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Abstract— Intelligent robots and machines are becoming per-
vasive in human populated environments. A desirable capability
of these agents is to respond to goal-oriented commands by
autonomously constructing task plans. However, such autonomy
can add significant cognitive load and potentially introduce
safety risks to humans when agents behave in unexpected ways.
Hence, for such agents to be helpful, one important requirement
is for them to synthesize plans that can be easily understood by
humans. While there exists previous work that studied socially
acceptable robots that interact with humans in “natural ways”,
and work that investigated legible motion planning, there is
no general solution for high level task planning. To address
this issue, we introduce the notions of plan explicability and
predictability. To compute these measures, first, we postulate
that humans understand agent plans by associating abstract
tasks with agent actions, which can be considered as a labeling
process. We learn the labeling scheme of humans for agent
plans from training examples using conditional random fields
(CRFs). Then, we use the learned model to label a new plan to
compute its explicability and predictability. These measures can
be used by agents to proactively choose or directly synthesize
plans that are more explicable and predictable to humans. We
provide evaluations on a synthetic domain and with a physical
robot to demonstrate the effectiveness of our approach.

I. INTRODUCTION

Intelligent robots and machines are becoming pervasive
in human populated environments. Examples include robots
for education, entertainment and personal assistance just to
name a few. Significant research efforts have been invested
to build autonomous agents to make them more helpful.
These agents are expected to respond to goal specifications
instead of basic motor commands. This requires them to
autonomously synthesize task plans and execute those plans
to achieve the goals. However, if the behaviors of these
agents are incomprehensible, it can increase the cognitive
load of humans and potentially introduce safety risks to them.

As a result, one important requirement for such intelligent
agents is to ensure that the synthesized plans are compre-
hensible to humans. This means that instead of considering
only the planning model of the agent, plan synthesis should
also consider the interpretation of the agent behavior from the
human’s perspective. This interpretation is related to human’s
modeling of other agents. More specifically, we tend to have
expectations of others’ behaviors based on our understanding
(modeling) of their capabilities [28] and mental states (belief,
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desire and intent) [22]. If their behaviors do not match
with these expectations, we would often be confused. One
of the major reasons of this confusion is due to the fact
that our understanding of others’ models is often partial
and inaccurate. This is also true when humans interact with
intelligent agents. For example, to darken a room that is too
bright, a robot can either adjust the window blinds, switch
off the lights, or stand in front of the window to block the
sunlight. While standing in front of the window may well
be the least costly plan to the robot in terms of energy
consumption (e.g., navigating to and stopping in front of
the window requires the least amount of battery power),
it is clear that the other two options would better match
the human’s expectation. One of the challenges here is that
the human’s understanding of the agent model is inherently
hidden. Thus, its interpretation from the human’s perspective
can be arbitrarily different from the agent’s own model.
While there exists previous work that studied social robots
[12], [13], [23], [19] that interact with humans in “natural
ways” and “legible” ways [7], there exists no general solution
for high level task planning.

In this paper, we introduce the notions of plan explicability
and predictability which are used by autonomous agents
(e.g., robots) to synthesize “explicable” and “predictable”
plans, respectively, that can be easily understood and pre-
dicted by humans. Our problem settings are as follows:
an intelligent agent is given a goal by a human (so that
the human knows the goal of the agent) working in the
same environment and it needs to synthesize a plan to
achieve the goal. As suggested in psychological studies [26],
[6], we assume that humans naturally interpret a plan as
achieving abstract tasks (or subgoals), which are functional
interpretations of agent action sequences in the plan. For
example, a robot that executes a sequence of manipulation
actions may be interpreted as achieving the task of “picking
up cup”. Based on this assumption, intuitively, the easier
it is for humans to associate tasks with actions in a plan,
the more explicable the plan is. Similarly, the easier it is to
predict the next task given actions in the previous tasks, the
more predictable the plan is. In this regard, explicability is
concerned with the association between human-interpreted
tasks and agent actions, while predictability is concerned
with the connections between these abstract tasks.

