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ABSTRACT

One immediate challenge in searching the deep web databases
is source selection—i.e. selecting the most relevant web
databases for answering a given query. The existing methods
of database selection (both text and relational databases)
uses relevance measures based on the similarity with the
queries for the quality assessment of the sources. Existing
methods have two deficiencies for applying to the open col-
lections like the deep web. First is that the methods are
agnostic to the correctness (trustworthiness) of the sources.
Secondly, since the existing measures are fully dependent on
the query similarity, they do not consider the popularity of
the results for computing the probability of relevance. Since
number of sources provide their own answer sets to the same
query in the deep web, the agreements between theses an-
swer sets are likely to be helpful in assessing the relevance
and trustworthiness of the sources. We start with this hy-
pothesis and compute the agreement between the sources
using entity matching methods. Agreement is modeled as a
graph with sources at the vertices. On this agreement graph
source quality scores—namely Source Rank—is calculated as
the stationary visit probability of a random walk. Our eval-
uations on the online deep web sources show that the rel-
evances of the sources selected by SourceRank is improved
by 20-50% over the existing methods; and that SourceRank
of a source reduces linearly with corruption levels. Also we
demonstrate that SourceRank can be combined with Google
Base ranking to improve the precision by 22-60% and to se-
lect sources better trusted by the users.

1. INTRODUCTION

By many accounts, surface web containing HTML pages
is only a fraction of the overall information available on
the web. The remaining is hidden behind a welter of web-
accessible relational databases. By some estimates, the data
contained in this collection—called deep web—is estimated
to be in tens of millions [12]. The most promising approach
that has emerged for searching and exploiting the sources
on the deep web is data integration. A critical advantage
of integration to surface web search is that the integration
system (mediator) can leverage the semantics implied in the
structure of deep web tuples. Realizing this approach how-
ever poses several fundamental challenges, the most imme-
diate of which is that of source selection. Briefly, given a
query, the source selection problem involves selecting the

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.

most relevant subset of sources for answering the query.

Source selection for text and relational databases involv-
ing relevance, coverage, and the overlaps between sources
has received some previous attention (c.f. [13, 4, 7, 14]).
These existing approaches are focused on assessing relevance
of a source based on local measures, as they evaluate quality
of a source based on the similarity between the answers pro-
vided by the source and the query. The answers to the same
query by the other sources are disregarded. For applying
in the deep web, this pure query based local approach for
source selection has the following two deficiencies:

1. Local relevance assessment is susceptible to easy ma-
nipulation, since the measure does not consider pop-
ularity of results. Since the local features can be eas-
ily tampered by the content owner to boost source’s
rank (e.g. a database may return many fabricated tu-
ples containing search key words to boost its relevance
value). To give a real world example of these problems,
we issued the query godfather movie to Google Prod-
uct Search. None of the first page results in relevance
ranking contains a Godfather movie (DVD, Blu-Ray
etc).1 The first page results is populated with results
like Godfather Movie Poster, Godfather Movie T-Shirt
etc. These results are ranked high as they contain
all the query terms in the title; whereas movie result
are ranked low since they do not contain search term
Mouvze.

2. The source selection is agnostic to the trustworthiness
of the answers. For example, many queries in Google
Product Search returns answers with unrealistically
low prices. While we proceed towards the checkout,
many of these low priced results turned out to be non-
existent, a different product with same title (e.g. so-
lution manual with same title by a different author)
etc. Relevance is a measure of whether query is an-
swered by the tuple; and trustworthiness is a measure
of whether the answer is correct. Relevance and trust-
worthiness of an answer are independent quantities. In
particular, the corruption in unspecified attributes in
the results generates untrustworthy results; whereas
difference in specified attributes generates irrelevant
results. Any query based relevance measure is insensi-
tive to trustworthiness.

!Google Product Search works over Google Base. Though
this is a warehousing approach, the problem of uncontrolled
collections of sources is common.



A global measure of trust and popularity is particularly
important for uncontrolled collections like deep web, since
sources try to artificially boost their rankings. A global
relevance measure should consider popularity of a result,
since the popular results tends to be relevant. Moreover, it
is impossible to measure trustworthiness of sources based on
local measures; since measure of trustworthiness of a source
should not depend on any information the source provides
about itself. In general, the trustworthiness of a particular
source is reflected as the endorsement of the source by other
sources. In surface web the trustworthiness of a page as
well as popularity is calculated based on the endorsement as
hyper-links from other pages, like in PageRank [5]. But the
hyper-link based endorsement is not directly applicable to
the web databases since there are no links between database
records.

