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Abstract In this paper, we presediMQ [19] - a domain and user
independent solution for supporting imprecise queries ove
Current approaches for answering queries with impre- autonomous Web databasesVe will use the illustrative
cise constraints require user-specific distance metrias an example below to motivate and provide an overview of our
importance measures for attributes of interest - metried th  approach.

are hard to elicit from lay users. We present AIMQ, a do- Example: Suppose a user wishes to search $edans

main and user independent approach for answering impre- icadaround$10000 in a used car databasgarDB(Make,
cise queries over autonomous Web databases. We deveﬁllodel Year, Price, Location) Based on the database

oped methods for query relaxation that use approximate gchema the user may issue the following query:

functional dependencies. We also present an approach to Q:- CarDB(Model = Camry, Price< 10000)
automatically estimate the similarity between values ¢f ca on re.ceiving the query CarDB,wiII provide a list6amrys
egorical attribut_e_s. Experimental _results demonsirating that are priced beIO\ﬂ?lbOOO. However, given thafccord
robustness, efficiency and effectiveness of AIMQ are P55 a similar car, the user may also be interested in viewing

fhenfd'h Resqlgs of ?ﬂﬁ)re,lél\rl\]/llnary utser _stU(ij demqgsgatmga” Accordspriced around$10000. The user may also be
€ high precision ot the Q system is also provided. interested in &amrypriced$10500. O

In the example above, the query processing model used
) by CarDB would not suggest th&ccordsor the slightly
1 Introduction higher pricedCamryas possible answers of interest as the
user did not specifically ask for them in her query. This will

Database query processing models have always assumef@rce the user to enter the tedious cycle of iteratively-issu
that theuser knows what she wardad is able to formulate  ing queries for all “similar” models before she can obtain
a query that accurately expresses her needs. But with thed satisfactory answer. One way to automate this is to pro-
rapid expansion of the World Wide Web, a large number of Vide the query processor information about similar models
databases like bibliographies, scientific databases et. a (€.9. to tellit thatAccordsare0.9 similar toCamrysg. While
becoming accessible to lay users demanding “instant grati-such approaches have been tried, their achilles heel has bee
fication”. Often, these users may not know how to precisely the acquisition of the domain specific similarity metrics—a
express their needs and may formulate queries that lead t@roblem that will only be exacerbated as the publicly acces-
unsatisfactory results. Although users may not know how sible databases increase in number.
to phrase their queries, when presented with a mixed set This is the motivation for the AIMQ approach: rather
of results having varying degrees of relevance to the querythan shift the burden of providing the value similarity func
they can often tell which tuples are of interest to them. Thus tions and attribute orders to the users, we propose a domain
database query processing models must embrace the IR sysrdependent approach for efficiently extracting and auto-
tems’ notion thatuser only has vague ideas of what she matically ranking tuples satisfying an imprecise queryrove
wants is unable to formulate queries capturing her needs an autonomous Web database. Specifically, our intent is to
and would prefer getting a ranked set of answers. This mine the semantics inherently present in the tuples (as they
shift in paradigm would necessitate supportingprecise represent real-world objects) and the structure of the rela
queries This sentiment is also reflected by several databasetions projected by the databases. Our intent is not to take
researchers in a recent database research assessment [1].the human being out of the loop, but to considerably reduce

*Current affiliation: Dept. of Computer Science, UniversifyCalifor- 1We use the term “Web database” to refer to a non-local autonemo
nia, Davis. database that is accessible only via a Web (form) basedacterf



the amount of input she has to provide to get a satisfac-extracting tuples by identifying and executing new queries
tory answer. Specifically, we want to tdsvw far we can  obtained by reducing the constraints on an existing query.
go (in terms of satisfying users) by using only the informa- However, randomly picking attributes to relax could gener-
tion contained in the database: How closely can we model ate a large number of tuples with low relevance. In theory,
the user’s notion of relevance by using only the information the tuples closest to a tuple in the base set will have dif-
available in the database? ferences in the attribute that least affects the bindingeal
Below we illustrate our proposed solution, AIMQ, and of other attributes. Such relationships can be captured by
highlight the challenges raised by it. Continuing with the approximate functional dependenci@sFDs). Therefore,
example given above, let the user’s intended query be: AIMQ makes use of AFDs between attributes to determine
Q:- CarDB(Model like Camry, Price lik&0000) the degree to which a change in the value of an attribute af-

. . L fects other attributes. Using the mined attribute depecylen
We begin by assuming that the tuples satisfying Some spe;ntormation AIMQ obtains a heuristic to guide the query

cialization of() — ca_lled thebase queryy,., aremd|cat|ve_ ._relaxation process. To the best of our knowledge, there is
of the answers of interest to the user. For example, it iS hq orior work that automatically learns attribute impodan
logical to assume that a user looking for cars IBamry  eqqres (required for efficient query relaxation). Hence,
would be happy if shown ﬁgmrytzhat satisfies most of her e first contributionof AIMQ is a domain and user inde-
constraints. Hence, we deri,,” by tightening the con-  hen4ent approach for learning attribute importance. The tu
straints frontlikeliness” to “equality”: ples obtained after relaxation must be ranked in terms of
Qpr:- CarDB(Model = Camry, Price =10000) their similarity to the query. While we can by default use a

Our task then is to start with the answer tuples @y, — L, distance metric such as Euclidean distance to capture
called thebase set(1) find other tuples similar to tuples ~Similarity between numerical values, no such widely ac-

in the base set and) rank them in terms of similarity to ~ cepted measure exists for categorical attributes. Thezefo

Q. Our idea is to consider each tuple in the base set as ghesecond contributionf this paper (and AIMQ system) is
(fully bound) selection query, and issue relaxations of¢he  a@n association based domain and user independent approach
selection queries to the database to find additional similarfor estimating similarity between values binding categali
tuples. For example, if one of the tuples in the base setis attributes.

