Exploiting Symmetry in the Planning graph via Explanation-Guided Search

Terry Zimmerman & Subbarao Kambhampati
Department of Computer Science & Engineering
Arizona State University, Tempe AZ 85287
Email: {zim,rao}@asu.edu URL: rakaposhi.eas.asu.edu/yochan.html

Abstract

We present a method for exfiog the symmetry

in the planning graph structure and certain redun-
dancies inherent in the Graphplan algorithm, so as
to improve its backward search. The main insight
underlying our method is that due to these features
the backward search conducted at level k + 1 of the
graph is essentially a replay of the search con-
ducted at the previous level k with certain well-
defined extensionsOur method consists of main-
taining a pilot explanation structure capturing the
failures encountered at previous levels of the
search, and using it in an intelligent way to guide
the search at the newer levels. The standard EBL
and DDB techniques can be employed to control
the size of the pilot explanation. The technique has
been implemented in the EGBG system, and we
present a preliminary empiricalusty.

experience and, due to the inherent symmetry of the
planning graph, closely models the search that Graph-
plan in fact undertakes at the next level. This trace
structure prescribes the minimal set of constraints
(search backtrack points) that need to be checked
based on the experience at the previous level. Should
all these constraints also hold at the current level the
planning graph can immediately be extended to a new
level. At every point where a constraint no longer
holds backward search is resumed and the pilot expla-
nation extended to reflect the experience gained

This approach, then, seeks to speedup Graphplan by
avoiding all redundant search effort at each level of the
planning graph at the cost of building, extending, and
using the trace structure that is the pilot explanation.
The idea of building an entire trace of the experience
during a search process so as to later shortcut the effort

needed to solve a similar problem is, of course, an old
; one (c.f. [Veloso, 94; Ihrig & Kambhampati, 97]). For

1 Introduction most problems of real interest the sheer size of the
The advent of Graphplan [Blum & Furst, 95] as one oftrace structure makes the approach ineffective. It's the
the fastest programs for solving classical planningsymmetry of the planning graph and the search that
problems, marked a significant departure from theGraphplan conducts at each level that makes such a
planning algorithms studied up to that time. Recentlytechnique even feasible for this system. And even
efforts have been made to place the approach in pethen, great care must be take to retain only essential
spective and investigate the applicability of a varietysearch information in the trace structure and to control
of speed-up techniques that have been proven effectivies growth if the “larger” planning problems of interest
in other planning and search-based problem-solvingire to be addressed.
systems. The rest of this paper is organized as follows. Sec-

Graphplan conducts it's problem solution search bytion 2 provides a brief review of the Graphplan algo-
interleaving two distinct phases: a forward phase theithm. Section 3 presents our approach for guiding
builds a “planning graph” structure followed by a backward search with the pilot explanation. This sec-
phase that conducts backward search on that structurgon first considers the sources of redundancy in the
As it turns out, the planning graph contains a high deGraphplan, and explains how the representation and
gree of redundancy and symmetry suggesting severalse of the pilot explanation is geared towards exploit-
avenues for speeding up the search by exploiting thesag this redundancy. Section 4 describes results of pre-
features. liminary experiments with EGBG, a version of Graph-

This paper describes initial work with a novel ap-plan that uses the pilot explanation structure. Section 5
proach that takes full advantage of the particular symeliscusses several ways of improving the representation
metry of the planning graph and Graphplan’s backwardf the pilot explanation, by complementing the Graph-
search. During each backward search episode a coplan’s search algorithm with Explanation-based learn-
cise trace structure (termed the ‘pilot explanation’) ising and Dependency directed backtracking. Section 6
generated to capture the key features of the search adiscusses related work and Section 7 presents our con-
this is then carried forward (assuming the search failglusions.
to find a solution) to direct subsequent search at all

future levels of the planning graph. The pilot explana? Overview of Graphplan

tion thus acts a sort of memory of the previous searc

Graphplan algorithm [Blum & Furst, 97] can be seen as
a “disjunctive" version of the forward state space
planners [Kambhampati et. al., 97]. It consists of two
interleaved phases — a forward phase, where a data
structure called “planning graph" is incrementally ex-
tended, and a backward phase where the planning

" This research is supported in part by NSF young investigator
award (NYI) IRI-9457634, ARPA/Rome Laboratorytiative

grant F30602-95-C-0247, Army AASERT grant DAAH04-96-1-
0247, AFOSR grant F20602-98-1-0182 and NSF grant IRI-
9801676.

