
Abstract
We present a method for exploiting the symmetry
in the planning graph structure and certain redun-
dancies inherent in the Graphplan algorithm, so as
to improve its backward search. The main insight
underlying our method is that due to these features
the backward search conducted at level k + 1 of the
graph is essentially a replay of the search con-
ducted at the previous level k with certain well-
defined extensions. Our method consists of main-
taining a pilot explanation structure capturing the
failures encountered at previous levels of the
search, and using it in an intelligent way to guide
the search at the newer levels. The standard EBL
and DDB techniques can be employed to control
the size of the pilot explanation. The technique has
been implemented in the EGBG system, and we
present a preliminary empirical study.

1 Introduction
The advent of Graphplan [Blum & Furst, 95] as one of
the fastest programs for solving classical planning
problems, marked a significant departure from the
planning algorithms studied up to that time.  Recently
efforts have been made to place the approach in per-
spective and investigate the applicability of a variety
of speed-up techniques that have been proven effective
in other planning and search-based problem-solving
systems.

Graphplan conducts it’s problem solution search by
interleaving two distinct phases: a forward phase the
builds a “planning graph” structure followed by a
phase that conducts backward search on that structure.
As it turns out, the planning graph contains a high de-
gree of redundancy and symmetry suggesting several
avenues for speeding up the search by exploiting these
features.

This paper describes initial work with a novel ap-
proach that takes full advantage of the particular sym-
metry of the planning graph and Graphplan’s backward
search.  During each backward search episode a con-
cise trace structure (termed the ‘pilot explanation’) is
generated to capture the key features of the search and
this is then carried forward (assuming the search fails
to find a solution) to direct subsequent search at all
future levels of the planning graph.  The pilot explana-
tion thus acts a sort of memory of the previous search
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experience and, due to the inherent symmetry of the
planning graph, closely models the search that Graph-
plan in fact undertakes at the next level. This trace
structure prescribes the minimal set of constraints
(search backtrack points) that need to be checked
based on the experience at the previous level.  Should
all these constraints also hold at the current level the
planning graph can immediately be extended to a new
level.  At every point where a constraint no longer
holds backward search is resumed and the pilot expla-
nation extended to reflect the experience gained

This approach, then, seeks to speedup Graphplan by
avoiding all redundant search effort at each level of the
planning graph at the cost of building, extending, and
using the trace structure that is the pilot explanation.
The idea of building an entire trace of the experience
during a search process so as to later shortcut the effort
needed to solve a similar problem is, of course, an old
one (c.f. [Veloso, 94; Ihrig & Kambhampati, 97]).  For
most problems of real interest the sheer size of the
trace structure makes the approach ineffective.  It’s the
symmetry of the planning graph and the search that
Graphplan conducts at each level that makes such a
technique even feasible for this system.  And even
then, great care must be take to retain only essential
search information in the trace structure and to control
its growth if the “larger” planning problems of interest
are to be addressed.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief review of the Graphplan algo-
rithm.  Section 3 presents our approach for guiding
backward search with the pilot explanation. This sec-
tion first considers the sources of redundancy in the
Graphplan, and explains how the representation and
use of the pilot explanation is geared towards exploit-
ing this redundancy. Section 4 describes results of pre-
liminary experiments with EGBG, a version of Graph-
plan that uses the pilot explanation structure. Section 5
discusses several ways of improving the representation
of the pilot explanation, by complementing the Graph-
plan’s search algorithm with Explanation-based learn-
ing and Dependency directed backtracking. Section 6
discusses related work and Section 7 presents our con-
clusions.

2 Overview of Graphplan
Graphplan algorithm [Blum & Furst, 97] can be seen as
a ``disjunctive'' version of the forward state space
planners [Kambhampati et. al., 97]. It consists of two
interleaved phases – a forward phase, where a data
structure called ``planning graph'' is incrementally ex-
tended, and a backward phase where the planning
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graph is searched to extract a valid plan.  The planning
graph (see Fig. 1) consists of two alternating struc-
tures, called proposition lists and action lists. Fig. 1
shows a partial planning graph structure. We start with
the initial state as the zeroth level proposition list.
Given a k level planning graph, the extension of
structure to level k+1 involves introducing all actions
whose preconditions are present in the kth level propo-
sition list. In addition to the actions given in the do-
main model, we consider a set of dummy ``persist''
actions, one for each condition in the kth level proposi-
tion list. A ``persist-C'' action has C as its precondition
and C as its effect. Once the actions are introduced, the
proposition list at level k+1 is constructed as just the
union of the effects of all the introduced actions. The
planning graph maintains the dependency links be-
tween the actions at level k+1 and their preconditions
in level k proposition list and their effects in level k+1
proposition list.