Since the association between tasks and agent actions
can be considered as a labeling process, we learn the
labeling scheme of humans for agent plans from training
examples using conditional random fields (CRFs). We then
use the learned model to label a new plan to compute its
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Fig. 1. From left to right, the scenarios illustrate the differences between
automated task planning, human-aware planning and explicable planning
(this work). In human-aware planning, the robot needs to maintain a model
of the human (i.e., MH ) which captures the human’s capabilities, intents
and etc. In explicable planning, the robot considers the differences between
its model from the human’s perspective (i.e., M∗

R) and its own model MR.

explicability and predictability. These measures are used by
agents to proactively choose or directly synthesize plans
that are more explicable and predictable without affecting
the quality much. Our learning approach does not assume
any prior knowledge of the human’s interpretation of the
agent model. We provide evaluation on a synthetic domain
in simulation and with human subjects using physical robots
to demonstrate the effectiveness of our approach.

II. RELATED WORK

To build autonomous agents (e.g., robots), one desirable
capability is for such agents to respond to goal-oriented com-
mands via automated task planning. A planning capability
allows agents to autonomously synthesize plans to achieve
a goal given the agent model (MR as shown in the first
scenario in Fig. 1) instead of following low level motion
commands, thus significantly reducing the human’s cognitive
load. Furthermore, to work alongside of humans, these agents
must be “human-aware” when synthesizing plans. In prior
works, this issue is addressed under human-aware planning
[24], [5], [3] in which agents take the human’s activities
and intents into account when constructing their plans. This
corresponds to human modeling in human-aware planning
as shown in the second scenario in Fig. 1. A prerequisite
for human-aware planning is a plan recognition component,
which is used to infer the human’s goals and plans. This
information is then used to avoid interference, and plan for
serendipity and teaming with humans. There exists a rich
literature on plan recognition [15], [4], [21], [17], and many
recent works use these techniques in human-aware planning
and human-robot teaming [25], [3], [27]. In contrast, the
modeling in this work is one level deeper: it is about
the interpretation of the agent model from the human’s
perspective (M∗R in Fig. 1). In other words, R needs to
understand the model of itself in H’s eyes. This information
is inherently hidden, difficult to glean, and can be arbitrarily
different from R’s own model (MR in Fig. 1).

There exists work on generating legible robot motions [7]
which considers a similar issue in motion planning. We are,

on the other hand, concerned with task planning. Note that
two different task plans may map to exactly the same motions
which can be interpreted vastly differently by humans. For
example, compare a robot that navigates while holding a
cup with the robot executing the same motion trajectory
while holding a knife. In such cases, considering only motion
becomes insufficient. Nevertheless, there exists similarities
between [7] and our work. For example, legibility there is
analogous to predictability in ours.

In the human-robot interaction (HRI) community, there
exists prior work on how to enable fluent interaction [12],
[13], [23], [19] to create more socially acceptable robots [8].
These works, however, apply only to behaviors in specific
domains. Compared with model or preference learning via
expert inputs, such as learning from demonstration [2],
inverse reinforcement learning [1] and tutoring systems [18],
which is about learning the “right” model or preferences of
the teachers, our work, on the other hand, is concerned with
learning model differences. Furthermore, as an extension to
our work, when robots cannot find an explicable plan that
is also cost efficient, they need to signal to the humans as
a “heads-up”. In this regard, our work is also related to
excuse [10] and explanation generation [11]. Finally, while
our learning approach appears to be similar to information
extraction [20], we use it to proactively guide planning
instead of passively extracting information.

III. EXPLICABILITY AND PREDICTABILITY

In our setting, an agent R needs to achieve a goal given
by a human in the same environment (so that the human
knows about the goal of the robot). The agent has a model
of itself (referred to as MR) which is used to autonomously
construct plans to achieve the goal. In this paper, we assume
that this model is based on PDDL [9], a general planning
domain definition language. As we discussed, for an agent
to generate explicable and predictable plans, it must not only
consider MR but alsoM∗R, which is the interpretation of MR

from the human’s perspective.

A. Problem Formulation

Given a domain, the problem is to find a plan for a given
initial and goal state that satisfy the following:

argmin
πMR

cost(πMR
) + α · dist(πMR

, πM∗
R

) (1)

where πMR
is a plan that is constructed using MR (i.e.,

the agent’s plan), πM∗
R

is a plan that is constructed using
M∗R (i.e., the human’s anticipation of the agent’s plan), cost
returns the cost of a plan, dist returns the distance between
two plans (capturing their differences), and α is the relative
weight. The goal of Eq. (1) is to find a plan that minimizes a
weighted sum of the cost of the agent plan and the differences
between the two plans. Since the agent model MR is given,
the challenge lies in the second part in Eq. (1).