graph is searched to extract a valid plan. The planning

4 . h Action li P ition list Action list P ition Li
graph (see Fig. 1) consists of two alternating struc- ction list Proposition list Action list Proposition List

o ! L . . Level k-1 Level k-1 Level k Level k
tures, called proposition lists and action lists. Fig. 1 ,
shows a partial planning graph structure. We start with
the initial state as the zeroth level proposition list. 7 nop— Z
Given a k level planning graph, the extension of -7 no -7
structure to level k+1 involves introducing all actions nop— nop
whose preconditions are present in tHelével propo- al w al w
sition list. In addition to the actions given in the do- X nop X
main model, we consider a set of dummy “persist"
actions, one for each condition in th& llevel proposi- a2 a2 v
tion list. A ““persist-C" action has C as its precondition no Y no
and C as its effect. Once the actions are introduced, the - a
proposition list at level k+1 is constructed as just the ~H
union of the effects of all the introduced actions. The a4 H no H
planning graph maintains the dependency links be- 57 a4]
tween the actions at level k+1 and their preconditions a5 J no
in level k proposition list and their effects in level k+1 noz; a5 ~J

proposition list.
The planning graph construction also involves com- no
putation and propagation of “"mutex" constraints. The

propagation starts at level 1, with the actions that are Figure 1. Examp|e p|anning graph showing action and

statically interfering with each other (i.e., their pre- propostion levels and some of the mutex action pairs
conditions and effects are inconsistent) labeled mutex.

Mutexes are then propagated from this level forwar . .

through the use of two simple propagation rules. | Explanation-Guided Backward

Figure 1, the curved lines with x-marks denote the Search

mutex relations: two propositions at level k are marked) _) _
mutex if all actions at level k that support one propo-We first describe the structural symmetry inherent in
sition are mutex with all actions that support the secthe planning graph and the use of the pilot explanation
ond proposition. Two actions at level k+1 are mutex ifto take advantage of it during the backward search
they are statically interfering or if one of the proposi-Phase. The overhead entailed by such a system and the
tions (preconditions) supporting the first action is mu-resulting tradeoffs that must be considered are then
tually exclusive with one of the propositions support-discussed.

ing the second action. It should be noted that mutex . .

checking forms an integral part of both the graph3-1 Taking advantage of planning graph
building phase and the backward search phase, andisa symmetry

major contributor to the total cpu time Graphplan MaYpue to the inherent symmetry of the planning graph

spend on a problem.
The search phase on a k level planning graph inthe backward search conducted at level k + 1 of the

volves checking to see if there is a sub-graph of th‘?hraph is essentially a replay of the search conducted at

; . ; e previous level kwith certain well-defined exten-
planning graph that corresponds to a valid solution .t%iong[lhrig & Kambhampati, 97]. When backward
the problem. This involves starting with the proposi-gorch at level k fails to find a solution the technique
tions corresponding to goals at level k (if all the goal

) . roposed here captures all the key features of the
are not present, or if they are present but a pair of the ; ; ;
is marked mutually exclusive, the search is abandone arch episode in a special trace structure (termed the

> ; . ilot explanation) which is then carried forward to di-
right away, and planning graph is grown another level)ro oy the search at all future levels of the planning

For each of the goal propositions, we then select aa ; ;
. p ' ' . raph. At successively higher levels the trace structure
action from the level k action list that supports it, suchy oqcribes the minimal set of constraints (search back-

that no two actions selected for supporting two differ- ;
: ; track points) that need to be checked based on the ex-
ent goals are mutually exclusive (if they are, we backyqjence at the previous level. Should all these con-

track and try to change the selection of actions). Onc traints also hold at the current level the planning

all goals for a level are supported, we recursively cal raph can immediately be extended to a new level. At

the ﬁam_e search process on the k-1 level plannin very point where a constraint no longer holds back-
graph, with the preconditions of the actions selected ard search is resumed and the pilot explanation ex-
level k as the goals for the k-1 level search. The sear nded to reflect the experience gained

.S“.,‘[?Cleesst v;/hen we reach level 0 (corresponding to the 1pg tolowing symmetrical or redundant features of
initial state). ; i i