The planning graph construction also involves com-
putation and propagation of `"mutex'' constraints. The
propagation starts at level 1, with the actions that are
statically interfering with each other (i.e., their pre-
conditions and effects are inconsistent) labeled mutex.
Mutexes are then propagated from this level forward
through the use of two simple propagation rules. In
Figure 1, the curved lines with x-marks denote the
mutex relations: two propositions at level k are marked
mutex if all actions at level k that support one propo-
sition are mutex with all actions that support the sec-
ond proposition. Two actions at level k+1 are mutex if
they are statically interfering or if one of the proposi-
tions (preconditions) supporting the first action is mu-
tually exclusive with one of the propositions support-
ing the second action.  It should be noted that mutex
checking forms an integral part of both the graph
building phase and the backward search phase, and is a
major contributor to the total cpu time Graphplan may
spend on a problem.

The search phase on a k level planning graph in-
volves checking to see if there is a sub-graph of the
planning graph that corresponds to a valid solution to
the problem. This involves starting with the proposi-
tions corresponding to goals at level k (if all the goals
are not present, or if they are present but a pair of them
is marked mutually exclusive, the search is abandoned
right away, and planning graph is grown another level).
For each of the goal propositions, we then select an
action from the level k action list that supports it, such
that no two actions selected for supporting two differ-
ent goals are mutually exclusive (if they are, we back-
track and try to change the selection of actions). Once
all goals for a level are supported, we recursively call
the same search process on the k-1 level planning
graph, with the preconditions of the actions selected at
level k as the goals for the k-1 level search. The search
succeeds when we reach level 0 (corresponding to the
initial state).

A final aspect of Graphplan's search is that when a
set of (sub)goals for a level k is determined to be un-
solvable, they are memoized at that level in a hash ta-
ble.  Correspondingly, when the backward search proc-
ess later enters level k with a set of subgoals, they are
first checked against the hash table to see if they've
already been proved unsolvable.

3 Explanation-Guided Backward
Search

We first describe the structural symmetry inherent in
the planning graph and the use of the pilot explanation
to take advantage of it during the backward search
phase.  The overhead entailed by such a system and the
resulting tradeoffs that must be considered are then
discussed.

3.1 Taking advantage of planning graph
symmetry

Due to the inherent symmetry of the planning graph
the backward search conducted at level k + 1 of the
graph is essentially a replay of the search conducted at
the previous level k with certain well-defined exten-
sions [Ihrig & Kambhampati, 97].  When backward
search at level k fails to find a solution the technique
proposed here captures all the key features of the
search episode in a special trace structure (termed the
pilot explanation) which is then carried forward to di-
rect the search at all future levels of the planning
graph.  At successively higher levels the trace structure
prescribes the minimal set of constraints (search back-
track points) that need to be checked based on the ex-
perience at the previous level.  Should all these con-
straints also hold at the current level the planning
graph can immediately be extended to a new level.  At
every point where a constraint no longer holds back-
ward search is resumed and the pilot explanation ex-
tended to reflect the experience gained

The following symmetrical or redundant features of
the planning graph suggest possible shortcuts in the
search process conducted at each new level:
x The proposition goal set that is to be satisfied at a

new level k is exactly the same set that will be
searched on at level k+1 when the planning graph
is extended.  That is, once the goal proposition set
is present at level k it will be present at all future
levels.
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Figure 1. Example planning graph showing action and
proposition levels and some of the mutex action pairs
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      Figure 2. CSP-style trace of backward search at level k of the
                      planning graph

x The set of actions that can establish a given propo-
sition at level k+1 always include the set estab-
lishing the proposition at level k and may include
some newly added actions.

x The “constraints” (mutexes) that are active do not
vary randomly over successive levels.  A mutex
that is active at level k may or may not continue to
be active at level k+1, but once it becomes
inactive at a level it never gets re-activated at
future levels.  For example, when a new action A1
is introduced at level k it’s mutex status with every
other action (in pair-wise fashion) at that level is
determined.  If it is mutex with A4 the pair may
eventually become non-mutex at a future level, but
thereafter they will remain non-mutex.  And if A1
is initially non-mutex with A3 at level k it will
never become mutex at higher levels.