We present a method to calculate the trustworthiness and
probability of relevance of a source based on how well the
results from the source are agreed upon by other sources.
Two sources agree with each other if they return the same
tuple in answer to the same query. While trustworthiness
and relevance are orthogonal quantities, both are reflected
as the agreement of other sources to the answers provided
by the source. For example, in the Godfather query ex-
ample above, since Godfather movie is a popular result re-
turned by large number of sources, a global relevance as-
sessment based on the agreement of the results would have
ranked the movie instances high. In the case of untrustwor-
thy answers, the corruption can be captured by an agree-
ment based method, since other legitimate sources answer-
ing same query are likely to disagree with the corrupted
result. We provide a formal explanation for why agreement
implies trust and relevance in Subsection 3.1 below.

Different web databases represent the same object in syn-
tactically varying manner, making it hard to calculate agree-
ment. To solve this problem, we augmented the existing
record linkage models in relational databases [8] with named
entity matching methods to calculate the agreement between
the web databases. Also, though the data is stored in rela-
tional databases, the keyword queries and non-cooperative
nature of the sources requires sampling methods in text
database selection [6]. Thus computing agreement between
the deep web sources requires combination and adaptation
of methods in relational databases, text database selection
in information retrieval and natural language processing.

The overall contributions of the paper are: (i) An agree-
ment based method to calculate relevance of the deep web
sources based on popularity. (ii) An agreement based meth-
ods to calculate trustworthiness of deep web sources. (iii)
Domain independent computation of agreement between the
deep web databases and formal evaluations, and comparison
against Google Product search.

We evaluated the ability of SourceRank to select trust-
worthy and relevant sources in two sets of web sources—(i)
set of online databases in TEL-8 repository [2] (ii) Google
Base [1]. The evaluation shows SourceRank improves rele-
vance of source selection by 20-50% over the existing meth-
ods. Also SourceRank combined with Google Base result
ranking improves the top—k precision of results by 22-60%
over stand-alone Google Base. Trustworthiness of source se-
lection is evaluated as the ability to remove sources with
corrupted unspecified attributes. The SourceRank reduces
almost linearly with source corruption. Similarly, user rat-

ings of the sources selected by the SourceRank show im-
provement over the baseline methods.

2. RELATED WORK

Searching the deep web has been identified as the next big
challenge in information management [16].

Current relational database selection methods predom-
inantly try to maximize the number of distinct relevant
records from minimum number of sources, to minimize cost [13].
The parameter widely considered for this minimum cost ac-
cess is coverage of sources. Coverage of a database is a
measure of number of relevant tuples to the query in the
database. Hence cost based web database selection is formu-
lated as selecting the least number of databases maximizing
sum of coverages. Related problem of collecting statistics
for source selection has been researched in detail also [13].

Considering research in the text databases selection, Callan
et al. [7] formulated method CORI for query specific se-
lection of text databases based on relevance. Cooperative
and non-cooperative text database sampling [6] and selec-
tion considering coverage and overlap to minimize cost [15,
14] are addressed by number of papers.

In his early work of combining multiple retrieval meth-
ods to improve the retrieval accuracy for text documents,
Lee [11] observes that the different methods are likely to
agree on same relevant documents than on irrelevant doc-
uments. This observation confirms the argument in this
paper.

Framework for trust assessment of facts based on agree-
ment of web pages has been discussed by Yin et al. [17].
Their work assumes a question answering scenario, where
queries have single correct answers (questions like Who is the
director of The Godfather?), which is not true about deep
web search queries since they may have multiple correct an-
swers. Also, need for a domain specific method to compute
the probability with which the fact implies another fact,
ignoring record linkage, and disregarding influence of rele-
vance on agreement limits the applicability of the method
on the deep web. Dong et al. [10] extend this model consid-
ering source dependence; but uses the same basic model as
Yin et al.

The relevance computation based on agreement of sources—
to the best of our knowledge—is a novel idea. Though the
notion of agreement based computation of trust is known
as described above, we present many extensions required for
calculating agreement on the deep web.

3. SOURCERANK: TRUST AND RELEVANCE

RANKING OF SOURCES

In this section we elaborate the argument that the rele-
vance and trustworthiness of a database manifests as agree-
ment of other databases. We devise a method to calcu-
late SourceRank—a trust and relevance measure for web
databases based on the agreement between the sources. Cal-
culating SourceRank is a two step process: (i) create a source
graph based on agreement between the sources (ii) assess
source reputation as the static visit probability distribution
of a weighted markov random walk on the source graph. In
next subsection we show that the result set agreement is an
implicit endorsement. Subsequent subsections describe the
process of calculating SourceRank.