. , . the plannin raph suggest possible shortcuts in the
A final aspect of Graphplan's search is that when E%earf:)h procgesg ch))nductgegd at gach new level:

set of (sub)goals for a level k is determined to be ung™" the"nroposition goal set that is to be satisfied at a
solvable, they arenemoizecat that level in a hash ta- new level k is exactly the same set that will be
ble. Correspondingly, when the backward search proc- oo -hed on at level k+1 when the planning graph

ess later enters level k with a set of subgoals, they are ; ; e
: : ! ; is extended. That is, once the goal proposition set
first checked against the hash table to see if they've g present at level k it will be pr‘gesenrt) atpall future

already been proved unsolvable. levels

¢ The set of actions that can establish a given propo-
sition at level k+1 always include the set estab-

(future) Level k +1

lishing the proposition at level k anday include

GOALS: WXYZ
Level k

some newly added actions.

e The “constraints” (mutexes) that are active do not
vary randomly over successive levels. A mutex
that is active at level k may or may not continue to
be active at level k+1, but once it becomes
inactive at a level it never gets re-activated at
future levels. For example, when a new action Al
is introduced at level k it's mutex status with every
other action (in pair-wise fashion) at that level is
determined. If it is mutex with A4 the pair may
eventually become non-mutex at a future level, but
thereafter they will remain non-mutex. And if Al
is initially non-mutex with A3 at level k it will
never become mutex at higher levels.

e Two actions in a level that are “statically” mutex
(i.e. their effects or preconditions conflict with
each other) will be mutex afl succeeding levels

Level k-1

Level k-2

These factors, taken together, are responsible for
considerable similarity (i.e. redundancy) in Graph-
plan’'s search performed at each successive planning
graph level. Figure 2 illustrates the trace of such a

Level k-3

search episode for the problem in Figure 1. The

Initial State.

goals/subgoals to be satisfied as the backward searcfy

proceeds to each lower planning graph level are indi
cated within the circular nodes while the actions as
signed to provide these goals are indicated by arrow
The points at which the search must backtrack (stati

ﬂ:}actmn is “dynamic mutex” with a previously assigned action

action is “static mutex” with a previously assigned action
Domain operators: al, a2, a3, a4, a5, “persists” operator shown as “nop”

Node for goal W with assigned action a1 ﬂ Transfer of successful search to lower level

al ' Transfer of search fails due to ‘nogood"
‘Nogood'
SS :Search Segment

or dynamic mutex action pairs or subgoals that are
nogoods) are also shown.

The search trace in figure 2 can actually be viewedigure 2. CSP-style trace of backward search at level k of the
as an “explanation” for why search failed at level k or, planning graph

?Iterlnl?t%y, W.gy th Y Z may be savcﬁd asa nr(])goqd 83umed under the search parameters corresponding to the
level k. | onsi gr(;[e f]'tlljat"?n 0”%‘” IS gga}rc IeIEJIrS_ELO Facktrack point in the search trace. Such partial search
IS complete and Graphplan Is ready to add leve WQnisodes will either find a solution or generate additional
the graph and conduct backward search again at thg o 1o augment the parent trace.

new level. ~The search trace that will result from "gocq se this specialized search trace can be used to
Graphplan’s attempt to satisfy these goals beginning &fi-ect all future backward search for this problem we
level k+1 will closely resemble the search conducted afoter to it as theilot explanation (PE)

level k. In fact thesame search trace applies at level “Note that in order to be sound the proposed system
k+1 as long as the following 3 conditions hold using the pilot explanation must revalidaaé of the
same constraints that standard Graphplan search would

1. The action mutexes in the explanation for level k
arestill mutex for level k+1

2. There are no new actions establishing the goaﬁ
propositions appearing in the explanatibat were
not also present (and explained away) at level k

3. Any nogoods appearing in the k-level failure ex-
planation are also valid at the respective levels
they map to in the search beginning at level k+1.

If these 3 conditions should happen to also hold for level
k+1 we can immediately extend the graph to level k+2
because the goal set is also a nogood for level k+1. In this
case the pilot explanation is carried forward to level k+2,
unchanged. :
A much more likely scenario will be that some number of
the conditions will no longer hold when the trace is ap-
plied to level k+1. We can use the level k search trace to
actually direct level k+1 search in a sound manner as long
as each instance of one of these 3 conditions that appears
in the trace is checked at the new level. If the constraint
or condition holds no action is required. For each condi-
tion that doesiot hold the backward search must be re-

encounter at the points where it is forced to backtrack.
o where is the hoped for search speedup? There are 3
rimary sources:

None of the many successful action assignments
made during the search that builds the PE have to
be re-assigned during search at the next planning
graph level. In general each of these assignments
involved multiple mutex checks (with the previ-
ously assigned actions) and, as mentioned in Sec-
tion 2, it is mutex checking that accounts for most
of the cpu time Graphplan expends in a given
search episode.

