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Abstract

Modeling the dynamics of cellular processes has re-
cently become a important research area of many
disciplines. One of the most important reasons
to model a cellular process is to enable high-
throughput in-silico experiments that attempt to
predict or intervene in the process. These ex-
periments can help accelerate the design of thera-
pies through their cheap replication and alteration.
While some techniques exist for reasoning with cel-
lular processes, few take advantage of the flexible
and scalable algorithms popularized in AI research.
In this domain, where scalability is crucial for feasi-
ble application, we apply AI planning based search
techniques and demonstrate their advantage over
existing enumerative methods.

1 Introduction
The cell maintains its functions via various interconnections
and regulatory controls among genes and proteins. Therefore,
it is critical, for understanding the living cell, to unravel how
such cellular components as genes and proteins interact with
each other. Mathematical modeling and computational simu-
lation of cellular systems, especially gene regulatory systems,
has been crux of computational systems biology, or biomed-
ical science in general. Once a model is constructed, it can
be used to predict the behavior of a cellular system under un-
usual conditions, to identify how a disease might develop,
and/or how to intervene such development to prohibit cells
from reaching undesirable states. Such models can aid biol-
ogists by quickly ruling out or confirming simple hypotheses
before expensive and time-consuming wet lab experiments.

In this paper, we address the problem of planning to in-
tervene in cellular processes, focusing on gene regulatory
networks (GRNs). A GRN describes a cellular process by
a set of genes and their regulatory influences over each
other. GRNs focus solely on genes (omitting proteins or
other molecules) to model the high level behavior of many
genes versus the low level behavior of a much smaller sys-
tem. Because practical GRN models are typically learned
from micro-array data [Kim et al., 2000], they are situated
at the right level of granularity for automated parametriza-
tion. Micro-array experiments measure the activity level of

thousands of genes from living tissue in terms of mRNA con-
centrations (the products of gene transcription used to code
proteins). Correlations between observed gene activity lev-
els help describe regulatory influences. Predictor functions
characterize the regulatory influences and provide a dynamic
model (e.g., when g1 and g2 are highly active, g3 becomes
inactive). The GRN state models the activity levels of genes
and the predictor functions describe possible next states. Out-
side interventions (e.g., using RNA interference to suppress a
gene’s activity level) alter predictor functions to control the
dynamics of the GRN, providing a natural planning problem.
In a plan, each action models either a possible intervention or
non-intervention that will change the state of the GRN.

There are a number of GRN features that affect our choice
of AI planning model. First, intervention plans need only fo-
cus on horizons long enough to ensure the GRN will naturally
transition to nominal states. Biological knowledge and com-
putational simulation of GRNs [Kim et al., 2002] tell us that
cellular processes, left to their own, transition to (or through)
stable attractor states. These states represent common cellu-
lar phenomena such as the cell cycle, division, etc. However,
some states are consistent with disease, such as the metastasis
of cancer. From abnormal states, planning interventions pro-
vides a method to push the evolution of the cell toward nomi-
nal attractor states. Second, the cell has an inherently hidden
state because full observations are prohibitively costly and we
have limited accessability [Datta et al., 2004]. Planning with
partial observability is important because biologists analyz-
ing cellular processes cannot be expected to understand, nor
obtain complete state information. Third, cellular processes
are commonly viewed as stochastic [Rao et al., 2002]. Genes
are typically regulated many different ways, meaning GRNs
must allow for the probabilistic selection of predictor func-
tion for each gene. Because state transitions are stochastic,
provide only partial observations, and are only relevant over
a limited planning horizon, we formulate our model of GRN
intervention as decision theoretic planning in a finite horizon
partially observable Markov decision process (POMDP).

This work is not the first to address the problem of plan-
ning interventions for GRNs, but it is the first to apply AI
planning techniques. Existing research [Datta et al., 2004]
enumerates all possible plans and then uses a dynamic pro-
gramming algorithm to find the optimal finite horizon plan.
Our planner is based on the AO* algorithm [Nilsson, 1980],



which uses upper bounds on plan quality (reward) for prun-
ing. We evaluate our planner on several formulations of a ran-
dom GRN with different reward functions to see the benefit
pruning. We also evaluate on the WNT5A GRN [Weeraratna
et al., 2002], which [Datta et al., 2004] use for intervention
planning. WNT5A is a gene that plays a significant role in
the development of melanoma and is known to induce the
metastasis of melanoma when highly active. On the WNT5A
problems studied by [Datta et al., 2004], our planner performs
significantly better than the enumeration algorithm of [Datta
et al., 2004]. Our study formalizes this interesting planning
domain as a finite horizon POMDP and shows the gains of
applying relatively standard AI techniques.