3.1 Agreement as Endorsement

We show in this section why agreement in fact implies en-
dorsement. First let us argue that two independently picked
relevant and trustworthy tuples are likely to agree each other
with significantly higher probability than two independently
picked irrelevant tuples (we agree that the assumption of
sources picking tuples independently may not be fully cor-
rect, we relax this independence assumption below). Let
Pa(r1,72) denotes the probability of agreement of two in-
dependently picked trustworthy and relevant tuples by two
sources.

1
Pa(ri,re) = —— 1
A( 1, 2) | RT| ( )
where Rr is the complete set of relevant and trustworthy
tuples.
Pa4(f1, f2) denotes probability of agreement of two inde-
pendently picked irrelevant (or untrustworthy) tuples.

1

Pa(fr, f2) = 7= Ra|

2)
where U is the search space (the universal set of all tuples
searched). For any web database search, the search space is
much larger than the set of relevant tuples, i.e. |U| > |Rr]|.
Applying this inequality in Equation 1 and 2 directly implies
that

Pa(r1,7m2) > Pa(f1, f2) (3)

To provide an intuitive understanding of magnitude of
these probabilities, let us consider an example. Assume
that the user issues the query Godfather for the Godfa-
ther movie trilogy. Assume that three movies in trilogy
The Godfather I, II and 111 are the results relevant to the
user. Let us assume that total number of movies searched
by all the datalbases (search space U) is 10*. In this case

Pa(ri,r2) = 5 and Pa(f1, f2) = # (strictly speaking

T51—3)- Similarly probability for three tuples picked inde-
1 1

pendently by three different sources to agree are g and 15z
for relevant and irrelevant results respectively. It is easy
to extend the argument above to answer sets from single
answers.

A possible concern with the above argument is that the
assumption of independence between databases may not be
completely true for web sources. But as long as no two
sources have exactly same data and relevance measure, the
sources are at least partially independent. Partial indepen-
dence between result sets means the probability of agree-
ment for truly relevant results (Equation 1)—compared to
probability of agreement of irrelevant results (Equation 2)—
will still be much higher. This implies that even for par-
tially independent sources relevance and trust manifests as
agreement. Though full dependence is intuitively hard to
happen on real web databases, the only way to conclusively
prove that web databases are at least partially independent
is testing our model on actual web databases; which we do
in experiments in Section 5.

3.2 Creating The Agreement Graph

To facilitate the computation of SourceRank, we represent
the agreement between the source result sets as an agree-
ment graph. Agreement graph is a directed weighted graph
as shown in example Figure 1. In the graph, the vertices
represent the set of sources, and weighted edges represent
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Figure 1: A sample agreement graph structure of
three sources.

the agreement between the sources. The edge weights are
assigned equal to the normalized agreement values between
the sources. For example, let R; and Rz be the result sets
of the source S1 and Sy respectively. Agreement between
Ry and R is calculated as described in Section 4. Let
a = A(R1, R2) be the agreement between the results sets.
In agreement graph we create two edges: one from S; to
S2 with weight equal to ﬁ; and one from S to Si with
weight equal to ‘Riall' The semantics of the weighted edge
from Si to Sz is: S1 endorse a fraction of S2’s tuples, where
the fraction of tuples endorsed is equal to the weight of the
edge in the agreement graph.

These agreement links described in the paragraph above
are constructed based on the results to the sample queries.
In addition to these agreement links, we add links of small
weights between every pair of vertices, namely smoothing
links. Like smoothing in any sample based method, these
smoothing links account for the unseen samples. That is,
though there is no agreement between the sampled results
sets used to calculate the links, there is a non-zero probabil-
ity for some of the results to agree for queries not used for
sampling. This probability corresponding to unseen queries
are accounted by smoothing links with small weights. Adding
this smoothing probability, the overall weight w(S1 — Sa2)
of the link from S; to S2 is computed as,

Aqls. s = 3 A @)
q€Q q
w(51—>52)=ﬂ+(1—ﬂ)><% 5)

where Ri, and R2q are the answer sets of S and S» for
the query ¢, and Q@ is the set of sampling queries over which
the agreement is computed. [ is the smoothing factor and
typically around 0.1. These smoothing links strongly con-
nect agreement graph (strong connectivity is important for
SourceRank calculation). The details of calculating agree-
ment for query ¢—A(R14, R2q)—are described in Section 4
below. Finally we normalize the weights of out links from
every vertex by dividing the edge weights by sum of the
out edge weights from the vertex. This normalization would
make the edge weights equal to the transition probabilities
for the random walk computations.