Noneof the many nogood checks made by Graph-
plan in the search embodied by the PE have to be
repeated. This includes both the situations in
which the subgoals were found in the memoized
entries for the lower level (requiring backtracking)
and situations in which the subgoals are not (ini-
tially) found to be nogood (so backward search
continues at the lower level) Justification for this
economy is given in the next section.

search segment (§S:encapsulates the backward search con-

du

cted duringneinstance of search within a plan graph level

SS-goals the goals to be established for this level and path

SS-assignsesults of attempts to satisfy the SS goals, groupe

on a goal-by-goal basis. Possible results aie: -for

successful action assigiym -(an integer) action is dynamic
mutex with the nufhaction assign attempted, 61" -no

need to test: for static mutex, nogood, or transfer to next leyel

SS-transin: list of transfer-in events for transfers to this sear
segment from a higher level

pilot explanation (PB :

en

search episodes that must be checked after the next plan

1 a multi-level list of search segmen
capsulating only the dynamic features of previous backward
raph

extension. The single top level search segment at the front of the
PE list is designated level 0, the last sublist in the PE list conthins

all

(level: (length PE) — 1).

search segments at the deepest level reached in previous gearch
For example: pilot explanation for Fig. 2

search episode is ((SS1) (SS2, SS3) (SS4))

Figure 3. Data structures used in the EGBG Algorith

Having the pilot explanation available permits
search at each successive level to be conducted
a variety of heuristics. That is, the search is n
longer restricted to the ‘top-down’ serial
processing dictated by
backward search.

standard Graphplan
As long as all the constraint®2. Resume backward search wherever a checkpoint

> Insert each completed search segment into the
‘pilot explanation’. If backward search reaches
the initial state, return plan; else extend the

planning graph one level.

When backward search fails to find a solution to
satisfy the plan goals the pilot explanation acts as an
explanation for this failure at the given planning graph
level. An alternate view is that the PE provides an
explicit guide for all future search that must be con-
ducted (to ensure soundness) at the next planning
graph level.

Let’s take the trace in Fig. 2 as an example PE pro-
duced after the first attempt at backward search on the
problem goals WXYZ at level k. Since a solution was
not found (as evidenced by the fact that the trace does
not extend down to the initial state), the planning
graph is extended to level k+1 and from this point on
the pilot explanation directs all search for the problem

lution. There are two processes entailed that can be

terleaved inany order:

1. Visit and check each of the backtrack points in the
PE (hereafter termed ‘checkpoints’)

within the PE (as described above) are addressed no longer holds.

before extending the planning graph, they can b
processed in any desired order.

For example, th%erifying Checkpoints

approach employed in our initial experiments is to Note that the trace in Fig. 2 can be viewed as four
conduct search from the bottom-up during eachintra-level search segments; there is one search seg-
search episode. A promising idea is to first checkment under level k, two under level k-1 and one under
the PE backtrack points that lie closest to thdevel k-2. All checkpoint verification must be done in
initial state (level 0), which is the goal of the the context of the current planning graph level that
backward search. If they can be extended down toorresponds to the pilot explanation level the check-
level 0 considerable search effort during thatpoints appear in. Once all checkpoints in a given
episode will be avoided. search segment are processed, the subgoals that were
he targets of that partial search can be memoized at
! ! ! hat level, because (assuming a solution wasn't
using this potentially large search trace structuré g,ched) they necessarily comprise a nogood. This
These "#e allddr_eﬁsecfi in section 3.3 after we first degrresponds fo the memoization performed by standard
scribe the algorithm for using the pilot explanation toGanhplan when it backtracks out of a level during the
direct all future search and planning graph extension. ¢oarch process

In Fig. 2 there are 15 action mutex checkpoints and

There are of course costs incurred in building an

3.2 Using the Pilot Explanation

6 nogood checkpoints to be processed. Eleven of these

EGBG (Explanation-Guided Backward-search
Graphplan) can be viewed as consisting of 3 phases.
The two preliminary phases that enable the use of the
PE to speed up search can be summarized as:

1. Initial Planning graph Build Phse -From the ini-
tial state build & extend the planning graph in
standard Graphplan fashion until a level is reached
containing the goals: separately identify/mark ac-
tions that are static and dynamic mutex

