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Abstract— Although many approaches have been developed
to form robot coalitions that can achieve a multirobot task,
no general methods exist to execute these coalitions, especially
when the coordination among the robots is tightly coupled. In
this paper, we propose a coordination mechanism as the first
step to address coalition execution; it provides a flexible method
to reason about synergies with overlapping coalitions (thus
enabling multi-tasking robots in multi-robot tasks), which not
only improves efficiency, but also reduces resource requirements
in task execution. This means that our approach enables tasks
that cannot be easily handled before, especially when critical
resources are rare but commonly required. Our approach is
based on the concept of sensor constraint, which is introduced
by the tight coupling (e.g., information sharing) between the
robots. We show that our algorithm is sound and complete in
finding a coordination solution given a few assumptions, and
discuss a distributed implementation. Simulation results are
provided to demonstrate the capabilities of this new approach.

I. INTRODUCTION

To accomplish a single multirobot task,1 robots must
execute the coalitions that are formed for the task. However,
general methods for coalition execution do not yet exist,
especially for tightly coupled multirobot tasks, in which close
coordination with information sharing between the robots is
required. This coordination must be determined dynamically
in the current situation. For example, in a cooperative robot
surveillance and monitoring task, various types of robots
(including smart sensors) are distributed in the workspace.
The goal is to monitor the environment and report the
locations of any unusual objects. If only a handful of robots
can localize, the team needs to coordinate tightly with each
other via information sharing. In this scenario, a robot that
can localize may potentially need to assist multiple robots (or
coalitions) at the same time; to ensure coverage, the mobile
robots also need to move around in the environment. We are
immediately faced with a challenging coordination scenario.

To address the coordination problem in a general manner,
first, a method is needed to model the interactions among
robots in the coalitions and the environment; these interac-
tions are dynamically determined in the current situation.
With this modeling, we show that the coordination problem
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1In this paper, we consider coalition execution for an individual task; task
allocation (e.g., [3]) and scheduling (e.g., [18]) are not considered.

of coalition execution can be transformed to the maintenance
of the required sensor constraints for the task, which specify
configuration constraints on the coalition members. As an
example, consider a cooperative robot navigation task, in
which one robot has a localization capability and one does
not. Both robots have a fiducial sensor to detect teammates
ahead. There exists a sensor constraint that is introduced by
the fiducial information, which requires one robot to keep the
other in its sensor field of view (FOV). Another example is a
robot swarming task that requires close proximity, in which
the retrieval of the bumper information requires the adjacent
robots to keep in contact with each other. Based on the set
of sensor constraints, our approach allows robot resources to
be shared among coalitions, thus enabling tasks that cannot
be easily achieved before, when certain resources are rare.

After a brief discussion of the related work in Section
II, we present the new coordination mechanism in Section
III with discussions of a distributed implementation. Finally,
results are presented in Section IV following by conclusions.

II. RELATED WORK

While many approaches have been provided to form coali-
tions [3], [4], [9], [13], [15], [16], coalition execution is often
assumed to be handled by the preprogrammed behaviors on
individual robots. Although this may be true for multirobot
tasks that are loosely coupled, in which the task can be
divided into subtasks that can be accomplished by individual
robots, it is not so much for tightly coupled tasks. These tasks
require robots to interact in a closely coordinated manner,
which must often be dynamically determined. Although
application-specific methods [7], [14] can be applied, they
do not generalize or scale.

To create a general solution, first, interactions among
robots and the environment must be specifically modeled.
Techniques to form coalitions are introduced to reason about
the groups of robots necessary to accomplish the given task.
The formation process of coalitions, in turn, determines the
required interactions. However, due to the dynamism of these
interactions in tightly coupled multirobot tasks, approaches
[3], [4], [15] that only address loosely coupled tasks or
reason about forming coalitions based statically on robot
capabilities do not suffice. Among the approaches that are
capable of dynamic modeling, the approaches that are built
on the concept of information [13], [16] have been shown
to provide more flexibility with autonomous information
sharing. Hence, we adopt this formulation in this work.