3.3 Calculating SourceRank

To formulate a method to calculate the SourceRank on
the agreement graph, we ask the question what would be



the rational behavior of a deep web searcher, if he is pro-
vided with this agreement graph. Since the searcher does
not have an idea about which node is relevant and trustwor-
thy, assume that the searcher starts on a random database
node. The searcher may find that the database is not inter-
esting and choose to restart his search in another random
node; these random restart is represented by the smooth-
ing links in the agreement graph. If he finds the database
useful, for further search he would choose to traverse one of
the database having agreeing data by the current database.
This is based on the logic that since the current database
has useful information, the sources agreed by the current
database is likely to have useful information also (we do not
consider possible need for diversity of results in the case of
multiple results search here). The searcher may traverse one
of the outgoing links and search in database at the other end
of the link. An outgoing link has an associated weight; and
the weight is proportional to the fraction of tuples the cur-
rent database is agreeing in the target. So it is logical for the
searcher to choose an outgoing link randomly with a prob-
ability proportional to the weight of the link; rather than
uniform random selection of a link (If he always determinis-
tically chooses the out link with highest weight, the search
is not complete and he may never reach some vertices in the
graph). If he continues this process; he would be perform-
ing a weighted random walk on the agreement graph. The
transition probabilities of the random walk are the same as
that of the edge weights.

In the random walk described above, the probability with
which the searcher would visit different databases will be
the stationary visit probability of the random walk on the
database nodes. The graph is strongly connected and ir-
reducible, hence the random walk will converge to unique
stationary visit probabilities for every node. This station-
ary visit probability of a source would give the SourceRank
of that source; which is equal to the visit probability of the
random searcher described above for that source.

4. AGREEMENT COMPUTATION AND SAM-

PLING

Since deep web sources present an interesting middle ground

between free-text sources assumed in IR literature, and fully
structured sources assumed in the database literature, the
agreement computation over their results presents challenges
that cannot be handled by the traditional methods from ei-
ther discipline. In the following subsection, we will describe
our approach for agreement computation in three phases—
how the attribute values are compared, how the tuples are
compared and how the answer sets are compared. Subse-
quently, we describe our database sampling method.

4.1 Computing Agreement

Computing agreement between the sources involves three
levels of similarity computations, as described below.

Attribute value similarity: Cohen ef al. [8] shown
that assumption of common domains is far from the truth
in web databases (common domains means names referring
to the same entity is the same for all databases, or can be
easily mapped to each other by normalization). For exam-
ple, title of the same movie is represented as Godfather, The:
The Coppola Restoration in one database and The Godfa-
ther - The Coppola Restoration Giftset [Blu-ray] in another

database. Recognizing the semantic similarity between at-
tribute values in different databases is not straightforward.

The textual similarity measures works best for scenarios
like web databases where common domains are not avail-
able [8]. Since the challenge of matching attribute values
is essentially a name matching task, we calculate the agree-
ment between attribute values using Soft TF-IDF with Jaro-
Winkler as the similarity measure. (please refer to Cohen
et al. [9] for details). Comparative studies showed that
this combination provide best performance for name match-
ing [9]. For pure numerical values (like price) we calculate
similarity as the ratio of the difference of values to the max-
imum of the two values.

Tuple similarity: The tuples are modeled as a vec-
tor of bags adapting model by Cohen [8]. The problem of
matching between two tuples based on the vector of bags
model is shown in Figure 2. If we know which attribute
in t; maps to which attribute in ¢z, the similarity between
the tuples is simply the sum of the similarities between the
matching values. Finding this mapping is the well known au-
tomated answer schema mapping problem in web databases.
We do not assume availability of predefined answer schema
mapping and reconstruct the schema mapping based on the
attribute value similarities, as we describe below.