First Backward Search Gonduct the 1 backward
search from the top level with goals in standard
Graphplan fashion. But fogach‘search segment’,
SS (see Fig. 3 for the definition of search seg-,
ment):

» Save in SS, the goals addressed in that segment
» Save in SS, in the order encountered and
grouped by goal: an identifier for results of each
action assignment attempted

When all segment goals have been satisfied add
the list of all actions assigned & a pointer to
current search segment to the next lower level
search segment

»

forentail no significant processing at all:

5 of the mutex checkpoints are due to static mutex
conditions between actions —that is the last as-
signed action clobbers either an effect or precon-
dition of some action assigned higher up in that
level. Such mutex conditions can never be relaxed
so there is no need to check their validity on each
planning graph extension. Although the relative

percentages vary by problem domain, generally 20
— 50% of all mutex conditions encountered during

the course of a problem search are of the static

type.

Six of the checkpoints are associated with the

nogood checking that occurs when all goals in a
search level are successfully assigned and the re-
sulting subgoals are compared against the memo-
ized nogoods for the next level. These constitute
another type of redundant checking performed by
Graphplan that can be avoided by using the PE.
The successful transfers of subgoals to the next
level in the PE (the clear arrows in Fig. 2) are

guaranteed to be valid at all future levels -i.e. they

SEARCH-WITH-PILOT-EXPLANATION (PE: pilot Resuming Backward Search

___explanation, PG: plan graph) We next describe the process entailed when a check-
Li:Letn= ’Elumbtﬁf of propation 'e‘{.e'sl'? Pc')a” graph point is found to no longer hold at a new level.
orp = |lengtn ofr pilot explanation| to . .
(i.e. from deepest level searched previously to top levgl) Amongst the checkpoints then, only dynamic mutex
For each search segm&8iin levelp of the pilot explanation checkpoints must be tested. If such a mutex is found to
Store the goal-by-goal results containe8Srassignsn no longer hold, the checkpoint indicates a position at

Gresultsand clealSS-assigns
Call Process-Assign-Level (nS-goals, SS, Gresults,
PG, n-
If no plan found, memoiz8S-goalsat plan graph level-p

which backward search must be resumed.
Invalid Mutex Conditions:If an action mutex check-

PE processing complete, no soln found for n-level plan graph. point in the explanation is found to no longer hold at
-extend the plan graph one level level k+1, this is indicative of a possible means of sat-
Go'ttrg{‘f'ate the PE up to the new top level isfying the goals that was disallowed at the previous
level. Backward search therefore resunaéghe point
PROCESS-ASSIGN-LEVEL (A: actions already assigned, where the mutex caused backtrackinghe action as-
G: goals left to assign, SS: search segment, Gresultaproc- signments for the goal propositions up to the point of
" g?:i%ta:fr;ggresu"s' PG: plan graph, k: pg level) the mutex failure are augmented with the action as-
Select front goa from G signment that was precluded by the (no longer valid)
LetAg be the set of actions from leveln PG that supporty mutex. Search continues below this point until either a
Add emplttwe]nget?»U"S“St.tO efg)OfSS-aSS'gMW'” hold the solution is found or the resumption point is returned to.
resuits or action assigns H H H
Select fronGresults the front set of assignment results: The PE trace IS e.XtendEd durlng this search and the
gresults (from previous search episode) mutex checkpoint is replaced by the subtrace so gener-
L1: Select front actiomct in Ag ated.
'f%fsetgg'ltigferesm&gﬂgsgga”d rest ofg arenew ~ To ensure that the pilot explanation is complete in
Call PROCESS-NEW-ACTIONS\(G, Ag, Newresults, it's encapsulation of a Graphplan backward search epi-
_ SS, PG, k sode we must also check for the presence of new ac-
e|S|$asr(e;|§6t_glgngcez%s%ghna;erigfggnl}rl%ggrerflléltsé {0 next godl tions that may be establishers of a goal at level k but
= i icts, --movi X : _ ;
Call PROCESS-ASSIGN-LEVELA(+ ach), (restG), S not at level k-1 when the PE trace was built.
Gresults, PG, k) ; . i (P
else ifares is an integeract caused a dynamic mutex New Actions: A go_al prop05|_t|on P at level k+1 COU'd.
checkpoint, --it must be tested: have more establishing actions than at level k, indi-
If actis still dyn mutex wrt the action at pitien cating that a new action has been added during plan-
aresof A ning graph extension. At each occurrence of unas-