In order to execute coalitions to accomplish the task,
the robots must coordinate their behaviors based on the set



of sensor constraints introduced by the interactions. One
coordination approach is to employ planning techniques [1],
[12] to plan execution paths that satisfy the requirements of
these constraints. The planned paths can then be used to feed
back commands to control the robots. However, this approach
is computationally expensive and hence not scalable. A
more suitable approach is to use distributed control methods
[2], [5], [10] to maintain the robot configurations required
for the constraints locally. Although the coordinated robot
behaviors in this work may appear similar to these control
methods, there is a fundamental difference. While the set of
configuration (sensor) constraints are given in these control
methods, in this paper, it is determined automatically and
dynamically based on the information requirement. This
automatic process also provides a flexible method to reason
about synergies with overlapping coalitions. For example, if
two robots without a localization capability share the goal
paths (i.e., one path aligns with the other), they may rely
on the same robot and navigate together. While task synergy
[8], [11] for single task robots [6] has been studied before,
to the best of our knowledge, this is the first work that
investigates synergies of coalitions in a single multirobot
task, thus enabling multi-tasking robots in multi-robot tasks.

III. COALITION COORDINATION

In this section, we first provide a brief introduction of the
approach to model the interactions based on the concept of
information. Based on this modeling, coalitions are formed
and sensor constraints are introduced. We implement our
approach on one of the recent architectures that use this
approach [17], which extends [16] and provides an essential
capability to execute coalitions: forming executable coali-
tions. While using a specific architecture, our discussion
emphasizes its general components that need to be present
in formulating multirobot tasks to enable a similar modeling
capability. Then, we discuss the new coordination mecha-
nism with a single coalition in Section III-C and extend it
to multiple coalitions in Section III-D.

A. IQ-ASyMTRe

Sections III-A and III-B serve primarily as background
knowledge for the IQ-ASyMTRe architecture [17], which
is used in this paper to model the interactions and form
coalitions. Based on schema theory, in IQ-ASyMTRe, a
robot is composed of sensors (ESs), communication schemas
(CSs), computation or perceptual schemas (PSs), and motor
schemas (MSs). Schemas accept input information and can
optionally output information; schemas can be activated
when their input information is provided. The goal of form-
ing a coalition is to connect these schemas to activate a
desired MS for the task (referred to as a task MS henceforth).
Figure 1 provides an example of the potential local schema
connections for robot R1 to activate a navigation MS, with
each schema being represented as a rectangle box except for
the tOR. In Figure 1, EPS and RPS are special types of PS.
An RPS is introduced to perform information conversions.
For a few commonly used examples, see Table I; an EPS is

Fig. 1. IQ-ASyMTRe [17]: solution space (as an and-or tree) for a robot
to obtain its global position for a navigation MS with only a camera sensor.
The referent local refers to the robot itself. The solution space encodes
two potential solutions. One solution is to have another robot send over
its global position (CS: FG(X) ⇒ FG(X)) and use the camera to sense
the relative position of that robot (EPS: Camera ⇒ FR(X, local)). An
RPS (RPS: FR(Y,X) ⇒ FR(X,Y )) is used to convert FR(X,R1) to
FR(R1, X). The other solution (tOR) is to have both information instances
(CS: FG(X) ⇒ FG(X) and CS: FR(R1, X) ⇒ FR(R1, X)) sent over
by another robot.

TABLE I
IQ-ASYMTRE [17]: EXAMPLES OF RPS’S

RPS Description

FG(X) + FR(Y,X)⇒ FG(Y ) global + relative ⇒ global

FR(Y,X)⇒ FR(X,Y ) relative ⇒ relative

FR(X,Z) + FR(Y, Z)⇒ FR(X,Y ) relative + relative ⇒ relative

always associated with an ES to process raw sensor data. We
will refer back to this example.

To form a coalition for a robot that is assigned an MS (re-
ferred to as a task robot henceforth), IQ-ASyMTRe reasons
based on these local connections, which allow information
to flow between different schemas within the robot itself
or from other robots through CSs, in order to satisfy the
input of the MS. All robots necessary to activate the MS are
considered to be in the coalition.

To ensure valid schema connections, the output schema
that provides information must be able to produce the in-
formation that the input schema accepts. Furthermore, when
forming a coalition, the actual information must be validated
to ensure a match. To reason about this, IQ-ASyMTRe uses
the concepts of information type and information instance
to label the input and output of schemas, which are used to
specify the semantic meaning of information. For example,
while robot’s position conveys the semantic meaning, phys-
ical coordinates is the value associated with the meaning.
The semantic meaning of information specifies what the
information describes (e.g., position), and the referents to
which it applies (e.g., the robot).