x Two actions in a level that are “statically” mutex
(i.e. their effects or preconditions conflict with
each other) will be mutex at all  succeeding levels

These factors, taken together, are responsible for
considerable similarity (i.e. redundancy) in Graph-
plan’s search performed at each successive planning
graph level.  Figure 2 illustrates the trace of such a
search episode for the problem in Figure 1.  The
goals/subgoals to be satisfied as the backward search
proceeds to each lower planning graph level are indi-
cated within the circular nodes while the actions as-
signed to provide these goals are indicated by arrows.
The points at which the search must backtrack (static
or dynamic mutex action pairs or subgoals that are
nogoods) are also shown.

The search trace in figure 2 can actually be viewed
as an “explanation” for why search failed at level k or,
alternately, why W X Y Z may be saved as a nogood at
level k. Consider the situation once this search episode
is complete and Graphplan is ready to add level k+1 to
the graph and conduct backward search again at the
new level.  The search trace that will result from
Graphplan’s attempt to satisfy these goals beginning at
level k+1 will closely resemble the search conducted at
level k.  In fact the same search trace applies at level
k+1 as long as the following 3 conditions hold:

1. The action mutexes in the explanation for level k
are still mutex for level k+1

2. There are no new actions establishing the goal
propositions appearing in the explanation that were
not also present (and explained away) at level k

3. Any nogoods appearing in the k-level failure ex-
planation are also valid at the respective levels
they map to in the search beginning at level k+1.

If these 3 conditions should happen to also hold for level
k+1 we can immediately extend the graph to level k+2
because the goal set is also a nogood for level k+1.  In this
case the pilot explanation is carried forward to level k+2
unchanged.
  A much more likely scenario will be that some number of
the conditions will no longer hold when the trace is ap-
plied to level k+1. We can use the level k search trace to
actually direct level k+1 search in a sound manner as long
as each instance of one of these 3 conditions that appears
in the trace is checked at the new level.  If the constraint
or condition holds no action is required.  For each condi-
tion that does not hold the backward search must be re-

sumed under the search parameters corresponding to the
backtrack point in the search trace.  Such partial search
episodes will either find a solution or generate additional
trace to augment the parent trace.

Because this specialized search trace can be used to
direct all future backward search for this problem we
refer to it as the pilot explanation (PE).

Note that in order to be sound the proposed system
using the pilot explanation must revalidate all of the
same constraints that standard Graphplan search would
encounter at the points where it is forced to backtrack.
So where is the hoped for search speedup?  There are 3
primary sources:
1. None of the many successful action assignments

made during the search that builds the PE have to
be re-assigned during search at the next planning
graph level.  In general each of these assignments
involved multiple mutex checks (with the previ-
ously assigned actions) and, as mentioned in Sec-
tion 2, it is mutex checking that accounts for most
of the cpu time Graphplan expends in a given
search episode.

2. None of the many nogood checks made by Graph-
plan in the search embodied by the PE have to be
repeated.  This includes both the situations in
which the subgoals were found in the memoized
entries for the lower level (requiring backtracking)
and situations in which the subgoals are not (ini-
tially) found to be nogood (so backward search
continues at the lower level)  Justification for this
economy is given in the next section.



3. Having the pilot explanation available permits
search at each successive level to be conducted by
a variety of heuristics.  That is, the search is no
longer restricted to the ‘top-down’ serial
processing dictated by standard Graphplan
backward search.  As long as all the constraints
within the PE (as described above) are addressed
before extending the planning graph, they can be
processed in any desired order.  For example, the
approach employed in our initial experiments is to
conduct search from the bottom-up during each
search episode. A promising idea is to first check
the PE backtrack points that lie closest to the
initial state (level 0), which is the goal of the
backward search.  If they can be extended down to
level 0 considerable search effort during that
episode will be avoided.

There are of course costs incurred in building and
using this potentially large search trace structure.
These are addressed in section 3.3 after we first de-
scribe the algorithm for using the pilot explanation to
direct all future search and planning graph extension.

