for each
domain operator, and random values were generated inside
such ranges for each particular instance of each operator dur-
ing planning. Having generated the cost value of a ground
action, this one is maintained across other problems in which
the same action is being used. Under these design conditions
the planners selected around 60% of the goals on average.
Our experiments include the domains of Driverlog, Satellite
and Zenotravel.

The optimal solution quality was determined by OptiPlan
but is optimal only for the levels less than or equal to the
level at which OptiPlan performed its search. OptiPlan does
not always detect the optimal solution, this is because of the
600 seconds time limit that was set on the solver. In case the
time limit was reached, we denoted the best feasible solution
as OptiPlan’s solution quality. Since the time limit was set
on the CPLEX solver only, OptiPlan’s total planning time
can get above 600 seconds (total planning time also includes
planning graph construction time and the time needed for
converting the problem into IP).

Figure 3 displays the solutions on the Driverlog domain.
We can clearly see on plot a) thatAltAlt ps produces ex-
cellent quality plans, often within just one second. It is re-
markable that for most of the tested problems in Driverlog
AltAlt ps finds the exact same solutions as OptiPlan. In the
problems in whichAltAlt ps produces different solutions,
the solution quality remains close to that of OptiPlan.

Figure 3 c) and Figure 3 e) display the solution quality
on the Satellite and Zenotravel domains respectively. We
can see that in both of these domainsAltAlt ps remains very
competitive with respect to OptiPlan. In fact, there are solu-
tion points in whichAltAlt ps has generated better plans (see
Figure 3 c)). For these plans OptiPlan has just returned the
lower bound on the optimal solution due to time restrictions.
Furthermore, we can see in Figures 3 b), 3 d), and 3 f) that
AltAlt ps is more efficient and scalable than OptiPlan.

OptiPlan still performs better, in terms of quality, than
AltAlt ps in a few problems. This could be due to the fol-
lowing reasons: either the subgoal selection procedure of
AltAlt ps is too greedy, or the cost-sensitive search requires
better heuristics. A deeper inspection of the problems in
which the solutions ofAltAlt ps are suboptimal revealed that
although both reasons play a role, the second reason domi-
nates more often. We found in most of these problems that
in fact our subgoal selection procedure returns the correctset
of subgoals, but the plan found is a little more expensive than
the optimal plan found with OptiPlan. To resolve this issue
we intend to develop more powerful heuristics for the plan-
ning phase ofAltAlt ps . Heuristics that take into account
negative interactions (Nguyen, Kambhampati, & Sanchez
2002) could help us to improve the solutions returned.

In all the problems, when a classical planner was used that
would automatically achieve all the goals, the resulting plans
often had a significantly lower and sometimes even negative
total net benefit when compared to OptiPlan andAltAlt ps .

Over-subscription Scheduling and Partial
Satisfaction Planning

Planning and scheduling are two related areas that contain
many real world problems that are over-subscribed. Exam-
ples of over-subscription problems include many space ap-
plications. For instance, over-subscription problems have
been identified in for image scheduling on Landsat 7 (Potter
& Gasch 1998), satellite observation scheduling (Franket al.
2001; Globuset al. 2003), space shuttle ground processing
(Zwebenet al. 1994), airlift scheduling (Kramer & Smith
2003), and the scheduling Hubble Space Telescope (John-
ston & Miller 1994). The problem of partial satisfaction and
over-subscription deals with the problem of choosing a sub-
set of goals or tasks that can be achieved within the available
time and resources. There are, however, subtle differences
between partial satisfaction planning and over-subscription
scheduling.

In scheduling, the problem of over-subscription is cen-
tered on the allocation of resources to tasks over time. In an
over-subscription problem there are more tasks to accom-
plish within a given time period than there are available re-
sources. Typical objectives are to optimize resource usageor
to accomplish as many tasks as possible. Constructive and
repair based approaches have been developed to solve these
kind of problems and, recently, stochastic greedy search al-
gorithms on constraint based intervals (Franket al. 2001)
and genetic algorithms (Globuset al. 2003) have success-
fully been applied.

Repair based approaches start with a feasible or a nearly
feasible schedule and then apply iterative repairs or im-
provements to the schedule (Mintonet al. 1992; Johnston &
Miller 1994; Kramer & Smith 2003).AltAlt ps also applies
an iterative approach, it constructs an initial relaxed-plan for
a single goal, and then this plan is used to augment the final
set of goals that will be considered during search. How-
ever, the heuristics employed byAltAlt ps are quite differ-
ent to the set of heuristics used in over-subscription schedul-
ing (Kramer & Smith 2003) because we do not consider time
or resource usage, but just the final benefit of the plan.

In a constructive based approach, schedules are built in-
crementally by heuristically adding more tasks to the partial
schedule until no more tasks can be added. Potter and Gasch
(1998) use a constructive based approach that allows limited
backtracking for image scheduling on the Landsat 7.

In planning, over-subscription is more centered on the
goals. Over-subscribed planning problems or PSPs are prob-
lems in which there are too many goals that can feasibly be
achieved within the available time and resources, or in which
goals are conflicting, necessitating choosing a subset of non-
conflicting goals. Current planning systems are not specif-
ically designed to handle problems in which a conjunction
of goals can not be entirely supported. In other words, prob-
lems in which it is necessary to partially support a subset
of the top level goals given certain metrics. Unfortunately,
most of the real world problems fall under this category.



Conclusions and Future Work
In this paper, we investigated a generalization of the classi-
cal planning problem that allows partial satisfaction of goal
conjuncts. We motivated the need for such partial satisfac-
tion planning (PSP), and presented a spectrum of PSP prob-
lems. We then focused on one general PSP problem, called
PSP Net Benefit, and developed an optimizing (OptiPlan)
and a heuristic (AltAlt ps ) planner for it. Our preliminary
empirical results show that the heuristic approach is able to
generate plans whose quality is quite close to the ones gen-
erated by the optimizing approach, while incurring only a
fraction of the cost. We have also presented an spectrum of
over-subscribed scheduling problems, and the most common
approaches for solving them. We have introduced some con-
nections among PSP and over-subscribed scheduling prob-
lems, which will help us to develop new techniques in our
future work.

Our future work will extend our greedy framework to
more complex planning problems. Specifically, we plan to
consider problems in which goals may be interacting (e.g.
they are mutexes), requiring a more aggressive account for
interactions. We also plan to extend our approach to han-
dle more sophisticated metrics (e.g. resource usage, multi-
objective estimations). Finally, we would like to take some
ideas from the scheduling area to improve our goal selec-
tion procedure. Specifically, we plan to adapt the heuristics
developed by (Kramer & Smith 2003) for swapping tasks
to rank actions in multiple plans. Our general idea consists
of generating feasible plans for single goals and then merge
and retract those actions among the plans that maximize our
metrics.
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