Once the pairwise value similarities are calculated as de-
scribed above (this has computational complexity O(|¢1][t2]))
tuple similarity computation is same as the well known max-
imum weighted bipartite matching problem. Hungarian al-
gorithm gives the lowest time complexity for the maximum
matching problem, and is O(V2log(V)+V E) (V is the num-
ber attribute values to be matched, and F is the number of
similarity values). Also F is O(V?) for our problem, and
overall time complexity is therefore O(V?®). We use the
O(V?) greedy matching algorithm as a favorable balance
between time complexity and performance. To match tu-
ples, say t1 and t2 in Figure 2, the first attribute values of
t1 is matched against the most similar attribute values of
to greedily. Two attributes values are matched only if the
similarity exceeds a threshold value (we used a threshold of
0.6 for our experiments). Subsequently, the second attribute
value in the first tuple is matched against the most similar
unmatched attribute value in the second tuple and so on.
The edges picked by this greedy matching step are shown
in solid lines in Figure 2. Agreement between the tuples is
calculated as the sum of the similarities of the individual
matched values. The two tuples are considered matching
if they exceed a threshold similarity of 1.3 (approximately
twice the value match threshold above). As this threshold
increases the comparison between tuples becomes more and
more exact matching.

Agreement Between Answers Sets: After comput-
ing the similarity values of tuples, the agreement between
two result sets Ri4 and Ry, from two sources for a query ¢
is defined as,

A(Ri1q, Raq) = arg max Z

(t1ER14,t2ER2q)EM

S(t,t2)  (6)

where M is the optimal matched pairs of tuples between
Riq and Ryq and S(t1,t2) is the similarity measure used.
Again finding the optimal matching M between the tuples
of two results sets is a weighted bipartite matching problem
with O(k®) time complexity at the best, where top-k tuples
from each query for agreement calculation. Hence for re-
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Figure 2: Calculating tuple similarity based on vec-
tor of bags model of tuples. The edges in solid line
represent the matches picked by the greedy match-
ing algorithm used.

duced time complexity we use a greedy matching similar to
the approach used above for finding tuple similarity. First
tuple in R1, is matched greedily against the tuple with high-
est match in Rsq. Subsequently, the second tuple in Ry, is
matched with most similar unmatched tuple in Ra, and so
on for the entire tuple set. The agreement between two re-
sult sets is calculated as the sum of the agreements between
the matched tuples. The agreement is calculated for the
queries are used in the Equation 4.

We calculate agreement between the top-k (with k = 5)
answer sets of the each query in the sampling set described in
the subsection below. We stick to top-k results since most
web information systems focus on providing best answers
on few top positions, since users rarely go below top results.
The agreements of the answers to the entire set of sampling
queries is used in Equation 4 to compute the agreement
between the sources. Note that even though we used top-
k answers, the normalization against the answer set size in
Equation 4 is required, since answer set sizes varies as some
sources return less than k results to some queries.

4.2 Sampling

Web databases are typically non-cooperative, i.e. do not
share the statistics about the data contained, or allows ac-
cess to the entire set of data. For sampling, we assume only
a form based query interface allowing key word queries; simi-
lar to the query based sampling used for the non-cooperative
text databases [6]. We used the same sampling method and
queries for both online databases and Google Base.

For generating sampling queries, we use the publicly avail-
able book and movie listings. We use two hundred queries
each from book and movie domain for sampling. To gener-
ate queries for book domain, we randomly select 200 books
from New York Times yearly number one book listing from
the year 1940 to 2007. For the sampling query set of movie
domain, we use 200 random movies from second edition of
New York Times movie guide.

As key word queries for sampling, we use partial titles
of the books/movies. We generate partial title queries by
randomly deleting words in titles with a probability of 0.5
from the titles of length more than one word. Use of partial
queries are based on the fact that two sources are less likely
to agree each other on partial title queries, since there are
more number of possible answers for a partial title query
than a full title query (since partial titles are less constrain-
ing). Hence agreement on answers to partial queries is more
indicative of agreement between the sources (our initial ex-
periments validated this assumption).

We preform a query based sampling of database by send-

ing the keyword queries in the sampling set to the title key-
word search fields provided by the web databases. Such a
simple key word based sampling is used, since many web
databases allow only key word based queries. The sampling
is automated here, but we wrote our own parsing rules to
parse the result tuples from the returned HTML pages. This
parsing of tuples has been solved previously [3], and can be
automated. For Google Base experiments, the parsing is not
required as structured tuples are returned.

S. PERFORMANCE EVALUATION

In this section we evaluate the relevance and trustworthi-
ness of SourceRank for domain specific source selection. The
top-k precision and discounted cumulative gain of SourceR-
ank based ranking is compared with (i) Coverage based
source selection used in relational databases, (i) CORI method
used in text databases, (iii) results provided by Google Prod-
uct search on Google Base.