3.2 Using the Pilot Explanation
EGBG (Explanation-Guided Backward-search for
Graphplan) can be viewed as consisting of 3 phases.
The two preliminary phases that enable the use of the
PE to speed up search can be summarized as:

1. Initial Planning graph Build Phase -From the ini-
tial state build & extend the planning graph in
standard Graphplan fashion until a level is reached
containing the goals: separately identify/mark ac-
tions that are static and dynamic mutex

2. First Backward Search   -Conduct the 1st backward
search from the top level with goals in standard
Graphplan fashion. But for each ‘search segment’,
SS  (see Fig. 3 for the definition of search seg-
ment):

¾ Save in SS, the goals addressed in that segment
¾ Save in SS, in the order encountered and

grouped by goal: an identifier for results of each
action assignment attempted

¾ When all segment goals have been satisfied add
the list of all actions assigned & a pointer to
current search segment to the next lower level
search segment

¾ Insert each completed search segment into the
‘pilot explanation’.  If backward search reaches
the initial state, return plan; else extend the
planning graph one level.

When backward search fails to find a solution to
satisfy the plan goals the pilot explanation acts as an
explanation for this failure at the given planning graph
level.  An alternate view is that the PE provides an
explicit guide for all future search that must be con-
ducted (to ensure soundness) at the next planning
graph level.

Let’s take the trace in Fig. 2 as an example PE pro-
duced after the first attempt at backward search on the
problem goals WXYZ at level k.  Since a solution was
not found (as evidenced by the fact that the trace does
not extend down to the initial state), the planning
graph is extended to level k+1 and from this point on
the pilot explanation directs all search for the problem
solution.  There are two processes entailed that can be
interleaved in any order:

1. Visit and check each of the backtrack points in the
PE (hereafter termed ‘checkpoints’)

2. Resume backward search wherever a checkpoint
no longer holds.

Verifying Checkpoints
Note that the trace in Fig. 2 can be viewed as four

intra-level search segments; there is one search seg-
ment under level k, two under level k-1 and one under
level k-2.  All checkpoint verification must be done in
the context of the current planning graph level that
corresponds to the pilot explanation level the check-
points appear in.  Once all checkpoints in a given
search segment are processed, the subgoals that were
the targets of that partial search can be memoized at
that level, because (assuming a solution wasn’t
reached) they necessarily comprise a nogood.  This
corresponds to the memoization performed by standard
Graphplan when it backtracks out of a level during the
search process.

In Fig. 2 there are 15 action mutex checkpoints and
6 nogood checkpoints to be processed.  Eleven of these
entail no significant processing at all:

¾ 5 of the mutex checkpoints are due to static mutex
conditions between actions –that is the last as-
signed action clobbers either an effect or precon-
dition of some action assigned higher up in that
level.  Such mutex conditions can never be relaxed
so there is no need to check their validity on each
planning graph extension. Although the relative
percentages vary by problem domain, generally 20
– 50% of all mutex conditions encountered during
the course of a problem search are of the static
type.

¾ Six of the checkpoints are associated with the
nogood checking that occurs when all goals in a
search level are successfully assigned and the re-
sulting subgoals are compared against the memo-
ized nogoods for the next level.  These constitute
another type of redundant checking performed by
Graphplan that can be avoided by using the PE.
The successful transfers of subgoals to the next
level in the PE (the clear arrows in Fig. 2) are
guaranteed  to be valid at all future levels -i.e. they

search segment (SS)  :encapsulates the backward search con-
ducted during one instance of search within a plan graph level
    SS-goals:    the goals to be established for this level and path
    SS-assigns: results of attempts to satisfy the SS goals, grouped

  on a goal-by-goal basis.  Possible results are:  'ok'  -for
  successful action assign, num -(an integer) action is dynamic
  mutex with the numth action assign attempted, or  'nt'    -no
  need to test: for static mutex, nogood, or transfer to next level

   SS-transin:   list of transfer-in events for  transfers to this search
segment from a higher level
pilot explanation (PE) :  a multi-level list of search segments
encapsulating only the dynamic features of previous backward
search episodes that must be checked after the next plan graph
extension.  The single top level search segment at the front of the
 PE list is designated level 0, the last sublist in the PE list contains
all search segments at the deepest level reached in previous search
(level:  (length PE) – 1).   For example: pilot explanation for Fig. 2
search episode is  ( (SS1) (SS2, SS3) (SS4) )

Figure 3. Data structures used in the EGBG Algorithm



cannot become a nogood at a higher planning
graph level.  The specific subgoals found to con-
stitute a nogood (indicated by black arrows in Fig.
2) may, however, no longer be in conflict at some
higher plan graph level that the PE is translated to.
But since all  search segments above and below the
nogood of concern will necessarily be processed
before this search episode ends the nogoods will
just as necessarily be "proven" in the process -or a
solution will be found making the issue moot.