Definition 3.1 (Information Type): Given an application
domain, an information type (denoted by F) is a unit to
specify non-referent related information semantics. 2

Information types for different domains are often different.
In general, one should minimize the number of information



types in a given domain in order to reduce the search space.
Definition 3.2 (Information Instance): An information in-

stance, or F (E) (F for short), is an information type with the
associated referent set E (E is an ordered set). The number
of referents or |E| is determined by the type. 2

For example, in Figure 1, FG and FR refer to the global
and relative position information, respectively. FG(X) is as-
sociated with one referent X . Each referent may be statically
instantiated to an entity, which can be any identifiable object
in the environment, or remain uninstantiated for future or
dynamic instantiations. Single uppercase letters are used in
this paper to denote uninstantiated referents. IQ-ASyMTRe
also requires the uninstantiated referents of the same label
within the same context (e.g., in a schema) to be instantiated
to the same entity (referred to as referent instantiation
constraint), and that the referents of the same information
instance be instantiated to different entities.

We return now to the validation of schema connections.
While this validation must be performed based on informa-
tion instances that are not fully instantiated, the process to
form a coalition must ensure that the information instances,
after full instantiations according to the actual information,
satisfy the referent instantiation constraints. Note that dy-
namic instantiations must be performed via sensing.

B. Coalition Solution

A coalition includes all the robots in the coalition solution.
To create the coalition solution, IQ-ASyMTRe first connects
local schemas to create the solution space as shown in Figure
1. This process always starts with the input of the MS (i.e.,
the information sink node), which is then connected to the
outputs of schema nodes that can provide the required infor-
mation instances. These upstream nodes are then connected
in a recursive manner (for more details, see [17]), until
reaching the information sources, which are CSs or ESs. Note
that information sources can be dummy ES nodes, which are
created for information that remains constant and is known
a priori. For example, an environment map.

After the solution space is created, the next step is to
search for coalition solutions. Note that while the solution
space encodes potential solutions to activate the MS using
local schema connections, the coalition solution is an in-
stantiation of one of the potential solutions (i.e., making
a choice at each tOR node) with a complete specification
of external interactions. Figure 2 provides an example of a
coalition solution for one of the potential solutions in Figure
1. Comparing Figure 1 with Figure 2, more specifically,
information instances in solution spaces may not be fully
instantiated (e.g., FG(X) in Figure 1) but they are in
coalition solutions; a solution space can include multiple
potential solutions when there are tOR nodes to provide
schema connection options; a solution space pertains only
to one robot while a coalition solution can span multiple
robots; the leaf nodes, or information sources, in coalition
solutions are always ESs.

With the solution space, IQ-ASyMTRe selects a coalition
solution and sets up the initial coalition as follows:

Fig. 2. IQ-ASyMTRe [17]: A possible coalition solution for one of the
potential solutions in Figure 1.

• Check each potential solution with potential coalition
members to instantiate the solution in order to validate
the coalition solution;

• Select a valid coalition solution and set up the coalition.

C. Coalition Coordination
We can now start the discussion of coalition coordination.

In this section, we start with a single coalition. One observa-
tion is that the only precondition for the associated task MS
to keep in activation is the constant provision of the input
information during execution, which can be satisfied as long
as the coalition solution is in effect. This directly translates
to the maintenance of the coalition solution.

Similar to [17], assuming that the robots are always within
each other’s communication range2, the only factors that can
influence the coalition solution are the leaf nodes (i.e., ESs).
In order to provide the information to the downstream nodes,
each ES may introduce a configuration constraint on the
related entities. We refer to this configuration as information
configuration and the constraint as sensor constraint.

Definition 3.3 (Information Configuration): The configu-
ration of an information instance F (E), denoted by
cf(F (E)), represents the set of all semantic configurations
(for E) that are included in the specification of F (E). 2

Semantic configuration is a general term here, which can
specify, for example, physical configuration and state. Con-
sider FR(X,Y ) as an example. cf(FR(X,Y )) specifies a
relationship of relative physical placement between X and Y .
cf(FR(X,Y )) includes, for example, the same relationship
between X and Y along each coordinate axis, and that X
and Y are physically located in the workspace. Information
configuration encodes the semantic meaning expressed by
the information without the value; it is a general concept
for information since it is associated with all information
representations (e.g., information instance in this paper).