Add aresto end ofNewresults . " i . . >
else mutex no longer holds, resume search & extend| PE signed proposition P in the pilot explanation search is

Call ASSIGN-GOALS ((resB), (A + act), SS,PG, k) resumed using the values of any previously assigned
(Rggckl\(lv?rd Sgarfc,\cl reachPhs the init state, returns plan) goal props and augmenting them with the new action

'ok’ to end ofNewresults ; . o)
elsearesis a checkpoint that doestneed to be tested aSSIQHment to P. Search c_ontlnu_es .unt” either a solu
Addaresto end ofNewresults tion is found or the resumption point is returned to. In

If Ag is empty return, else go to L1 the latter case the trace for this search segment is in-

. . serted via a new establisher of P in the PE.
PROCESS-NEW-ACTIONS (A: actions already assigned,

G: goals to assign, N: new actions for front goal,
Newresults: list of new assign results for front goal of G, 3.3 Costs and Tradeoffs

SS: search segment, PG: plan graph, k: pg level) . - " .)
Letg be the front goal its The overhead entailed in building the pilot explana

L1:1f N is empty, return tion, storing adequate information in it, and subse-
else Select front acti@et fromN quently using it is not insignificant. It's comprised
Ifact is mutex with some action iy primarily of:
save the appropriate assign result ('nt' for stat mutey, ’
gg”ttggﬁr for dyn mutex)hlewresduits 1. PE construction time cost during backward search
else assigaet to g and resume backward search on 2. Startup cost for backward search resumption —in-
remaining goals (extending the PE): curred each time a checkpoint no longer holds and
Call ASSIGN-GOALS ((res®), (A + act), SS, PG, k) the information needed to re-initiate search must
(if backward search reaches the init state, returns plan) be gathered.
gotoLl. 3. Storage space required to retain the PE.

Figure 4. Pseudo code description of EGBG'pBase The first two of these factors will work directly to
offset the three speedup factors discussed in section 3.1
The last factor impacts not only the machine storage

cannot become a nogood at a higher planning€duirements but, depending on a given platform's
graph level. The specific subgoals found to con- garbage collection” scheme, can have a significant
stitute a nogood (indicated by black arrows in Fig.Impact on runtime also. o
2) may, however, no longer be in conflict at some For “small” problems (where the solution is found
higher plan graph level that the PE is translated toduickly by Graphplan after only a few search episodes)
But sinceall search segments above and below thdhis approach can be expected to show little if any ad-
nogood of concern will necessarily be processed@ntage. The overhead of constructing the pilot expla-
before this search episode ends the nogoods wilfation is likely to more than offset the few search epi-
just as necessarily be "proven” in the process -or odes in which it could be used to shortcut the search.
solution will be found making the issue moot. he real speedup is likely to be seen in the larger
problems involving many episodes of deep search on
the planning graph. However, as we discuss in the

Problem EGBG Standard Graphplan
Total Bktrks Mutex | Size Total Bktrks Mutex Speedup
Time Cheks | of PE Time Cheks
BW-Large-B (18/18) 4.13 1100 K 3566 K | 944 9.8 2823 K 8117 K 2.4x
Rocket-ext-a (7/36) 5.05 906 K 215K 320 53.2 8128 K 2944 K 10.5x
Tower-5 (31/31) .9 316 K 643 K | 2722 21.4 7907 K | 23040 K 23.8x

Table 1L Comparison of EGBG with standard Graphplan. Times given in cpu minutes on a sparc ultra 1 running Allegro
common lisp. Numbers in parentheses next to the problem names list the number of time steps and number of actions re-
spectively in the solution. A measure of the backtracks and mutex checks performed during the search are also shown. "Size

of PE" gives a measure of the pilot explanation size in terms of the final number of "search segments”

Problem EGBG with EBL/DDB EGBG Speed
Total Bktrks Mutex | Size Total Bktrks Mutex Size up
Time Cheks | of PE Time Cheks of PE
BW-Large-A (12/12) 11.9s 2.9K 11K 47 12.5s 3.5K 1.4K 75 1.05x
Rocket-3-2-5 (5/20) 12.7 s 2.0K 1.0K 26 24.4 s 2.0K 1.0K 66 1.92x
Hanoi-Tower-3 23.3s 14.1 K 66.7 K 170 52.2s 38.3K 300K 283 2.24x

Table 2 Comparison of EGBG and EGBG augmented with EBL\ DDB on 3 small problems . Times are given in cpu sec-
onds. A measure of the backtracks and mutex checks performed during the search are also shown. "Size of PE" gives a
measure of theilot explanation size in terms of the number of "searansnts" it contains in the end.

next section, these are also the kinds of problems thahe (as yet non-optimized) garbage collection system
can generate huge pilot explanations with all the storand doesn’t emerge!
age and garbage collection problems it entails. There are a variety of approaches that can be pur-
sued to enable EGBG to extend its reach to the higher
; i levels and large search spaces. The next section ex-
4. Experimentation plores the role of the size of the PE.