Resuming Backward Search
We next describe the process entailed when a check-

point is found to no longer hold at a new level.
Amongst the checkpoints then, only dynamic mutex
checkpoints must be tested. If such a mutex is found to
no longer hold, the checkpoint indicates a position at
which backward search must be resumed.

Invalid Mutex Conditions: If an action mutex check-
point in the explanation is found to no longer hold at
level k+1, this is indicative of a possible means of sat-
isfying the goals that was disallowed at the previous
level. Backward search therefore resumes at the point
where the mutex caused backtracking.  The action as-
signments for the goal propositions up to the point of
the mutex failure are augmented with the action as-
signment that was precluded by the (no longer valid)
mutex.  Search continues below this point until either a
solution is found or the resumption point is returned to.
The PE trace is extended during this search and the
mutex checkpoint is replaced by the subtrace so gener-
ated.

To ensure that the pilot explanation is complete in
it’s encapsulation of a Graphplan backward search epi-
sode we must also check for the presence of new ac-
tions that may be establishers of a goal at level k but
not at level k-1 when the PE trace was built.

New Actions: A goal proposition ‘P’ at level k+1 could
have more establishing actions than at level k, indi-
cating that a new action has been added during plan-
ning graph extension.  At each occurrence of unas-
signed proposition P in the pilot explanation search is
resumed using the values of any previously assigned
goal props and augmenting them with the new action
assignment to P.  Search continues until either a solu-
tion is found or the resumption point is returned to.  In
the latter case the trace for this search segment is in-
serted via a new establisher of P in the PE.

3.3 Costs and Tradeoffs
The overhead entailed in building the pilot explana-
tion, storing adequate information in it, and subse-
quently using it is not insignificant.  It’s comprised
primarily of:

1. PE construction time cost during backward search
2. Startup cost for backward search resumption –in-

curred each time a checkpoint no longer holds and
the information needed to re-initiate search must
be gathered.

3. Storage space required to retain the PE.

The first two of these factors will work directly to
offset the three speedup factors discussed in section 3.1
The last factor impacts not only the machine storage
requirements but, depending on a given platform's
“garbage collection” scheme, can have a significant
impact on runtime also.

 For “small” problems (where the solution is found
quickly by Graphplan after only a few search episodes)
this approach can be expected to show little if any ad-
vantage.  The overhead of constructing the pilot expla-
nation is likely to more than offset the few search epi-
sodes in which it could be used to shortcut the search.
The real speedup is likely to be seen in the larger
problems involving many episodes of deep search on
the planning graph.  However, as we discuss in the

SEARCH-WITH-PILOT-EXPLANATION   ( PE: pilot
explanation, PG: plan graph)

L1: Let n = number of proposition levels in plan graph
For p = [length of pilot explanation] to 0

                (i.e. from deepest level searched previously to top level)
       For each search segment SS in level p of the pilot explanation
         Store the goal-by-goal results contained in SS-assigns in
                  Gresults and clear SS-assigns

   Call Process-Assign-Level (nil, SS-goals, SS, Gresults,
                                                PG, n-p )
    If no plan found, memoize SS-goals at plan graph level n-p

PE processing complete, no soln found for n-level plan graph.
      -extend the plan graph one level
     -translate the PE up to the new top level
 Go to L1

PROCESS-ASSIGN-LEVEL (A: actions already assigned,
    G: goals left to assign,  SS: search segment, Gresults: unproc-

essed assign results,   PG: plan graph,  k: pg level )
If  G is not empty
    Select front goal g from G
    Let Ag be the set of actions from level k in PG that support g
    Add empty Newresults list to end of SS-assigns (will hold the

  results of action assigns for g)
    Select from Gresults the front set of assignment results:

  gresults  (from previous search episode)
L1: Select front action act in Ag   
      If Gresults is empty then act and rest of Ag are new
          establishers of g at level k:
      Call PROCESS-NEW-ACTIONS (A, G, Ag, Newresults,
                                                                  SS, PG, k )
      else select front assign result, ares, from gresults