Definition 3.4 (Sensor Constraint): A sensor constraint is
a special type of information configuration constraint (i.e.,
a restriction imposed on cf(F (E))), in which F (E) is
produced by the sensor. A sensor constraint has the form
of e→F (E) E, in which e ∈ E and E = E − e. 2

2Although neither [17] or the approach in this paper relies on this
assumption to work, it simplifies the discussions. In most cases, communi-
cation divides the team into disjoint groups, which can then be separately
considered.



Note that e always refers to the robot equipped with
the sensor (or the local robot). For example, the relative
position information from the camera sensor in Figure 1
introduces a sensor constraint local →FR(X,local) {X},
which is instantiated to R1 →FR(R2,R1) {R2} in Figure 2.

To execute a coalition, the coalition members need to
maintain the set of sensor constraints in a coordinated manner
while the task robot of the coalition executes the task MS.
Using IQ-ASyMTRe to form individual coalitions ensures
that the coalition is initially executable. Hence, all the
sensor constraints are initially satisfied as well. However,
to accomplish the task, we also need to determine whether
these sensor constraints can be maintained during execution.
For example, in the navigation task, a task robot without a
localization capability needs to identify that a coalition with
a robot that is immobile is not a solution, even though this
other robot can localize; neither is the case when the other
robot is mobile but executing a path to move in the opposite
direction. Next, we discuss how robots can reason about this
in various situations and maintain the constraints whenever
possible. To achieve this, we need to first understand the
relationship between sensor constraint and individual robot
configurations.

Given the related information types of the domain, the
configuration of individual robots can also be specified using
information configurations. The multi-referent configuration
that is associated with the sensor constraint is encoded in
the configurations of individual referents. For example, in
the navigation task, cf(FR(R2, R1)) can be encoded jointly
by cf(FG(R1)) and cf(FG(R2)). This reasoning is directly
related to RPSs. Since it involves multiple information in-
stances, we first introduce the following definition:

Definition 3.5 (Information Instance Set): An
information instance set (IIS) is an unordered set of
information instances. 2

We then associate RPSs with the notion of information
inference.

Definition 3.6 (Information Inference): Given an IIS s
and an information instance F , s can infer F if F ∈ s,
or F can be converted by RPSs using information instances
that are in s or that are inferred from s. 2

For example, FR(X, local) can be inferred from
{FG(X), FG(local)} using the second RPS in Table I. Also,
note the recursive definition. We further introduce power set.

Definition 3.7 (Power Set): The power set of an IIS s,
denoted by P (s), is defined as

P (s) = {F : s infers F}

2

To collectively specify the configuration of multiple ref-
erents, we define Joint Information Configuration.

Definition 3.8 (Joint Information Configuration): Given
an IIS s, its joint information configuration, denoted by
cf(s), is defined as:

cf(s) =
⋃
{cf(F ) : F ∈ P (s)}

2

r1
m1
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r4 r5
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F1(r1, r2)

F1(r2, r4)

F2(r4, r6)

F2(r1, r5)

Fig. 3. Example of a constraint graph for a single coalition.

Given the above discussions, we can conclude that
cf({FG(R1), FG(R2)}) ⊇ cf(FR(R2, R1)). Given a sensor
constraint on cf(FR(R2, R1)), this proposition implies that
we can maintain it by giving freedom to all but one of the
individual configurations on its left hand side,3 which is use-
ful for coalition execution since the task robot must execute
the task MS while others can change their individual config-
urations to maintain the constraint. Given a sensor constraint
e→F (E) E, the idea is to find a set of individual configura-
tions {cf(F (e))}e∈E such that cf({F (e)}e∈E) ⊇ cf(F (E)).
When there are multiple options to break cf(F (E)) in such
a way, each option can be considered independently.

During execution, if an robot e has an MS that can update
its configuration cf(F (e)) according to cf(F (E)), we refer
to the robot as being compatible with the sensor constraint
and the MS is referred to as a constraint MS for F (E). In
the simplest case, if e is not the task robot and no other MS
is assigned to it, this MS can be activated on e to maintain
the sensor constraint. If all referents except one in E are
compatible, the constraint becomes satisfiable; one way to
satisfy it then is to activate the constraint MSs on these
referents. This reasoning requires the following definition:

Definition 3.9 (MS Type): Given the input IIS s, the type
of MS, denoted by T (MS(s)), is an information instance F
such that its value is updated by the MS when activated.4 2

For example, given the MS in Figure 2, denoted here by
MSnav , since we know that navigation updates the robot
position, we have T (MSnav({FG(local)})) = FG(local).
Note the referent instantiation constraint here; by execut-
ing the MS, a robot also instantiates the MS type, e.g.,
T (MSnav({FG(R1)})) = FG(R1). Even when an entity e is
not a robot, we may still be able to specify its motion type.
In this case, we use a similar notation and directly write,
e.g., T (e) = FG(e). When a robot is r is executing no more
than one MS, T (r) can also be conveniently used to refer to
the type of the currently active MS on r.