We start by describing a simple example of planning in-
terventions in a GRN. We then briefly define the components
of a finite horizon POMDP and a GRN intervention prob-
lem. With these definitions, we map the intervention prob-
lem to the POMDP. The solution to the POMDP is a condi-
tional plan, for which we define the semantics and provide
two solution algorithms – AO* and enumeration [Datta et al.,
2004]. We compare both algorithms on several GRNs, ei-
ther randomly generated or learned from actual micro-array
experiments. We end with related work, a conclusion, and
discussion of future work.

2 Intervention Planning Example
To clarify intervention planning, consider a small two gene
network where each gene g is either active (g) or inactive
(¬g). There are two predictor functions {fg1 , fg2} that de-
scribe the GRN dynamics, and an intervention to suppress g2

described by the predictor function f ′
g2

. Using the predictor
functions, we can define the following two actions:

Action No Intervention g2 Intervention
Reward 0 -1
Effects fg1 : g2 → ¬g1, ¬g2 → g1 fg1 : g2 → ¬g1, ¬g2 → g1

(Predictors) fg2 : ¬g2 → ¬g2, g2 → g2 f ′
g2

: → ¬g2

Observation g2 / ¬g2 g2 / ¬g2

Intervening to suppress g2 incurs a reward of -1 by rewrit-
ing the predictor function fg2 with f ′

g2
. We also assume that

we can observe g2 but not g1. The goal of the intervention
problem associates a reward of 10 with activating gene g1.
While the actions are deterministic (for the sake of example
simplicity), we can describe stochastic actions by allowing a
probabilistic choice of predictor function for each gene.

Assume that we start with the initial belief state where each
GRN state is equally likely, as depicted in Figure 1. The fig-
ure shows a horizon three plan to achieve the goal of activat-
ing g1. The first action in the plan is to not intervene; we will
let the genes affect each other, and then observe g2. Not inter-
vening leads to the belief state {0.5{¬g1, g2}, 0.5{g1,¬g2}}.
Using the observation of whether g2 or ¬g2 holds, the plan
branches to belief states consistent with the appropriate ob-
servation. Since we do not know which value of g2 will occur,
we plan for both branches. In the first branch, we apply our
g2 intervention action to suppress g2. In the following step,
we do not intervene and having g2 inactive will activate g1,
leading to a state satisfying the goal. In the second branch,
we can apply the non intervention action indefinitely because
the goal is satisfied and will remain satisfied.
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Figure 1: Example Plan.

The quality of the plan is the expected reward of all possi-
ble plan branches. The first branch, taken with 0.5 probability
has a reward of 9 (because we had to intervene), and the sec-
ond branch, taken with 0.5 probability has a reward of 10.
Thus, the total expected reward is 9.5.

3 Decision Theoretic Planning
This section describes the basics of the finite horizon POMDP
model, formally defines intervention planning, and details the
formulation of intervention planning in the POMDP.

POMDP Model: Unlike most work on POMDPs, that find
a policy over the belief space, we find a policy (conditional
plan) rooted at an initial situation. The finite horizon POMDP
problem P is defined as the tuple 〈S,A, T,R,Ω, O, h, bI〉,
where S is a set of states, A is a set of actions, T : S × A∪
{⊥}×S ∪{⊥} → [0, 1] is a transition function, R : S ×A∪
{⊥}×S ∪ {⊥} → R is the transition reward function, Ω is a
set of observations, O : S×A×Ω → [0, 1] is the observation
function, h is the planning horizon, and bI : S → [0, 1] is the
initial belief state. We overload the symbol ⊥ to denote both
the terminal action and state signifying the end of the plan.

Intervention Planning Problem: Given our definition of the
POMDP model, in the following we show how an interven-
tion planning problem maps to the POMDP. The intervention
problem is defined by the tuple 〈G,Dom,F,X,W, Y,O, h〉,
where G is a set of genes, Dom is the set of activity levels for
genes, F is a set of predictor functions, X is a set of inter-
ventions, W is an initial situation, Y is a goal description, O
is a set of observations, and h is the horizon. The genes and
their activity levels describe states of the POMDP, the pre-
dictor functions and interventions describe actions, interven-
tions and the goal description define the reward function, and
the initial situation, observations, and horizon map directly to
their POMDP counterparts.