     If ares = 'ok' action has no conflicts, --move to next goal:
           Call PROCESS-ASSIGN-LEVEL ((A + act), (rest G), SS,
                                                                    Gresults, PG, k)
         else if  ares  is an integer, act caused a dynamic mutex

 checkpoint, --it must be tested:
 If act is still dyn mutex wrt the action at position
    ares of A
    Add ares to end of Newresults
  else mutex  no longer holds, resume search & extend PE

 Call ASSIGN-GOALS ((rest G), (A + act), SS, PG,  k)
 (If backward search reaches the init state, returns plan)
  Add 'ok'  to end of Newresults

 else ares is a checkpoint that does not need to be tested
    Add ares to end of Newresults

     If Ag is empty return,  else go to L1

PROCESS-NEW-ACTIONS (A: actions already assigned,
    G: goals to assign,  N: new actions for front goal,
    Newresults: list of new assign results for front goal of G,
    SS: search segment, PG: plan graph, k: pg level )
Let g be the front goal in G
L1: If N is empty, return
       else Select front action act from N
              If act is mutex with some action in A
                  save the appropriate assign result ('nt'  for stat mutex,
                     integer  for dyn mutex) in Newresults
                  go to L1
              else assign act to g and resume backward search on
                  remaining goals (extending the PE):

         Call ASSIGN-GOALS ((rest G), (A + act ), SS, PG, k )
                   (if backward search reaches the init state, returns plan)
             go to L1.

Figure 4. Pseudo code description of EGBG's 3rd phase



next section, these are also the kinds of problems that
can generate huge pilot explanations with all the stor-
age and garbage collection problems it entails.

4. Experimentation
The EGBG program involved a major augmentation
and rewrite of a Graphplan implementation in Lisp1.
The planning graph extension routines were augmented
to discriminate between static and dynamic mutexes
and to facilitate the translation of the PE across levels.
The backward search routines were augmented to build
the PE during search.  Once the initial PE is built,
search control is taken over by a separate set of rou-
tines that process any dynamic checkpoints and deter-
mine when search must be resumed.

Table 1 provides a comparison of EGBG with stan-
dard Graphplan on some "benchmark" size problems
from [Kautz & Selman, 96] in three domains.  The
speedup advantage of EGBG is respectable on these
problems, ranging from 2.4 to almost 24 times faster.

The experience to date with the EGBG system on
some of the larger problems has shown it to be sensi-
tive to space and memory management issues.   While
generally conducting it’s level search significantly
faster than Graphplan in the early to middle stages of
the problem search, EGBG may eventually gets bound
up by the Lisp garbage collection system before it can
complete it’s solution search.  For example the Ferry-
41  problem  is solved by standard Graphplan at level
27 of the planning graph in approximately 123 min-
utes2.   Up to level 18, EGBG  search is 25 times faster
than standard Graphplan search.  However around level
19 the current implementation of EGBG succumbs to
                                               
1 The original Lisp implementation of Graphplan was done by
Mark Peot and subsequently improved by David Smith
2 On an Ultra-Sparc, compiled for speed, with improved memoi-
zation  based on the “UB-Tree” structures developed by Koehler
and her co-workers [Koehler et. al., 97]

the (as yet non-optimized) garbage collection system
and doesn’t emerge!

There are a variety of approaches that can be pur-
sued to enable EGBG to extend its reach to the higher
levels and large search spaces.  The next section ex-
plores the role of the size of the PE.

5. Minimizing the Pilot Explanation
Any reduction that can be made to the size of the pilot
explanation pays off in two important ways:

x There are fewer checkpoints that need to be proc-
essed at each planning graph extension

x The storage (and garbage collection) requirements
are reduced.

The blind search conducted by Graphplan travels
down many fruitless search branches that are essen-
tially redundant to other areas of its search trace.  And
of course EGBG builds these into the pilot explanation
and retains key aspects of them, revisiting dynamic
checkpoints at their leaf nodes during each backward
search episode.

We are investigating two different approaches to
minimizing the PE so as to extend the range of prob-
lems addressable with EGBG under our current ma-
chine limitations.