Note that if we know M∗R or it can be learned, the only
thing left would be to decide on a proper dist function.
However, as discussed previously,M∗R is inherently hidden,
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difficult to glean, and can be arbitrarily different from MR.
Hence, our solution is to use a learning method to directly
approximate the returned distance values. We postulate that
humans understand agent plans by associating abstract tasks
with actions, which can be considered as a labeling process.
Based on this, we assume that dist(πMR

, πM∗
R

) can be
functionally decomposed as:

dist(πMR
, πM∗

R
) = F ◦ L∗(πMR

) (2)

where F is a domain independent function that takes plan
labels as input, and L∗ is the labeling scheme of the human
for agent plans based on M∗R. As a result, Eq. (1) now
becomes:

argmin
πMR

cost(πMR
) + α · F ◦ L(πMR

|{Si|Si = L∗(πiMR
)})

(3)
where {Si} is the set of training examples and L is the
learned model of L∗. We can now formally define plan
explicability and predictability in our context. Given a plan
of agent R as a sequence of actions, we denote it as πMR

and simplified below as π for clarity:

π = 〈a0, a1, a2, ...aN 〉 (4)

where a0 is a null action that denotes the start of the plan.
Given the domain, we assume that a set of task labels T is
provided to label agent actions:

T = {T1, T2, ...TM} (5)

1) Explicability Labeling: Explicability is concerned with
the association between abstract tasks and agent actions; each
action in a plan is associated with an action label. The set
of action labels for explicability is the power set of task
labels: L = 2T . When an action label includes multiple task
labels, the action is interpreted as contributing to multiple
tasks; when an action label is the empty set, the action is
interpreted as inexplicable. When a plan is labeled, we can
compute its explicability measure based on its action labels
in a domain independent way. More specifically, we define:

Definition 1 (Plan Explicability): Given a domain, the ex-
plicability θπ of an agent plan π is computed by a mapping,
Fθ : Lπ → [0, 1] (with 1 being the most explicable).
Lπ above denotes the sequence of action labels for π. An
example of Fθ used in our evaluation is given below:

Fθ(Lπ) =

∑
i∈[1,N ] 1L(ai)6=∅

N
(6)

where N is the plan length, L(ai) returns the action label
of ai, and 1formula is an indicator function that returns 1
when the formula holds or 0 otherwise. Eq. (6) basically
computes the ratio between the number of actions with non-
empty action labels and the number of all actions.

2) Predictability Labeling: Predictability is concerned
with the connections between tasks in a plan. An action label
for predictability is composed of two parts: a current label
and a next label (i.e., L × L). The current label is also the
action label for explicability. The next label (similar to the
current label) is used to specify the tasks that are anticipated

to be achieved next. A next label with multiple task labels
is interpreted as having multiple candidate tasks to achieve
next; when empty, it is interpreted as that the next task is
unpredictable, or there are no more tasks to be achieved.

Definition 2 (Plan Predictability): Given a domain, the
predictability βπ of a plan π is computed by a mapping,
Fβ : L2

π → [0, 1] (with 1 being the most predictable).
L2
π denotes the sequence of action labels for predictability.

An example of Fβ is given below which is used in our
evaluation when assuming that the current and next labels
are associated with at most one task label:

Fβ(L2
π) =

∑
i∈[0,N ] 1|L(ai)|=1 ∧ (1L2(ai)=L(aj) ∨ 1L2(ai:N )=∅)

N + 1
(7)

where aj(j > i) is the first action that has a different current
label as ai or the last action in the plan if no such action is
unfound, L2(ai) returns the next label of ai and 1L2(ai:N )=∅
returns 1 only if the next labels for all actions after ai
(including ai) are ∅. Eq. (7) computes the ratio between
number of actions that we have correctly predicted the next
task and the number of all actions.

Although Eqs. (6) and (7) seem to allow the padding of
redundant actions to increase the scores (especially when α
in Eq. (3) is set to be large), it is unlikely that such actions
can be arbitrarily padded and still labeled as explicable. This
is because the task label of an action depends on the context
instead the individual action. Note that Eqs. (6) and (7)
consider only the case where any action label contains a
single task label, which we found to be more convenient for
human subjects. Eqs. (6) and (7) can be extended to more
complex forms when multiple task labels are used.