States: Each gene g ∈ G has an activity level from the do-
main Dom of values, of which we will only illustrate boolean
domains {g,¬g}, active or inactive. A state s : G → Dom of
the gene network maps each gene to a value d ∈ Dom. The
entire set of GRN states defines the POMDP states S.

Predictor Functions and Interventions: Given a state of the
gene network, the predictor functions F describe states reach-
able after one step. Interventions re-write predictor functions
in F for specific genes to ensure the gene network transitions
to specific states. Thus, each possible action in the POMDP



is described by a set of predictor functions. A non interven-
tion simply uses F to describe the action, but an interven-
tion action x ∈ X replaces predictor functions in F to get a
new set Fx. Each intervention x ∈ X is a set of predictors
{fg1 , fg2 , ...}, allowing us to define

Fx = F ∪ x\{fg|fg ∈ F, fg′ ∈ x, g = g′}.

Each predictor function fg is defined as the mapping fg :
Dom|G′| → Dom from activity levels of genes in G′ ⊆ G
to the activity level of gene g. The interventions described in
this work contain a single predictor function fg where G′ = ∅,
meaning that irrespective of the state g has its activity level set
deterministically.

Since each gene may be predicted by several predictor
functions, where each state transition selects one probabilis-
tically, we assign a weight w(fg) to each. While we assume
the predictor functions are given, we can learn them from
micro-array experiments. In the empirical analysis we evalu-
ate GRNs where the predictor functions and weights are both
generated randomly and from real micro-array experiments.

Each action aF defined by the set of predictor functions F
(similarly Fx) describes the transition function probability

T (s, aF , s′) = Pr(s′|F, s) =
∏

g∈G

∑
fg∈F :fg(s)=s′(g) w(fg)

∑
fg∈F w(fg) .

Observations: After each step, whether by intervention or
non intervention, we can observe the state of the gene net-
work. The set O ⊆ G defines which genes are observable
(by genetic markers, physiology, etc.). The set of observa-
tions Ω = {o|o ∈ Dom|O|} is defined by all joint activity
levels of genes in O. In this work, we assume that observa-
tions are perfect and the same for each action, meaning that
if a state s and observation o agree on the activity level of
each gene, then the probability of the observation is one (i.e.,
O(s, a, o) = 1), otherwise zero (i.e., O(s, a, o) = 0). Obser-
vations can be noisy (i.e., 0 ≤ O(s, a, o) ≤ 1) in general.

Rewards: The goal Y is a function describing desirable
states. We assume that the goal maps states to real values
Y : Dom|G| → R. The reward function for terminal actions
and goal states is defined by the goal R(s,⊥,⊥) = Y (s).
We assume that the reward associated with actions is -1 for
intervention actions (i.e., R(s, aFx

, s′) = −1) and 0 for non
intervention (i.e., R(s, aF , s′) = 0).

Initial Situation: The initial situation W is a distribution
over GRN states W : Dom|G| → [0, 1]. This mapping to the
POMDP initial situation is straight-forward, bI(s) = W (s).

Since the formulation has a distinct initial belief state, we
do not explore more traditional POMDP value or policy itera-
tion techniques for computing a finite horizon policy. Rather,
we use the knowledge of the initial belief state to guide ex-
pansion of a conditional plan. By searching forward from the
initial belief state, it is possible to focus plan construction on
reachable belief states.

4 Search
This section describes our approach to solving a finite hori-
zon POMDP. We start by defining the semantics of condi-
tional plans and our search space. We follow with two search

algorithms to find plans. The first algorithm is AO* [Nils-
son, 1980], and the second Datta is based on a competing
approach [Datta et al., 2004] from the GRN literature.

Conditional Plans: A solution to the problem P is a con-
ditional plan P of horizon h, described by a partial func-
tion P : V → A ∪ {⊥} over the belief state space graph
G = (V,E). A subset of the vertices b ∈ V (which are belief
states) are mapped to a “best” action a, denoted P(b) = a.
Each edge e ∈ E directed from b to bo

a is mapped to an
action a ∈ A and an observation o ∈ Ω, and denoted
e(b, bo

a) = (a, o). If P(b) = a and e(b, bo
a) = (a, o), then

P(bo
a) is the action to execute after executing a and receiving

observation o. Throughout our discussion, we assume that
the horizon is a feature of every state to ensure that the graph
G is acyclic. Belief states where the horizon is equal to h
have a single available action ⊥ to signify the end of the plan,
leading to a terminal ⊥.