Now, we are ready to discuss coalition coordination with

3One underlying assumption is that the RPS must remain valid when
exchanging the information instance on the right hand side with any instance
on the left. This is true for all the RPSs that we use.

4To simplify the discussion, if an MS can influence the configurations of
more than one information instance, it is considered as multiple MSs.



TABLE II
RPS’S FOR FIGURES 3 AND 4

RPS

F4(X) + F4(Y )⇒ F1(X,Y )

F4(X) + F4(Y )⇒ F2(X,Y )

F4(X) + F4(Y ) + F4(Z)⇒ F3(X,Y, Z)

a single coalition. First, we define constraint graph.
Definition 3.10 (Constraint Graph): The constraint graph

is an undirected graph, in which each node represents an
entity; two nodes are connected if both are present in
the same sensor constraint. Each edge is labeled by the
information instance associated with the constraint. 2

When two nodes are present together in more than one
constraint, they are connected by multiple edges, thus form-
ing loops. Discussion of this situation is delayed until Section
III-D. Figure 3 provides an example of a constraint graph
with a single coalition (i.e., with a single task MS m1),
in which r1 is the robot that is assigned m1. Other robots
provide information to help r1 activate m1. While a sensor
constraint is directed, the associated edges in the graph
are often not, since they specify configuration constraints.
(Directed edges only introduce asymmetry on the process to
check coordination solutions when present.)

Proposition 3.1: Given a constraint graph for a single
coalition that has only robot entities (controllable), if all en-
tities are compatible with their respective sensor constraints,
the coalition can satisfy the set of constraints if the graph
has a tree or forest structure. 2

Proof: (Sketch) Starting from the node with the task
MS, for each node v that connects to it, we can activate
the constraint MS on v to maintain the respective sensor
constraint. Note that there is no need to check the node that
we have already checked. Continue this process recursively.
Since the tree structure ensures that we do not come back
to the previous nodes (which already have an assigned MS),
this process would assign no more than one MS to any robot.
This conclusion clearly holds for other trees in a forest.

For the scenario in Figure 3, suppose that we have the
RPSs in Table II and the RPSs to switch the referent
ordering for F1, F2 and F3 (similar to the second RPS
in Table I), T (m1{F4(local)}) = F4(local), and that
all robots can activate the constraint MS m1

c and m2
c ,

which satisfy T (m1
c({F1(X, local)})) = F4(local) and

T (m2
c({F2(X, local)})) = F4(local). Based on Proposition

3.1, we can conclude that a coordination solution exists.

D. Coordination with Multiple Coalitions

When there are loops, multiple task MSs or non-robot
entities (uncontrollable) in the constraint graph, coalition
coordination becomes more complex. In this section, we
show how these situations can be incorporated. Our approach
also allows different coalitions to share robots.

A more complex scenario is presented in Figure 4. First,
we realize that certain domain knowledge is unavoidable
and desirable. For example, in a box pushing task, although

o r1
m3

r2

r4m2

r3

r5

r6

F2(o, r1)

F3(r1, r4, r2)

F3(r1, r4, r2)

F3(r1, r4, r2)

F2(r2, r6)

F2(r1, r5)

F2(r5, r3)

Fig. 4. Example of constraint graph for a multirobot task that includes
two task MSs (m2 and m3), a loop and a non-robot entity o.

there is a sensor constraint introduced by the requirement of
FR(box, local), it does not influence the execution since the
box always moves along with the robot. The domain knowl-
edge is captured by the concepts of domain compatibility
and disjoint configuration, which are assumed to be specified
either a priori in the task specification or dynamically by a
higher level planner.