B. A Concrete Example

Before discussing how to learn the labeling scheme of
the human from training examples, we provide a concrete
example to connect the previous concepts and show how
training examples can be obtained. In this example, there is
a rover in a grid environment working with a human. An
illustration of this example is presented in Fig. 2. There are
resources to be collected which are represented as boxes.
There is one storage area that can store one resource which
is represented as an open box. The rover can also make ob-
servations. The rover actions include {navigate lfrom lto},
{observe l} {load l}, and {unload l}, each representing
a set of actions since l (i.e., representing a location) can
be instantiated to different locations (i.e., 0 − 8 in Fig. 2).
navigate (or nav) can move the rover from a location to
one of its adjacent locations; load can be used to pick up a
resource when the rover is not already loaded; unload can
be used to unload a resource at a storage area if the area is
empty; observe (or obs) can be used to make an observation.
Once a location is observed, it remains observed. The goal is
for the rover to make the storage area non-empty and observe
two locations that contain the eye symbol in Fig. 2.

In this domain, we assume that there are three abstract
tasks that may be used by the human to interpret the rover’s
plans: COLLECT (C), STORE (S) and OBSERVE (O). Note
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Fig. 2. Example for plan explicability and predictability with action labels
(on the right) for a given plan in the rover domain.

that we do not specify any arguments for these tasks (e.g.,
which resource the rover is collecting) since this information
may not be important to the human. This also illustrates
that MR and M∗R can be arbitrarily different. In Fig. 2, we
present a plan of the rover as connected arrows starting from
the its initial location.

Human Interpretation as Training Examples: Let us now
discuss how humans may interpret this plan (i.e., associating
labels with actions) as the actions are observed incrementally:
when labeling ai, we only have access to the plan prefix
〈a0, ..., ai〉. At the beginning for labeling a0, the observation
is that the rover starts at l5. Given the environment and
knowledge of the rover’s goal, we may infer that the first
task should be COLLECT (the resource from l4). Hence,
we may choose to label a0 as ({START}, {C}). The first
action of the rover (i.e., nav l5 l4) seems to match with
our prediction. Furthermore, given that the storage area is
closest to the rover’s location after completing COLLECT,
the next task is likely to be STORE. Hence, we may label a1
as ({C}, {S}) as shown in the figure. The second action (i.e.,
load l4) also matches with our expectation. Hence, we label
a2 too as ({C}, {S}). The third action, nav l4 l1, however,
is unexpected since we predicted STORE in the previous
steps. Nevertheless, we can still explain it as contributing
to OBSERVE (at location l0). Hence, we may label this
navigation action (a3) as ({O}, {S}). For the fourth action,
the rover moves back to l4, which is inexplicable since the
rover’s behavior seems to be oscillating for no particular
reason. Hence, we may choose to label this action as (∅, ∅).
The labeling for the rest of the plan continues in a similar
manner. This thought process reflects how training examples
can be obtained from human labelers.

IV. LEARNING APPROACH

To compute θπ and βπ from Defs. (1) and (2) for a given
plan π, the challenge is to provide a label for each action.
This requires us to learn the labeling scheme of humans
(i.e., L∗ in Eq. (2)) from training examples and then apply
the learned model to π (i.e., L in Eq. (3)). To formulate
a learning method, we consider the sequence of labels as
hidden variables. The plan that is executed by the agent
(which also captures the state trajectory), as well as any

cognitive cues that may be obtained (e.g., from sensing)
during the plan execution constitute the observations. The
graphical model that we choose for our learning approach is
conditional random fields (CRFs) [16] due to their abilities
to model sequential data. An alternative would be HMMs;
however, CRFs have been shown to relax assumptions about
the input and output sequence distributions and hence are
more flexible. The distributions that are captured by CRFs
have the following form where Z is a normalization factor:

p(x, y) =
1

Z
ΠAΦ(xA, yA) (8)

In the equation above, x represents the sequence of obser-
vations, y represents the sequence of hidden variables, and
Φ(xA, yA) represents a factor that is related to a subgraph in
the CRF model associated with variables xA and yA. In our
context, x are the observations made during the execution
of a plan; y are the action labels. Each factor is associated
with a set of features that can be extracted during the plan
execution.