If P(b) = a, and there exists an edge e(b, bo
a) = (a, o) then

the successor belief state bo
a is defined

ba(s′) =
∑

s∈S

b(s)T (s, a, s′)

bo
a(s′) = α ba(s′)O(s′, a, o),

where α is a normalization constant. If for all s′ ∈ S,
bo
a(s′) = 0 because no observation is consistent with the be-

lief state ba, then the belief state is not added to the graph.
The expected reward q(a, b) of a plan that starts with action

a at belief state b is the sum of current and future rewards:

q(a, b) =
∑

s∈S

∑

s′∈S

b(s)T (s, a, s′)R(s, a, s′) +
∑

o∈Ω

ba(s′)O(s′, a, o)V(bo
a),

where the expected reward for a belief state is V(b) =
maxa∈A q(a, b). Terminal vertices are assigned the expected
goal reward

q(⊥, b) =
∑

s∈S

b(s)R(s,⊥,⊥).

AO* Algorithm: We solve the finite horizon POMDP prob-
lem with AO* search [Nilsson, 1980] in the space of belief
states. The AO* algorithm, listed in Figure 2, takes the plan-
ning problem as input, and iteratively constructs the belief
space graph G rooted at bI . The algorithm involves three it-
erated steps: expand the current plan with the ExpandPlan
routine (line 3), collect the ancestors Z’ of new vertices Z
(line 4), and compute the current best partial plan (line 5).
The algorithm ends when it expands no new vertices. In the
following we briefly describe the sub-routines used by AO*.

The ExpandPlan routine recursively walks the current
plan to find unexpanded vertices (lines 2-5). Upon finding
a vertex to expand, it generates all successors of the vertex
(lines 7-18). Generating successors involves assigning the ⊥
action if the vertex it is at the max horizon (line 10) or con-
structing the vertices reached by all action and observation
combinations (lines 12-17). Notice that each vertex has its
value initialized with an upper bound,

Rmax = max
s,s′∈S,a∈A

R(s, a, s′)h + max(0, R(s,⊥,⊥)),



AO*(P )
1: expanded(bI ) = FALSE
2: repeat
3: Z = ExpandPlan(bI, 0)
4: Z’ = AddAncestors(Z)
5: Update(Z’)
6: until |Z| = 0

ExpandPlan(b, hzn)
1: if expanded(b) then
2: for e(b, bo

P(b)) ∈ E do
3: Z’ = ExpandPlan(bo

P(b), hzn+1)
4: Z = Z ∪ Z’
5: end for
6: else
7: expanded(b) = TRUE
8: Z = Z ∪ {b}
9: if hzn == h then

10: E = E ∪ {e(b,⊥) = (⊥,⊥)}
11: else
12: for a ∈ A, o ∈ Ω do
13: V = V ∪ {bo

a}
14: E = E ∪ {e(b, bo

a) = (a, o)}
15: expanded(bo

a) = FALSE
16: V(bo

a) = Rmax

17: end for
18: end if
19: end if
20: return Z

Figure 2: AO* Search Algorithm.

on its expected reward. The upper bound plays a role in prun-
ing vertices from consideration in the search.

After expanding the current plan, ExpandPlan returns
the set of expanded vertices Z. In order for Update
(Figure 3) to find the best plan, given the new vertices,
AddAncestors adds to Z’ every ancestor vertex of a ver-
tex in Z. The resulting set of vertices consists of every ver-
tex whose value (and best action) can change after Update.
The Update routine iteratively removes vertices from Z that
have no descendent in Z and calls Backup until no vertices
remain in Z. The Backup routine computes the value of a
vertex and sets its best action. The reason Update chooses
vertices with no descendent in Z is to ensure each vertex has
its value updated with the updated values of its children.
AO* can often avoid computing the entire belief space

graph G, leading to significant savings in problems with large
horizons. By initializing vertices with an upper bound on
their value it is possible to ignore vertices that have a consis-
tently lowest upper bound. For example in Backup, if there
exists an action whose q-value is always greater than the al-
ternative actions, then the best action will never be set to one
of the alternatives. Further, because the alternative actions
are never considered best, ExpandSolutionwill never ex-
pand them. As we will explore in the empirical evaluation,
the reward function has a significant effect on the number of
vertex expansions. In the worst case, it is possible to expand