Definition 3.11 (Domain Compatibility): Given two task
MSs, domain compatibility specifies the configuration con-
straint (in terms of an information instance) that is satisfied
by the task robots when executing these MSs. 2

In the box pushing task, the domain compatibility can be
specified as DOM(m(box),MSpush({FR(box, local), ...}))
= FR(box, local), in which m(box) represents the motion
(a virtual MS) of the box and MSpush({FR(box, local), ...})
represents the box pushing MS (the input is only partially
specified for brevity). Domain compatibility is useful when
both entities are already assigned an MS and there is a sensor
constraint between them. In this case, if these two MSs are
domain compatible with respect to the constraint, we do not
need to activate a constraint MS.

Definition 3.12 (Disjoint Configuration): Given two in-
formation instances F1 and F2, they are of disjoint configu-
ration if cf(F1) ∩ cf(F2) ≡ ∅. 2

Given a robot e that is involved in a constraint, even if e is
already assigned an MS m′, if cf(T (m′))∩ cf(T (m)) ≡ ∅,
in which m is the constraint MS, we can activate m on
e. In this case, m′ and m can be considered as orthogonal
components of a single MS. For example, if r1 and r2 are
both assigned an MS to explore the workspace and there is
a constraint that requires them to keep their fiducial sensors
at the same height (in order to detect each other), it is most
likely that the MS to change the sensor’s height and the
exploratory MS do not influence each other. However, note
that cf(F1) ∩ cf(F2) ≡ ∅ is a strong condition. In practice,
domain compatibility often provides more flexibility.

Definition 3.13 (Propagated Configuration Constraint):
Given an IIS s that is associated with the currently satisfied
configuration constraints (as a result of domain knowledge
or the activations of constraint MSs), a propagated
configuration constraint is defined as a constraint that is



associated with any instance in P (s). 2

Configuration propagation is used to automatically infer
implied constraints given the currently satisfied constraints.
For example, given that the constraints associated with
both FR(r1, r2) and FR(r1, r3) are initially satisfied and
maintained, from the third RPS in Table I, we know that
a constraint on cf(FR(r2, r3)) is also maintained. Hence, in
such a case, even if both r2 and r3 are already assigned an
MS, we can ignore the influence of this sensor constraint if
it is initially satisfied. Note that in this case, configuration
propagation specifies a transitive relationship.

Again, assuming that the robots have the necessary con-
straint MSs and the RPSs in Table II, Table III presents a
set of conditions for Figure 4; adding the constraint MS for
F3 to the robots then ensures a solution. The coordination
algorithm for multiple coalitions is presented in Algorithm
1. The algorithm first pushes all nodes (i.e., robots) onto
a queue and invokes Coordinate recursively, which checks
each edge to determine a coordination solution.

Algorithm 1 Algorithm for Coalition Coordination
1: INPUT: a constraint graph G = (V,E); domain com-

patibilities D; disjoint configurations C.
2: Create a queue Q and push in all nodes (i.e., robots).
3: Create a set s for currently satisfied constraints.
4: Create a set c for checked nodes and edges.
5: Add domain compatibilities to s.
6: node = POP(Q); Coordinate(node,G,C,D,Q, s, c).
7:
8: PROCEDURE: Coordinate(v,G,C,D,Q, s, c):
9: while (U = {u : (u, v)F ∈ E & (u, v)F 6∈ c}) ≡ ∅ do

10: If Q ≡ ∅, return true; else c = c ∪ v, v = POP(Q).
11: end while
12: Add (u, v)F ∈ U to c.
13: if c1: cf(F ) 6⊆ cf(s) then
14: for all x ∈ {u, v} do
15: for all constraint MS m for F on x do
16: if c2: cf(T (x))∩cf(T (m))≡∅ or cf(T (x)) ≡ ∅

then
17: Gm

x = Duplicate(G); assign m to x in Gm
x .

18: smx = Duplicate(s); add F to smx if the con-
straint is satisfied.

19: Add domain compatibilities to smx .
20: rmx = Coordinate(v,Gm

x , C,D,Q, smx , c).
21: else
22: rmx = false (no solution for current x and m).
23: end if
24: end for
25: end for
26: return ∨x,mrmx .
27: end if
28: return Coordinate(v,G,C,D,Q, s, c).