A. Features for Learning

Given an agent plan, the set of features that we have access
to is the plan and its associated state trajectory:

Plan Features: Given the agent model (specified in
PDDL), the set of plan features for ai includes the action de-
scription and the state variables after executing the sequence
of actions 〈a0, ..., ai〉 from the initial state. This information
can be easily extracted given the model. For example, in our
rover example in Fig. 2, this set of features for a1 includes
navigate, at rover l4, at resource0 l2, at resource1 l4,
at storage0 l3. Other features (e.g., motion features) can be
easily incorporated which we will discuss in future work.

In this work, we use a linear-chain CRF. Although linear-
chain CRF is very limited in capturing history information,
we show that it is sufficient to distinguish between behavioral
patterns in our evaluation domains (including the synthetic
domain in Fig. 2) via a combination of the state and action
information (i.e., plan features described above). Moreover,
our formulation is easily extensible to more general classes of
CRFs. Given an agent plan π = 〈a0, a1, a2, ...〉, each action
is associated with a set of features. Hence, each training
example is of the following form:

〈(F0, L
2
0), (F1, L

2
1), (F2, L

2
2), ...〉 (9)

where L2
i is the action label for predictability (and explica-

bility) for ai. Fi is the set of features for ai.

B. Using the Learned Model

Given a set of training examples in the form of Eq. (9),
we can train the CRF model to learn the labeling scheme in
Eq. (3). We discuss two ways to use the learned CRF model.

1) Plan Selection: The most straightforward method is to
perform plan selection on a set of candidate plans which can
simply be a set of plans that are within a certain cost bound
of the optimal plan. Candidate plans can also be generated
to be diverse with respect to various plan distances. For each
plan, the agent must first extract the features of the actions as
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we discussed earlier. It then uses the trained model (denoted
by LCRF ) to produce the labels for the actions in the plan.
θ and β can then be computed given the mappings in Defs.
(1) and (2). These measures can then be used to choose a
plan that is more explicable and predictable.

2) Plan Synthesis: A more efficient way is to incorporate
these measures as heuristics into the planning process. Here,
we consider the FastForward (FF) planner with enforced hill
climbing [14] (see Alg 1). To compute the heuristic value
given a planning state, we use the relaxed planning graph
to construct the remaining planning steps. However, since
relaxed planning does not ensure a valid plan, we can only
use action descriptions as plan features for actions that are
beyond the current planning state when estimating the θ and
β measures. These estimates are then combined with the
relaxed planning heuristic (which only considers plan cost)
to guide the search.

Algorithm 1 Synthesizing Explicable and Predictable Plans
Input: agent model MR, trained human labeling scheme
LCRF , initial state I and goal state G.
Output: πEXP

1: Push I into the open set O.
2: while open set is not empty do
3: s = GetNext(O).
4: if G is reached then
5: return s.plan (the plan that leads to s from I).
6: end if
7: Compute all possible next states N from s.
8: for n ∈ N do
9: Compute the relaxed plan πRELAX for n.

10: Concatenate s.plan (with plan features) with
πRELAX (with only action descriptions) as π̄.

11: Compute and add other relevant features.
12: Compute L2

π = LCRF (π̄).
13: Compute θ and β based on L2

π for π̄.
14: Compute h = f(θ, β, hcost) (f is a combination

function; hcost is the relaxed planning heuristic).
15: end for
16: if h(n∗) < h∗ (n∗ ∈ N with the minimum h) then
17: Clear O.
18: Push n∗ into O; h∗ = h(n∗) (h∗ is initially MAX).
19: else
20: Push all n ∈ N into O.
21: end if
22: end while

The capability to synthesize explicable and predictable
plans is useful for autonomous agents. For example, in
domains where humans interact closely with robots (e.g.,
in an assembly warehouse), more preferences should be
given to plans that are more explicable and predictable since
there would be high risks if the robots act unexpectedly.
One note is that the relative weights of explicability and
predictability may vary in different domains. For example,
in domains where robots do not engage in close interactions
with humans, predictability may not matter much.