5.1 Experimental Setup

Databases: We performed the evaluations in two verti-
cal domains—book sellers and movies (movies means DVD,
Blu-Ray etc). We used two sets of data bases— (i) a set
of online data sources accessed by their own web forms; (ii)
data from hundreds of sources collected in Google Base.

Databases listed in TEL-8 database list in the UIUC deep
web interface repository [2]—after removing non-working
and databases using post (since post is not idempotent)—
are used for online evaluations. We used nineteen movie
database and twenty two book database in TEL-8 reposi-
tory. Also we added five video sharing databases to movie
domain and five library sources to book domain. These out
of domain sources are added to make the domain less pure
and hence to make the ranking difficult. If all sources are
mostly of same quality, selecting one or another does not
make a difference. Since these out of domain sources share
common titles with in-domain sources, distinguishing be-
tween them is difficult for a source selection method.

Google Base is a collection of data from large number of
web databases, with an API based access to data return-
ing ranked results [1]. Each source in Google Base has a
source id. For our experiments, we need sources specific
to movies/books domain. For selecting domain sources, we
probed the Google Base with a set of ten book/movie names
as queries. From the first two pages of results (first 400 re-
sults) to each query, we collected source ids of all the sources;
and considered them as a source belonging to that particular
domain. We used a set of 675 book sources and 209 movie
sources thus obtained from Google Base for our evaluations.
These lists contain some out-of-domain sources also since
some non-domain results may contain matching results to a
query. Sampling from these sources are performed through
Google Base API’s as described in Section 4.2. Consider-
ing the difference between the two sets of databases used
for evaluation, for Google Base—since the same ranking is
applied the entire data—the only source of independence
is difference in data. On the other hand, for the online
databases both data and ranking may be independent.

Test Query Set: Test query sets for both book and movie
domains are selected from different lists than the sampling
query set, so that test and sampling sets are disjoint. The
movie and books titles in several categories are obtained
from a movie sharing site and a favorite books list. We
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generated queries by randomly removing words from the
movie/book titles with probability of 0.5—in the same way
as described for the sampling queries above. We used partial
titles as the test queries, since intuitively typical web user
queries are partial descriptions of objects.

5.2 Measurements

Coverage: Coverage is computed as the mean relevance of
the top-5 results to the sampling queries described in Sec-
tion 4.2 above. For assessing relevance of the results, we
used the Soft TF-IDF with Jaro-Winkler similarity between
the query and the results (please recall that the same simi-
larity measure is used for the agreement computation).

CORI: For CORI, we used the same parameters as found
to be optimal by Callan et al. [7]. To collect source statistics
for CORI, we used terms with highest document frequency
from the sample crawl data describe in Section 4.2 as crawl-
ing queries. The highest document frequency terms in re-
lated text databases used as queries to crawl is observed to
be performing well by Callan et al. [6]. We used two hun-
dred queries and used top-10 results for each query to create
resource descriptions for CORI. We used comparison with
CORI, since later developments like ReDDE [15] depend on
database size estimation by sampling, and it is not demon-
strated that this size estimation would work on web sources
returning top-k ranked results.

5.3 Relevance Evaluation

Assessing Relevance: To assess the relevance, we used
randomly chosen queries from test queries described above
in Subsection 5.1, and issued the queries to the top-k sources

selected by different methods. The results returned are clas-
sified as relevant and non-relevant manually. The first au-
thor performed the classification of the tuples, since thou-
sands of tuples have to be classified as relevant and non-
relevant for each experiment. The classification is simple
and almost rule based. For example, assume that the query
is Wild West, and the original movie name from which the
partial query is generated is Wild Wild West as described in
test query description in Subsection 5.1. If the result tuple
refers to the movie Wild Wild West (i.e. DVD, Blue Ray or
CD etc.) result is classified as relevant, otherwise irrelevant.
Similarly for books, if the results is the queried book to sell
it is classified as relevant and otherwise classified as irrel-
evant. As an insurance against classification being biased,
we randomly mixed tuples from all methods in a single file;
so that the author does not know which method each result
came from while he does the classification.