One approach that immediately presented itself was
to take advantage of concurrent work being conducted
in our group on  improving Graphplan’s memoization
routines by adding dependency-directed backtracking
(DDB) and explanation-based learning (EBL) capa-
bilities [Kambhampati, 99]. The EBL and DDB strate-
gies complement our explanation-guided backward
search technique quite naturally. The presence of EBL
and DDB techniques reduces the sizes of the PE's and
also makes them more likely to be directly applicable
in future levels (as the dynamic checkpoints embodied
in the explanation are more focused).  At the same
time, the PE provides a more powerful way of ex-
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ploiting the past searches than EBL-based nogoods
alone do.

The integration of  the EBL and DDB strategies into
our EGBG system significantly changes the manner in
which the pilot explanation is used during each search
episode.  Rather than visiting and processing each
checkpoint in the explanation the conflict sets gener-
ated by the mutex checks and those returned by any
partial search conducted can be used to indicate pre-
cisely which checkpoints should be processed.  This
avoids visiting and possibly conducting search below
checkpoints that ultimately have no possibility of
leading to a solution.

Although incorporating EBL/DDB into the backward
search routines in EGBG is straightforward, it is more
problematic to implement efficient processing of con-
flict sets in the routines that search using the pilot ex-
planation. Table 2 shows the results produced by an
EBL/DDB enhanced version of EGBG on the 3 such
problems.  The speedup improvement is modest, as
expected, since the time spent in search for these small
problems is only a fraction of the total time.  However,
the table also shows the dramatic impact that
EBL/DDB has on the size of the pilot explanation, re-
ducing it by roughly 50%. We are currently rewriting
this part of EGBG as our first version turned out to
have some implementation inefficiencies that inhibited
it from scaling up to larger problems.

A second promising approach is to restrict the size
of the pilot explanation.  EGBG currently "grows" the
PE every time backward search is resumed, without
regard to it's size or the possible relevance of the "ex-
planation" it is building.  However, the PE can easily
be made static after a given size limit is reached and
still provide, during each backward search episode, all
the search shortcuts it embodies.  Alternately, some
type of relevance-based heuristic could be employed to
determine what portions of a learned PE are mostly
likely to be useful and hence should be retained.  That
is, the well-known EBL issue of 'how much is too
much' in the way of rules (or nogoods) also applies to
EGBG and it's use of the pilot explanation.

6. Related Work
Verfaillie and Schiex [94] discuss and demonstrate
various EBL-type methods for improving dynamic
constraint satisfaction problem (DCSP) solving, which
underlies the Graphplan backward search.  Our ap-
proaches, while related, are much better customized to
take advantage of the particular type of DCSP struc-
tural symmetry in Graphplan backward search.  As we
noted earlier, our approach is also related to, and com-
plements, the approaches to add EBL and DDB capa-
bilities to Graphplan. In particular, EBL approaches
can only help decide if all methods of making a goal-
set true at a particular level are doomed to fail. The
pilot explanation, on the other hand, also guides the
search away from branches likely to fail, and allows
the planner to capitalize on the search penetration done
at previous levels. In this sense, the pilot explanations
are also related to the “sticky values” approach for
improving CSP [Frost & Dechter, 94]

7. Conclusion and Future Directions
We presented a method for exploiting the symmetry in
the planning graph structure of Graphplan algorithm to
improve its backward search. The main insight under-
lying our method is that due to the inherent symmetry
of the planning graph the backward search conducted
at level k + 1 of the graph is essentially a replay of the
search conducted at the previous level k with certain
well-defined extensions.  We presented a structure
called the pilot explanation, which captures the failures
encountered at previous levels of the search. This
structure is used in an intelligent way to guide the
search at the newer levels. We implemented this ap-
proach in a system called EGBG, and presented a pre-
liminary empirical study with the system. We also dis-
cussed the importance of minimizing the size of the
pilot explanation and some relevant techniques, in-
cluding a recent EBL and DDB implementation for
Graphplan. Our near-term focus will be to address the
problems currently limiting the size of problems that
can be handled by the system.  Future areas of investi-
gation will include a study of various heuristics and
methods for using the PE to direct search.  These could
entail jumping about to process the various check-
points in a "best first" manner or even deliberately not
processing certain unpromising checkpoints (and
thereby accepting the loss of soundness) in the hopes
of short-cutting the search.
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