V. EVALUATION

We first evaluate the labeling prediction performance on
a synthetic dataset based on the rover domain. The aim
is to verify the generalizability of our approach to new
scenarios and analyze its sensitivity to model differences
(between MR and M∗R). Then, we evaluate it with human
subjects using physical robots to validate that 1) the predicted
labels are indeed consistent with human labeling, and 2)
the synthesized plans are more explicable to humans in a
blocks world domain. We focused on explicability only for
physical robot evaluation due to the resource constraint of
human subjects; the two measures are correlated by definition
and hence the conclusions are expected to carry over. For
generalizability, we introduced new scenarios in the testing
phase for both evaluations. In the synthetic domain, we
showed that our approach can generalize from scenarios with
small model differences to large model differences (with
only slight performance degradation). In the physical robot
experiment, while the training samples only involved plans to
form three block towers, the testing samples included towers
of varying heights (3 - 5 blocks). Moreover, our approach
does not require a large number of training examples. In the
physical robot experiment, we use only 23 unique plans.

A. Systematic Evaluation with a Synthetic Domain

Using a synthetic domain, we evaluate how well the
learning approach can capture an arbitrary labeling scheme,
as well as the effectiveness of plan selection and synthesis
with respect to the θ and β measures.

1) Dataset Synthesis: To simplify the data synthesis pro-
cess, we make the following assumptions: all rover actions
have the same cost; all rover actions are associated with
at most one task label (i.e., L = T ∪ {∅} instead of
L = 2T ). To construct a domain in which the optimal plan
(in terms of cost) may not be the most explicable (in order
to differ MR from M∗R), we add “oscillations” to the plans
of the rover. These oscillations are incorporated by randomly
adding locations for the rover to visit as hidden goals. For
these locations, the rover only needs to visit them. As a
result, it may demonstrate “unexpected” behaviors given only
the public goal, denoted by G, which is known to both the
rover and human. We denote the goal that also includes the
hidden goals as G′. Given a problem with a public goal G,
we implement a labeling scheme as follows to provide the
“ground truth” of a rover plan, which is constructed for G′.

Given a plan we label it incrementally by associating
each action with a current and next label. These labels are
chosen from {{COLLECT}, {STORE}, {OBSERVE}, ∅}.
We denote the plan prefix 〈a0, ...ai〉 for a plan π as πi, the
state after applying πi as si from the initial state, and a plan
that is constructed from si to achieve G (i.e., using si as the
initial state) as P (si). For the current label of ai:
• If |P (si)| ≥ |P (si−1)|, we label ai as ∅ (i.e., inexplica-

ble). This rule means that humans may label an action
as inexplicable if it does not contribute to achieving G.

• If |P (si)| < |P (si−1)|, we label ai based on the
distances from the current rover location to the targets
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(i.e., storage areas or observation locations), current
state of the rover (i.e., loaded or not), and whether ai
moves the rover closer to these targets. For example,
if the closest target is a storage area and the rover is
loaded, we label ai as {STORE}. When there are ties,
we label ai as ∅ (i.e., interpreted as inexplicable).

For the next label of ai:

• This label is determined by the target that is closest to
the rover state after the current task is achieved. When
there are ties, ai is labeled as ∅ (i.e., unclear and hence
interpreted as unpredictable). If the current label is ∅,
we also label ai as ∅ (i.e., unpredictable).

• If the current task is also the last task, we label ai as ∅
since there is no next task.

For evaluation, we define Fθ and Fβ as in Eqs. (6) and (7).
We randomly generate problems in a 4×4 environment. For
each problem, we randomly generate 1−3 resources as a set
RE, 1−3 storage areas as a set ST, 1−3 observation locations
as a set OB. The public goal G of a problem, first, includes
making all storage areas non-empty. To ensure a solution,
we force |RE| = |ST | if |RE| < |ST |. Furthermore, the
rover must make observations at the locations in OB. G′ for
the rover includes G above, as well as a set of hidden goals.
Locations of the rover, RE, ST, OB and hidden goals are
randomly generated in the environment and do not overlap
in the initial state. Although seemingly simple, the state space
of this domain is on the order of 1020.

2) Results: We use only plan features here. First, we
evaluate our approach to learning the labeling scheme (i.e.,
LCRF ) as the difference between MR and M∗R gradually
increases (i.e., as the number of hidden goals increases).
Afterwards, we evaluate the effectiveness of plan selection
and synthesis with respect to the θ and β measures. To
verify that our approach can generalize to different problem
settings, we fix the level of oscillation when generating
training samples while allowing it to vary in testing samples.
a) Using CRFs for Plan Explicability and Predictability:

In this evaluation, we randomly generate 1− 3 hidden goals
to include in G′ in 1000 training samples. After the model
is learned, we evaluate it on 100 testing samples in which
we vary the maximum number of hidden goals from 1 to 6
with step size 1. The result is presented in Fig. 3. We can see
that the ratios between θ and β computed based on LCRF
and L∗) is generally between 50%−150%, which reflects the
predication performance. We can also see that the oscillation
level does not seem to influence the prediction performance
much. This shows that our approach is effective whether MR

and M∗R are similar or largely different.
b) Selecting Explicable and Predictable Plans: We eval-

uate plan selection using θ and β measures and com-
pare the selected plans (denoted by EXPD-SELECT) with
plans selected by a baseline approach (denoted by RAND-
SELECT). Given a set of candidate plans, EXPD-SELECT
selects a plan according to the highest predicted explicability
or predictability measure while RAND-SELECT randomly
selects a plan from the set of candidate plans. To implement

Fig. 3. Evaluation for predicting θ and β as the difference between MR

and M∗
R increases (as the maximum number of hidden goals increases).

Fig. 4. Comparison of EXPD-SELECT and RAND-SELECT

this, for a given public goal G, we randomly construct 20
problems with a given level of oscillation as determined by
the maximum number of hidden goals. Each such problem
corresponds to a different G′ and a plan is created for it.
The set of plans for these 20 problems associated with the
same G is the set of candidate plans for G. For each level of
oscillation, we randomly generate 50 different Gs and then
construct the set of candidate plans for each G. The model
here is trained with 1900 samples using the same settings as
in a) and we gradually increase the level of oscillation.

We compare the θ and β values computed from the ground
truth labeling of the chosen plans. The result is provided in
Fig. 4. When the oscillation is small, the performances of
both approaches are similar. As the oscillation increases, the
performances of the two approaches diverge. This is expected
since RAND-SELECT randomly chooses plans and hence its
performance should decrease as the oscillation increases. On
the other hand, EXPD-SELECT is not influenced as much
although its performance also tends to decrease. This is partly
due to the fact that the model used in this evaluation is trained
with samples having a maximum of 3 hidden goals.

In Fig. 4 for explicability, almost all results are signifi-
cantly different at 0.001 level (except at 1); for predictability,
results are significantly different at 0.01 level at 3, 5 and 6.
The trend to diverge is clearly present. Note that linear-chain
CRFs is limited in its modeling capability. We anticipate
performance improvement with more general CRFs.
c) Synthesizing Explicable and Predictable Plans: We

evaluate here plan synthesis using Alg. 1. More specifically,
we compare FF planner that considers the predicted θ and
β values in its heuristics with a normal FF planner that
only considers the action cost. The FF planner with the new
heuristic is called FF-EXPD. In this evaluation, we set the
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Fig. 5. Comparison of FF and FF-EXPD considering only θ.

Fig. 6. Comparison of FF and FF-EXPD considering only β.

maximum number of hidden locations to visit to be 6. For
each trial, we generate 100 problems and apply both FF and
FF-EXPD to solve the problems. Given that we are interested
in comparing the cases when explicability is low, we only
consider problems when the predicted plan explicability for
the plan generated by FF is below 0.85.

First, we consider the incorporation of θ only. The result
is presented in Fig. 5. For the explicability measure, we see
a significant difference in all trials. Another observation is
that the difference in plan predictability is present but not as
significant. This evaluation suggests that our heuristic search
can produce plans of high explicability.

Next, we consider the incorporation of β only. The re-
sult is presented in Fig. 6. Similarly, we see a significant
difference in all trials for both θ and β. One observation
is that improving on plan predictability also improves plan
explicability which is expected given Eqs. (6) and (7)).

Plan Cost: We consider plan cost here for the evaluation
in Fig. 6. The result is presented below. We can see that the
plan length for FF-EXPD is longer than the plan produced by
FF in general. This is expected since FF only considers plan
cost. However, in all settings, FF-EXPD penalizes the plan
cost slightly (about 10%) to improve the plan explicability
and predictability measures.

Trial ID 1 2 3 4 5 6
FF (avg. # steps) 21.9 24.0 24.1 23.9 22.1 22.4
FF-EXPD (avg. # steps) 23.5 26.3 25.2 24.0 23.4 25.0

B. Evaluation with Physical Robots

Here, we evaluate in a blocks world domain with a physi-
cal robot. It simulates a smart manufacturing environment
where robots are working beside humans. Although the
human and robot do not have direct interactions – the robot’s
goal is independent of the human’s, generating explicable

plan is still an important issue since it will allow humans
focus more on their own tasks by reducing distractions. Here,
we evaluate plans generated by the robot using FF-EXPD and
a cost-optimal planner (OPT). We analyze the consistency
between human and system labeling, and compare the plans
with human subjects in terms of their explicability.