Online Sources: We used twenty five queries for top-4 on-
line source selection and fifteen queries for top-8 source se-
lection for both the domains. We compared mean top-5 pre-
cision of top-4 sources, and DCG of top-4 rank list of sources
(we avoided normalization in NDCG since rank lists are of
equal length). Five methods, namely Coverage, SourceR-
ank, CORI, and two linear combinations of SourceRank with
CORI and Coverage—(0.1 x SourceRank+0.9x CORI) and
(0.5x Coverage+0.5x SourceRank)—are compared. For all
the three methods, scores are normalized against the high-
est score before combining (for example, all the SourceRank
scores are normalized against highest SourceRank score).
The higher weight for CORI in CORI-SourceRank combina-
tions is to compensate for the higher dispersion of SourceR-
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Figure 4: Decrease in ranks of the sources with increasing source corruption levels for (a) movies and (b)
books domain. The SourceRank reduces almost linearly with corruption, while CORI and Coverage are

insensitive to the corruption.

ank compared to CORI scores.

The results of the top-4 source selection experiments in
movie and books domain are shown in Figure 3(a) and 3(b).
For both the domains the SourceRank clearly outperforms
the Coverage and CORI. For movie domain, SourceRank in-
creases precision over Coverage by 216.0% (i.e. W X
100) and over CORI by 22.1%; and DCG of SourceRank is
higher by 111.7% and and 22.1% over coverage and CORI
respectively. For books domain, SourceRank improves by
precision over both CORI and Coverage by approximately
40%; and approximately 41% by DCG. The combinations
does not improve performance over SourceRank. This may
not be surprising, considering the fact that the sources se-
lected return the results based on relevance. Hence the re-
sults from SourceRank only source selection implicitly ac-
count for relevance also.

To confirm the results, we compared the three basic methods—

SourceRank, Coverage, and CORI—for top-8 source selec-
tion. The results are shown in Figure 3(c) and 3(d). For
movie domain, SourceRank increases precision by 62.0% and
24.7% over Coverage and CORI respectively; and DCG by
59.4% and 24.3%. For books domain, SourceRank increases
precision by 18.0% and 53.7% over Coverage and CORI re-
spectively; and DCG by 22.5% and 54.3%.

Google Base: In these experiments we tested if the
precision of Google Base search results can be improved by
combining SourceRank with Google Base relevance based
tuple ranking. Google Base tuple ranking is applied on top
of source selection by SourceRank and compared with stand-
alone Google Base Ranking. This combination of source se-
lection with Google Base tuple ranking is required for per-
formance comparison, since source ranking cannot be di-
rectly compared with the tuple ranking of Google Base. For
books domain, we calculated SourceRank for 675 books do-
main sources selected as described in Subsection 5.1. Out of
these 675 sources, we selected top-67 (10%) sources based
on SourceRank. The Google Base is made to query only on
this top-67 Sources, and precision of top-5 tuples compared
with that of Google Base Ranking without this source se-
lection step. Similarly for movie domain, top-21 sources are
selected. The results are evaluated using twenty five test-
ing queries for both the domains. DCG is not computed for
these experiments since all the results are ranked by Google

Coverage | SourceRank
Movies 4.05 4.24
Books 3.98 4.46

Table 1: Mean user ratings of the top-10% sources
selected by SourceRank and Coverage. For both the
domains SourceRank selects better sources.

Base ranking, hence ranking comparison is not required.

In Figure 3(e) and 3(f), the GBase is the stand alone
Google Base relevance ranking. GBase-Domain is the Google
Base ranking searching only in the domain sources selected
using our query probing (e.g. in Figure 3(f), 675 book
sources were selected as described in database description
in Subsection 5.1 above). SourceRank and Coverage are
Google Base tuple rank applied to the tuples from top-
10% sources selected by the SourceRank and Coverage based
source selections respectively. Note that for books domain,
GBase-Domain and Coverage are performing almost equally,
and SourceRank precision exceeds both by 69.8% for movie
domain and 26% for book domain.

5.4 Trustworthiness Evaluation

Online Sources: We evaluate the ability of SourceRank
to eliminate untrustworthy sources based on the fact that
corruption in unspecified attribute manifests as untrustwor-
thy results, where mismatch in specified attributes manifests
as irrelevant results—as pointed out in the introduction.
Since title is the specified attribute for our queries, we cor-
rupted attributes except the title values of the source crawls
for randomly selected sources. Corruption is performed by
replacing attribute values with random strings. SourceR-
ank, Coverage and CORI ranks are recomputed using these
corrupted crawls and sampling/test queries, and reduction
in ranks of the corrupted sources are calculated. The ex-
periment is repeated fifty times for each corruption level,
reselecting sources to corrupt randomly for each repetition.
The percentage of reduction for a method is computed as
the mean reduction in these fifty runs. Since CORI ranking
is query specific, decrease in CORI rank is calculated as the
average decrease in rank over ten test queries.