AddAncestors(Z)
1: Z’ = Z
2: while ∃b s.t. e(b, bo

P(b)) ∈ E and bo
P(b) ∈ Z do

3: Z’ = Z’ ∪b
4: end while
5: return Z’

Update(Z)
1: while |Z| > 0 do
2: Remove b ∈ Z s.t. ¬∃b′ ∈ Z where e(b, b′) ∈ E
3: Backup(b)
4: end while

Backup(b)
1: for all a ∈ A ∪ {⊥} do
2: Compute q(a, b)
3: end for
4: V(b) = max

a∈A∪{⊥}
q(a, b)

5: P(b) = argmax
a∈A∪{⊥}

q(a, b)

Figure 3: AO* Subroutines.

Datta(P )
1: ExpandPlanD(bI, 0)
2: Update(V)

ExpandPlanD(b, hzn)
1: if hzn == h then
2: E = E ∪ {e(b,⊥) = (⊥,⊥)}
3: else
4: for a ∈ A, o ∈ Ω do
5: V = V ∪ {bo

a}
6: E = E ∪ {e(b, bo

a) = (a, o)}
7: ExpandPlanD(bo

a, hzn+1)
8: end for
9: end if

Figure 4: Datta Enumeration Algorithm.

the entire graph G, as would Datta.

Enumeration Algorithm: In order to compare our planner
to the work of [Datta et al., 2004], we provide a description
of their algorithm, we call Datta, in Figure 4. Unlike the
iterative AO*, Datta consists of two steps: expand G with
ExpandPlanD, and then update each vertex v ∈ V with
Update. The ExpandPlanD routine recursively expands
G by either reaching a terminal vertex at the horizon (line 2),
or generating and recursing on each child of a vertex (lines 4-
8). Following ExpandPlanD, Update computes the best
action for each vertex in V .

Unlike AO*, Datta is unable to prune vertices from ex-
pansion, making it insensitive to the reward function. While
the result of the two algorithms is identical, the time and
space required can be very different. We implemented both
algorithms within our planner and demonstrate their effec-
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Figure 5: Number of Expanded Vertices for random GRN (left), WNT5A intervention (center), PIRIN intervention (right).
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Figure 6: Total Planning Time(s) for random GRN (left), WNT5A intervention (center), PIRIN intervention (right).

tiveness on the GRN intervention planning problems. We
also implemented a straight-forward version of the [Datta et
al., 2004] algorithm that does not make use of several effi-
ciency improvements within the planner, such as using ADDs
[Bryant, 1986] for compact action and belief state represen-
tation, as well as duplicate belief state detection.

5 Empirical Evaluation
To test the feasibility of using our planner to solve GRN inter-
vention problems, we experiment with a random GRN and the
WNT5A GRN [Weeraratna et al., 2002; Datta et al., 2004].
The following table summarizes the features of the GRNs:

|G| |Dom| |F | |X| |O|
Random 7 2 14 3 1
WNT5A 7 2 14 1 1

Both networks use seven genes (each with two activity lev-
els), two predictor functions per gene, each with two genes
as predictors. The predictor functions were selected ran-
domly in the random GRN and learned from micro-array data
(measurements of mRNA concentrations in a cell that indi-
cate gene activity levels) in the WNT5A GRN. In order to
learn predictor functions, we use a coefficient of determina-
tion (COD) statistic to measure the strength of correlation be-
tween predictor and target genes from normalized and dis-
cretized data [Kim et al., 2000]. We use the two predic-
tor functions with highest COD for each gene, setting their
weight equal to the COD.

Within both GRNs we study several intervention problems.
In the random GRN, we vary the goal W to assign differ-
ent rewards to terminal states, while assigning interventions a

negative reward of one. This illustrates the ability of AO* to
prune the search space in comparison with enumeration. In
the WNT5A GRN, we reproduce two intervention problems
studied by [Datta et al., 2004]. The first directly intervenes
to suppress WNT5A (which happens to be the goal) and ob-
serves the PIRIN gene. The second attempts to indirectly
control WNT5A by PIRIN (a predictor gene of WNT5A)
intervention. Both WNT5A problems use the same reward
function, assigning interventions a negative reward of one and
the goal (activating WNT5A) a negative reward of three. We
use negative reward for the goal to maintain consistency with
the [Datta et al., 2004] model. Thus plans avoid activating
WNT5A, which is equivalent to pursuing suppression. Both
WNT5A networks use the initial belief state where each gene
is set to an activity level with probability proportional to its
observed frequency in the data.