Lemma 3.2: Algorithm 1 is sound: the constructed coor-
dination solution is correct. 2

Proof: (Sketch) For any node, Algorithm 1 only assigns
it an MS m if one of the following conditions holds: 1) If

TABLE III
ADDITIONAL CONDITIONS FOR FIGURE 4

1. T (m2{F4(local)}) = F4(local)

2. T (m3{F2(o, local)}) = F4(local)

3. DOM(m(o),m3({F2(o, local)})) = F2(o, local)

4. cf(F4) ∩ cf(F3) ≡ ∅

the node can execute m and that it is not already assigned
an MS; 2) m is orthogonal to the assigned MS (line 16).
Given that a constraint between any two nodes u and v
(every edge is checked once) is initially satisfied, the set
of constraints is maintained as a result of either domain
capability, configuration propagation or the activations of
constraint MSs; otherwise, the algorithm returns no solution.

Lemma 3.3: Given a constraint graph, Algorithm 1 is
complete in finding a coordination solution, when given only
the RPSs, domain compatibilities and disjoint configurations
of the domain. 2

Proof: (Sketch) To satisfy a sensor constraint, either we
need to activate a constraint MS, or the constraint is already
satisfied as a result of domain compatibilities or configuration
propagation. Since Algorithm 1 checks all such possibilities
for a coordination solution (i.e., returns ∨x,mrmx ), and it
ensures that no MSs are introduced unnecessarily (through
c1 and c2), the search is complete.

The complexity is dominated by the computation of P (s)
for cf(s), and is expensive in general (i.e., exponential
in the numbers of information types and RPSs). However,
depending on the problem domain, this complexity can be
reduced. For example, when the configuration propagation is
transitive, the complexity becomes linear.

E. Distributed Implementation

In a distributed implementation, each task robot starts with
a constraint graph with only itself and no edges. After a
task robot finds a set of coalition solutions, it ranks these
solutions based on their costs (see [17] for details). For the
current solution being considered, this task robot updates its
local graph accordingly and runs Algorithm 1 to compute
a coordination solution for the local coalition. If a solution
is found, this task robot shares the set of newly assigned
MSs along with the set of associated sensor constraints
with the other task robots, in order for them to update the
graph accordingly. At any time, only one robot is allowed to
perform such an update. In case that no solution is found,
the robot can backtrack these updates and request the robot
with the most recent update to change its coalition solution.
The combined coordination solution of all local coalition
solutions becomes the final coordination solution. Although
this process can be expensive, the fact that the local coalition
solutions are ranked often implies that the combination that
is most likely to produce a final solution is considered first.
RPSs, domain compatibilities and disjoint configurations are
assumed to be common knowledge in the process.



Fig. 5. Scenario 1 in the robot navigation task. The left figure shows the
initial robot configurations with goal markers and the right figure shows
the final robot configurations with execution traces. The ranges of the laser
(fiducial) sensors are also shown.

IV. SIMULATION RESULTS

Due to many constraints, in this section, we concentrate on
only one task domain: cooperative robot navigation; we show
that even with very simple scenarios in this simple domain,
solutions are not always obvious. Our approach is applied
to these scenarios to demonstrate how they are handled in
a flexible way, such that it can potentially enable tasks that
cannot be easily achieved before, especially when certain
resources are limited. The application to more complex tasks
will be future work. Simulations are run on a 2.4GHz laptop
with 2GB memory, using Player and Stage. For all scenarios,
the task includes two navigation MSs, which are to be
activated on robot 1 and 2 (without a localization capability),
respectively. All robots are equipped with a fiducial sensor
to detect nearby teammates. RPSs used are in Table I.

1) Scenario 1: Figure 5 shows the most common scenario
in which robots are assigned different goal locations. Both
robot 1 and 2 try to set up a coalition with the only robot
(labeled 3) that can localize. In this case, each introduces a
sensor constraint in the form of local →FR(3,local) {local},
in which local represents either robot 1 or 2. Robot 1
first sets up the coalition, and informs 2 that it requires a
constraint MS to be activated on 3 in order to maintain its
constraint. When robot 2 receives this information, since it
also requires a constraint MS to be activated, it realizes that
this MS would conflict with the MS already assigned to 3,
based on the RPSs in Table I. As a result, no coordination
solution exists since robot 1 has only one local solution.
Hence, the task specification must be updated. In this case,
we manually divide (for now) the original task into three
tasks. Robot 1 sets up a coalition to execute the first task
and the configuration constraint (i.e., relative positioning)
is maintained by the constraint MS on robot 3, given the
information FR(3, 1). Once the first task is accomplished,
robot 3 returns to 2 (the second task) and, through a similar
process, helps robot 2 reach the goal (the third task).