1) Domain Description: In this domain, the robot’s goal
(which is known to the human) is to build a tower of a
certain height using blocks on the table. The towers to be
built have different heights in different problems. There are
two types of blocks, light ones and heavy ones, which are
indistinguishable externally but the robot can identify them
based on the markers. Picking up the heavy blocks are more
costly than the light blocks for the robot. Hence, the robot
may sometimes choose seemingly more costly (i.e., longer)
plans to build a tower from the human’s perspective.

2) Experimental Setup: We generated a set of 23 prob-
lems in this domain in which towers of height 3 are to be
built. The plans for these problems were manually generated
and labeled as the training set. For 4 out of these 23
problems, the optimal plan is not the most explicable plan.
To remove the influence of grounding, we also generated
permutations of each plan using different object names for
these 23 problems, which resulted in a total of about 15000
training samples. We then generated a set of 8 testing
problems for building towers of various heights (from 3−5)
to verify that our approach can generalize. Testing problems
were generated only for cases where plans are more likely to
be inexplicable. For each problem, we generated two plans,
one using OPT and the other using FF-EXPD, and recorded
the execution of these plans on the robot. We recruited 13
subjects on campus and each human subject was tasked
with labeling two plans (generated by OPT and FF-EXPD
respectively) for each of the 8 testing problems, using the
recorded videos and following a process similar to that in
training. After labeling each plan, we also asked the subject
to provide a score (1−10 with 10 being the most explicable)
to describe how comprehensible the plan was overall.

3) Results: In this evaluation, we only use one task label
“building tower”. For all testing problems, the labeling
process results in 77.8% explicable actions (i.e., actions with
a task label) for OPT and 97.3% explicable actions for FF-
EXPD. The average explicability measures for FF-EXPD and
OPT are 0.98 and 0.78, and the average scores are 9.65 and
6.92, respectively. We analyze the results using a paired T-
test which shows a significant difference between FF-EXPD
and OPT in terms of the explicability measures (using Eq.
(6)) computed from the human labels and the overall scores
(p < 0.001 for both). Furthermore, after normalizing the
scores from the human subjects, the Cronbach’s α value
shows that the explicability measures and the scores are
consistent for both FF-EXPD and OPT (α = 0.78, 0.67,
respectively). These results verify that: 1) our explicability
measure does capture the human’s interpretation of the robot
plans and 2) our approach can generate plans that are more
explicable to humans. In Fig. 7, we present the plans for a
testing scenario. The left part of the figure shows the plan
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Fig. 7. Execution of two plans generated by OPT (left) and FF-EXPD
(right) for one out of the 8 testing scenarios. The top figure shows the setup
where the goal is to build a tower of height 3. The block initially on the left
side of the table is a heavy block. The optimal plan involves manipulating
the light blocks (i.e., putting the two light blocks on top of the heavy one);
the explicable plan is more costly since it requires moving the heavy one.

generated by OPT and the right part shows the plan generated
by FF-EXPD. A video is also attached showing the different
behaviors with the two planners in this scenario.

VI. CONCLUSION

In this paper, we introduced plan explicability and pre-
dictability for intelligent robots so that they can synthesize
plans that are more comprehensible to humans. To achieve
this, they must consider not only their own models but
also the human’s interpretation of their models. To the
best of our knowledge, this is the first attempt to model
plan explicability and predictability for task planning which
differs from previous work on human-aware planning. To
compute these measures, we learn the labeling scheme of
humans for agent plans from training examples based on
CRFs. We then use this learned model to label a new plan
to compute its explicability and predictability.

In future work, we will investigate additional features. For
example, motion features can capture the smoothness of the
execution; features can also be extracted from sensors such
as video cameras. Moreover, we plan to evaluate with more
general CRFs and deep learning approaches (e.g., LSTM).
Finally, while we focus on generating more explicable and
predictable robot behavior, our approach also has other inter-
esting applications. For example, many defense applications
use planning to create unpredictable and inexplicable plans,
which can help deter or confuse enemies and are useful for
testing defenses against novel or unexpected attacks.
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