The EGBG program involved a major augmentlation
and rewrite of a Graphplan implementation in Lisp TR ; ;

The planning graph extension routines were augmente%' Minimizing the Pilot Explanation

to discriminate between static and dynamic mutexe#ny reduction that can be made to the size of the pilot
and to facilitate the translation of the PE across levelsexplanation pays off in two important ways:

The backward search routines were augmented to build .

the PE during search. Once the initial PE is built,® [nere are fewer checkpoints that need to be proc-
search control is taken over by a separate set of rou- ©£5S€d at each planning graph extension

tines that process any dynamic checkpoints and detef- [Nne storage (and garbage collection) requirements
mine when search must be resumed. are reduced.

Table 1 provides a comparison of EGBG with stan- The blind search conducted by Graphplan travels
dard Graphplan on some "benchmark” size problemgown many fruitless search branches that are essen-
from [Kautz & Selman, 96] in three domains. Thetjally redundant to other areas of its search trace. And
speedup advantage of EGBG is respectable on thesg course EGBG builds these into the pilot explanation
problems, ranging from 2.4 to almost 24 times faster. and retains key aspects of them, revisiting dynamic

The experience to date with the EGBG system omheckpoints at their leaf nodes during each backward
some of the larger problems has shown it to be sens&earch episode.
tive to space and memory management issues. While we are investigating two different approaches to
generally conducting it's level search significantly minimizing the PE so as to extend the range of prob-
faster than Graphplan in the early to middle stages dbms addressable with EGBG under our current ma-
the problem search, EGBG may eventually gets boundhine limitations.
up by the Lisp garbage collection system before it can One approach that immediately presented itself was
complete it's solution search. For example the Ferryto take advantage of concurrent work being conducted
41 problem is solved by standard Graphpdardevel in our group on improving Graphplan’s memoization
27 of the planning graph in approximately 123 minyoutines by adding dependency-directed backtracking
utes. Up to level 18, EGBG search is 25 times faste{DDB) and explanation-based "learning (EBL) capa-
than standard Graphplan search. However around levgljities [Kambhampati, 99]. The EBL and DDB strate-
19 the current implementation of EGBG succumbs tqjies complement our explanation-guided backward
search technique quite naturally. The presence of EBL
! The original Lisp implementation of Graphplan was done byand DDB techniques reduces the sizes of the PE's and
Mark Peot and subsequently improved by David Smith also makes them more likely to be directly applicable
2 0n an Ultra-Sparc, compiled for speed, with improved memoiin future levels (as the dynamic checkpoints embodied
zation based on the “UB-Tree” structures developed by Koehlein the explanation are more focused). At the same
and her co-workers [Koehler et. al., 97] time, the PE provides a more powerful way of ex-

ploiting the past searches than EBL-based nogood3 cgnclusion and Future Directions
alone do. :

The integration of the EBL and DDB strategies intoWe presented a method for exploiting the symmetry in
our EGBG system significantly changes the manner iihe planning graph structure of Graphplan algorithm to
which the pilot explanation is used during each searcimprove its backward search. The main insight under-
episode. Rather than visiting and processing eaclying our method is that due to the inherent symmetry
checkpoint in the explanation the conflict sets generof the planning graph the backward search conducted
ated by the mutex checks and those returned by arst level k + 1 of the graph is essentially a replay of the
partial search conducted can be used to indipa¢e search conducted at the previous level k with certain
cisely which checkpointshould be processed. This well-defined extensions We presented a structure
avoids visiting and possibly conducting search belowcalled the pilot explanation, which captures the failures
checkpoints that ultimately have no possibility ofencountered at previous levels of the search. This
leading to a solution. structure is used in an intelligent way to guide the