2) Scenario 2: The only difference in the second scenario
(Figure 6) from scenario 1 is that the robots share the
same goal location. Given this scenario, we can add a new
condition, DOM(m(1),m(2)) = F2(2, 1), based on the
planned paths. Everything remains the same as in scenario 1,

Fig. 6. Scenario 2 in which robots share the same goal location.

before robot 2 receives robot 1’s update. In this case, first,
robot 2 knows that the constraint on FR(3, 1) is satisfied
from robot 1’s update. Based on the domain compatibility
and the third RPS in Table I, it realizes that the constraint
on FR(2, 3) is also satisfied from configuration propagation.
Hence, it does not need to activate the constraint MS nor
does it require robot 3 to do so. In this case, we have a
coordination solution and hence the task can be executed.
The configuration constraint associated with FR(3, 1) is
maintained by the constraint MS on 3, while the constraint
associated with FR(2, 1) is implicitly satisfied, given that
robot 2 moves along with 1.

Depending on the scenario, the coordination solution can
be very different. For example, even though the two robots
share the same goal location, the planned paths may be vastly
different due to the environment settings or the path planning
algorithm; on the other hand, two robots can still satisfy
DOM(m(1),m(2)) = F2(2, 1) even when they do not share
the same goal location, e.g., one robot’s goal location lies on
the path of the other. All these cases can be captured similarly
in our approach, thus enabling robot resources to be easily
shared whenever possible.

3) Scenario 3: One may argue that when domain com-
patibility and disjoint configuration information are provided,
the proposed reasoning process is unnecessary. Our reply is:
Domain compatibility and disjoint configuration only capture
domain dependent information and thus are not sufficient to
determine a coordination strategy. For example, the domain
compatibility in scenario 2 only indicates the closeness of
the planned paths for the task robots; it does not specify
how other helper robots should behave and whether or not
they incur conflicts in the task execution.

Another argument is that why not simply hardcode in
the coordination solutions. For example, given the domain
compatibility in Scenario 2, one can state that robot 1 and
2 can share a helper robot. Unfortunately, such an approach
becomes impractical when the problem becomes more com-
plex. In fact, we show here that the coordination solutions
may not be obvious even in simple scenarios, such that it is
prone to miss valid solutions or introduce invalid solutions.
In this scenario (Figure 7), the robots start in different initial
configurations. The coordination solution is created similarly
in two phases: Robot 2 first sets up a coalition with 3 and



Fig. 7. Scenario 3 with different robot initial configurations.

Fig. 8. Scenarios 4 and 5 with robots that are immobile.

updates with 1; Robot 1 then realizes that 2 can localize with
the help from 3 so it sets up a coalition with 2, except in
this case that 3 is the hidden helper and hence also included
in the coalition. Robot 1 then requires two sensor constraints
to be satisfied for FR(3, 2) and FR(2, 1). Since FR(3, 2) is
already satisfied by robot 2’s coalition, it can be ignored;
FR(2, 1) is directly supplied by the domain compatibility.
Note that in this case, the two robots do not share the same
helper robot but a coordination solution still exists.

4) Scenarios 4 and 5: One may then state that the two
robots can share a helper robot or help each other. In scenario
4 (the left figure in Figure 8), we let robots 1 and 2 face each
other and remove the mobility from 3. In this case, although
both robots can localize with the help from 3, which means
that they can ‘help’ each other, no coordination solution
exists. How about further enforcing the helper robots to be
mobile? In the last scenario, we have a mobile robot 3 that
cannot localize but a immobile robot 4 that can. Again, no
solution exists. One may ultimately state that the helpers, and
hidden helpers, or essentially, all coalitions members must
be mobile. This may be a sufficient solution, but unnecessary
in some cases, e.g., with an overhead camera (we can add a
domain compatibility for FR(X, camera) in our approach).

V. CONCLUSIONS

This paper presents a coalition coordination mechanism
for tightly coupled multirobot tasks, which represents the
first step toward a general approach for coalition execution.
We use an existing approach for forming coalitions to model
the interactions among the robots and the environment.
These interactions introduce a set of sensor constraints

that must be maintained. Our approach can automatically
search for a coordination solution given this information.
We show that this approach is sound and complete given
a few assumptions, and provide discussions on a distributed
implementation. Moreover, this new coordination mechanism
provides a flexible method to reason about synergies with
overlapping coalitions, thus enabling multi-tasking robots in
multi-robot tasks. To the best of our knowledge, this is the
first work in the above aspects.
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