Our planner is implemented in C++ and ran on a 2.8GHz
P4 Linux machine with 1GB of RAM. Each experiment
was given a twenty minute time limit. For our plan-
ner binary and gene regulatory network encodings, several
of which we did not have space to describe, please visit:
http://verde.eas.asu.edu/GRN.

Random GRN: The leftmost plot in Figure 5 depicts the
number of expanded vertices (including terminal actions) in
AO*, Datta, and the maximum possible (Max). The results
for AO* are indexed by a number indicating the reward as-
sociated with the goal, since Datta is insensitive to reward.
Max represents the number of vertices expanded in a search
tree (versus a graph), similar to the original implementation
of [Datta et al., 2004]. Because we implemented the Datta



algorithm in our planner, like AO* it finds duplicate belief
states. Without duplicate detection, Datta would expand as
many vertices as Max. The leftmost plot in Figure 6 shows
the associated total planning time (which is proportional to
the number of expanded vertices). Missing bars indicate the
instance was cut off by reaching the 20 minute time limit.

We notice several important points in these results. AO* is
sensitive to the goal reward function, expanding much fewer
vertices than Datta in some cases. Despite AO* using dy-
namic programming over its partial solution many times, it
never takes more time than Datta. As a result, when it is
able to prune vertices, AO* scales much better.

WNT5A GRN: The center plots in Figures 5 and 6 show re-
sults in the WNT5A GRN intervening WNT5A and observ-
ing PIRIN. Here AO* greatly outperforms Datta. The dif-
ference is partly due to the fact that AO* quickly recognizes
that the optimal plan intervenes once at the end of each plan
branch where WNT5A is not already deactivated. We also
directly implemented the approach of [Datta et al., 2004],
which does no duplicate detection, and it was able to solve
this problem to a horizon of ten, using significantly more
memory and time. While our implementation of Datta is
limited by time, the direct implementation is limited by space,
exceeding 1 GB memory past horizon ten. The rightmost
plots in Figures 5 and 6 show results in the WNT5A GRN
intervening PIRIN and observing WNT5A. Finding plans in
this problem requires more search, but AO* can still prune.

Discussion: We have shown that AO* is a viable approach to
solving GRN intervention problems. Where the Datta algo-
rithm quickly exceeds our time limit as the horizon increases,
AO* is sensitive to reward functions and can scale to larger
horizons. Using both artificial and existing GRNs of practi-
cal interest, we have seen that AO* performs well by prun-
ing vertices based on upper bounds. Perhaps the next step
is to achieve tighter upper bounds through heuristics. While
we did not discuss alternative GRN formulations (e.g., with
more genes, activity levels, and observations), we have stud-
ied such problems and see similar scalability.

6 Related Work
Planning in cellular processes is a relatively new area of re-
search, with some initial work on problem formulation as
well as solution algorithms. There also exists some prelim-
inary works on representing cellular processes without spe-
cific emphasis on planning interventions. The closest body of
work for planning interventions [Datta et al., 2004] models
the problem as a finite horizon control problem.

Some recent works in the AI community have focussed on
simply representing cellular processes. One approach, dis-
covers signal transduction pathways with a deterministic clas-
sical planner [Khan et al., 2003]. Further along this vein,
[Tran and Baral, 2005] model change in cellular processes as
exogenous actions, termed triggers.

7 Conclusion & Future Work
We have presented a formulation of GRN intervention as de-
cision theoretic planning. Our planner relies on several ad-

vances in AI planning to perform efficient reasoning. As a
result, we have improved the scalability of planning interven-
tions in GRNs over previous work.

In the future, we would like to decouple the representa-
tion of cellular process dynamics from our intervention ac-
tions. We think the right approach is to use exogenous ac-
tions or processes. While recent work in deterministic plan-
ning [McDermott, 2003] has discussed models for control-
ling exogenous processes and triggers [Tran and Baral, 2005],
less thought has been given to such processes in a probabilis-
tic setting (with the exception of [Blythe, 1994]). Alterna-
tively, research in simulating cellular processes [Ramsey et
al., 2005] has considered probabilistic exogenous processes,
but not under the control of a planner.
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