Although incorporating EBL/DDB into the backward search at the newer levels. We implemented this ap-
search routines in EGBG is straightforward, it is moreproach in a system called EGBG, and presented a pre-
problematic to implement efficient processing of con-liminary empirical study with the system. We also dis-
flict sets in the routines that search using the pilot excussed the importance of minimizing the size of the
planation. Table 2 shows the results produced by apilot explanation and some relevant techniques, in-
EBL/DDB enhanced version of EGBG on the 3 suchcluding a recent EBL and DDB implementation for
problems. The speedup improvement is modest, a@sraphplan. Our near-term focus will be to address the
expected, since the time spent in search for these smaitoblems currently limiting the size of problems that
problems is only a fraction of the total time. However,can be handled by the system. Future areas of investi-
the table also shows the dramatic impact thagation will include a study of various heuristics and
EBL/DDB has on the size of the pilot explanation, re-methods for using the PE to direct search. These could
ducing it by roughly 50%. We are currently rewriting entail jumping about to process the various check-
this part of EGBG as our first version turned out topoints in a "best first" manner or even deliberately not
have some implementation inefficiencies that inhibitedorocessing certain unpromising checkpoints (and
it from scaling up to larger problems. thereby accepting the loss of soundness) in the hopes

A second promising approach is to restrict the sizedf short-cutting the search.
of the pilot explanation. EGBG currently "grows" the
PE every_t|ime_ backward search is resumed, Wi”?,OUReferences
regard to it's size or the possible relevance of the "ex-))
planation” it is building. However, the PE can easilyBlum, A. and Furst, M. 1995. Fast planning through planning
be made static after a given size limit is reached and 9raph analysis. lifroc. IJCAI-95(Extended version appears
still provide, during each backward search episode, all " Artificial Intelligence, 90(1-2) _ _
the search shortcuts it embodies. Alternately, somé&rost, D and Dechter, R. 1994. In search of best constraint satis-
type of relevance-based heuristic could be employed to faction search. In Proc. AAAI-94. . _
determine what portions of a learned PE are mostlyMg; L, and Kambhampati, S. 1997. Storing and Indexing
likely to be useful and hence should be retained. That /an Derivations through Explanation-based Analysis

is, the well-known EBL issue of 'how much is too S/l‘c)ll.??.tri%\éa;l'Fallures. Journalof Artificial Intelligence.

much' in the way of rules (or nogoods) also applies tQ ;
i) : . ambhampati, S., Parker, E., and Lambrecht, E., 1997. Under-
EGBG and it's use of the pilot explanation. standing and Extending Graphplan. In Proceedings "of 4
European Conference on Planning. Toulouse France.
6. Related Work Kambhampati, S. 1998. On the relations betweerllijeat

- . . Backtracking and Failure-driven Explanation Based Learning
Verfaillie_and Schiex [94] discuss and demonstrate jn cConstraint Satisfaction and Planningrtificial Intelli-

various EBL-type methods for improving dynamic gence. Vol 105.

constraint satisfaction problem (DCSP) solving, whichkamphampati, S. 1999. Improving Graphplan's search with EBL
underlies the Graphplan backward search. Our ap- & DDB. In Proc. IJCAI-99.1999.

proaches, while related, are much better customized tQpehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y. 1997.
take advantage of the particular type of DCSP struc- Extending planning graphs to an ADL Subset. Technical Re-
tural symmetry in Graphplan backward search. As we port No. 88. Albert Ludwigs University.

noted earlier, our approach is also related to, and committal, S. and Falkenhainer, B990. Dynamic Constraint Satis-
plements, the approaches to add EBL and DDB capa- faction Problems. IProc. AAAI-90

bilities to Graphplan. In particular, EBL approachesprosser, P. 1993. Domaiittéring can degrade intelligent back-
can only help decide if all methods of making a goal- tracking search. In Proc. IJCAI, 1993.

set true at a particular level are doomed to fail. Theschiex, T, and G.Verfaillie. dyood Recording for Static and

pilot explanation, on the other hand, also guides the Dnamic Constraint Satisfaction Problems. C.E.R.T-

search away from branches likely to fail, and allows O.N.E.R.A.

the planner to capitalize on the search penetration dormgsang, EConstraint SatisfactionAcademic Press. 1993.

at previous levels. In this sense, the pilot explanationgerfaillie, G and Schiex, T1994. Solution Reuse in Dynamic

are also related to the “sticky values” approach for Constraint Satisfaction Problems. In Proc. AAAI.

improving CSP [Frost & Dechter, 94] Veloso, M. 1994. Flexible strategy learning: Analogical replay
of problem solving episodes. In Proc. AAAI.