The results of the experiments for movies and books do-
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Figure 5: Time to compute agreement against num-
ber of sources.

main are shown in Figure 4. The Coverage and CORI are
agnostic to the corruption, and do not lower rank the cor-
rupted sources. On the other hand, the SourceRank of cor-
rupted sources reduces almost linear to the corruption level
of the source. Any relevance only measure would not be
able to capture corruption in unspecified attributes, as we
mentioned in the introduction. This corruption-sensitivity
of SourceRank would be helpful to solve the trust problems
we discussed in the introduction—Ilike solution manual with
same title and very low non-existent prices etc.

Google Base: In Google Base the user ratings of sources
are used as the measure of source quality. These sources
ratings are based on a large number of user reviews collected
by Google Base from a number of review portals. The user
ratings are not entirely dependent on the source relevance
and trust (quantities assessed by SourceRank), and many
factors—like shipping time etc—may affect the rating. But
intuitively, a source providing irrelevant or untrustworthy
results is not likely to be popular with users. So the source
trust and relevance is likely to be correlated with the user
rating.

The ratings vary from one to five (five is the best). The
sources not rated by Google Base i.e. sources having zero or
too few reviews are not considered for this evaluation. We
did not include the Google Base in comparison since it is not
a source ranking method; and that Google Base ranking may
be explicitly considering the source user rating. The mean
ratings of the top-10% sources selected by SourceRank and
Coverage are shown in Table 1. Though the absolute differ-
ence between the mean ratings seems low, this difference is
significant as dispersion of sources rating is low (e.g. mean
absolute deviation of twenty randomly picked movie sources
was 0.48).

6. TIMING EXPERIMENTS

For the timing experiments, since we already know that
random walk computations are feasible in web scale [5] we
are not including timing experiments of random walk, and
focus on agreement graph computation.

The agreement computation is O(n?k?) where n is the
number of sources and top-k result set from each source is
used for calculating the agreement graph (k is a constant
factor in practice). We performed all experiments on 3.16
GHz, 3.25 GB RAM Intel Desktop PC with Windows XP
Operating System.

Figure 5 shows the variation of agreement graph compu-

tation for the 600 book sources from Google Base we used.
As expected from time complexity formulae above, the time
increases in second order polynomial time. Since the time
complexity is quadratic, large scale computation of SourceR-
ank should be feasible. Also note that the agreement graph
computation is easy to parallelize. The different processing
nodes can be assigned to compute a subset of agreement
values between the sources; and these agreement values can
be computed in isolation—without any inter-process com-
munication to pass intermediate results between the nodes.

7. CONCLUSION AND FUTURE WORK

A compelling holy grail for the information retrieval re-
search is to integrate and search the structured deep web
sources. An immediate problem posed by this quest is source
selection, i.e. selecting relevant and trustworthy sources to
answer a query. Past approaches to this problem depend
on purely query based measures to assess the relevance of
a source (such as coverage or CORI). The relevance assess-
ment based solely on query similarity is easy to be tampered
by the content owner, as the measure is insensitive to the
popularity and trustworthiness of the results. The sheer
number and uncontrolled nature of the sources in the deep
web leads to significant variability among the sources, and
necessitates a more robust measure of relevance sensitive to
source popularity and trustworthiness. To this end, we pro-
posed SourceRank, a global measure derived solely from the
degree of agreement between the results returned by indi-
vidual sources. SourceRank plays a role akin to PageRank
but for data sources. Unlike PageRank however, it is derived
from implicit endorsement (measured in terms of agreement)
rather than from explicit hyperlinks. The SourceRank im-
proves relevance sources selected compared to existing meth-
ods and effectively removes corrupted sources. Also, we
demonstrate that combining SourceRank can be combined
with Google Product search ranking significantly improves
the quality of the results.

An immediate extension is computing and compensating
for dependency between the deep web sources would im-
prove the agreement graph computation as well as prevent
the collusion between the sources. We are working on ex-
tending the current work on finding dependence between
the sources. Also we are exploring calculation of source
dependence based on answers to queries with low speci-
ficity (queries with large number of possible answers). An-
other extension for SourceRank is combining with a query
specific relevance measure, especially to apply for domain-
independent search. Also similar to other popularity based
methods like page rank, SourceRank may have tendencies
like suppressing useful but unique answers and reducing di-
versity of results; and may require combination with other
measures to compensate these effects. Some other possible
applications areas of SourceRank may be XML search and
RDF source selection, since these data formats are struc-
tured to facilitate the computation of agreement.
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