Make=Toyota, Model=Camry, Price=10000, Year=2000 Organization: In the next section, Section 2, we list related

research efforts. An overview of our approach is given in

in this tuple. This idea leads to our first challeng&hich Section 3 _Section 4 explains the_AFD baseq attribute orde.r-
relaxations will produce more similar tuples2nce we han- g heuristic we developed. Section 5 descr!bgs our domain
dle this and decide on the relaxation queries, we can issuéndepenQen_t approach _for estimating the S".""a”ty among
them to the database and get additional tuples that are s:imyalues .bmdlng categorical attnbytes. Section 6 presents
ilar to the tuples in the base set. However, unlike the baseevaluatlon results over two real-life databases, Yahoo Au-

tuples, these tuples may have varying levels of relevance tc)tos and Census data, showing the robustness, efficiency of

the user. They thus need to benkedbefore being pre- our algorithms and .the high rele.van.ce of the su_ggested an-
sented to the user. This leads to our second challérige: swers. We summarize our contributions in Section 7.

to compute the similarity between the query and an answer

tuple? Our problem is complicated by our interest in mak- 2 Related Work

ing this similarity judgement not depend on user-supplied
distance metrics.

we can issue queries relaxing any of the attribute bindings

Information systems based on the theory of fuzzy
Contributions: In response to these challenges, we devel- sets [15] were the earliest to attempt answering queries
oped AIMQ - a domain and user independent imprecise with imprecise constraints. The WHIRL [4] system pro-
guery answering system. Given an imprecise query, AIMQ vides ranked answers by converting the attribute values in
begins by deriving a precise query (called base query) thatthe database to vectors of text and ranking them using the
is a specialization of the imprecise query. Then to extract vector space model. In [16], Motro extends a conventional
other relevant tuples from the database it derives a set ofdatabase system by addingsimilar-to operator that uses
precise queries by considering each answer tuple of the basedistance metrics given by an expert to answer vague queries.
query asa relaxable selection query Relaxation involves  Binderberger [20] investigates methods to extend database
systems to support similarity search and query refinement

2We assume a non-null resultset 195, or one of its generalizations.  gyer arbitrary abstract data types. In [7], Goldman et al pro
The attribute ordering heuristic we describe later in tlgipgr is useful in - .

pose to provide ranked answers to queries over Web data-

relaxing@p also. . . .. . .
3The technique we use is similar to the pseudo-relevance dekdb ~ 0ases but require users to provide additional guidance in

technique used in IR systems.Pseudo-relevance feedbackkabwn as
local feedback or blind feedback) involves using kotrieved documents to form a new query to extract more relevant results.
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Figure 1. AIMQ system architecture

deciding the similarity. However, [20] requires changing mate keys from the probed data and uses them to deter-
the data models and operators of the underlying databasenine a dependence based importance ordering among the
while [7] requires the database to be represented as a graphattributes. This ordering is used by the Query Engine for
In contrast, our solution provides ranked results witheut r  efficient query relaxation and by the Similarity Miner to as-
organizing the underlying database and thus is easier to im-sign weights to similarity over an during ranking. The Simi-
plement over any database. A recent work in query opti- larity Miner uses an association based similarity mining ap
mization [12] also learns approximate functional dependen proach to estimate similarities between categorical \&lue
cies from the data but uses it to identify attribute sets for Figure 2 shows a flow graph of our approach for answering
which to remember statistics. In contrast, we use it for cap- an imprecise query.
turing semantic patterns from the data.

The problem of answering imprecise queries is related 3.1 The Problem
to three other problems. They are (Enpty answerset

problem where the given query has no answers and needs  Gijven a conjunctive querg) over an autonomous Web
to the relaxed. In [17], Muslea focuses on solving the gatabase projecting the relatidt) find all tuples ofR that
empty answerset problem by learning binding values andghgw similarity toQ above a threshold’,;,, € (0,1).
patterns likely to generate non-null resultsets. Coopera-gpecifically,

tive query answering approaches have also looked at solv- _ S

ing this problem by identifying generalizations that wékr Consrnasi’g(tgs)' (_1{)3353 fuf;;()srg[clr?gtg(()%iﬁ:n%lﬁr}y processing
turn a non-null resuit [6]. (2Btructured query relaxation model (i.e. . a tuple either satisfies or does not satisfy a

- where a query is relaxed using only the syntactical infor- . o
mation about the query. Such an approach is often used inquery). (2) The answers td@) must be determined with

XML query relaxation e.g. [21]. (3Keyword queries in out altering the data model or requiring additional guidganc
databases Recent research efforts [2, 10] have looked at from users 3

supporting keyword search style querying over databases -
These approaches only return tuples containing at least oné?"2 Finding Relevant Answers

keyword appearing in the query. The results are then ranked _ )

using a notion of popularity captured by tlieks. The im- ~ Imprecise Query: A user query that requires a close but
precise query answering pr0b|em differs from the first prob_ not necessanly exact match is an ImpI’ECIlse query. AnSWers
lem in that we are not interested in just returning some an-0 such a query must be ranked according to their close-
swers but those that are likely to be relevant to the user.Ness/similarity to the query constraints. For example, the
It differs from the second and third problems as we con- guery Q:- CarDB(Make like Ford)is an imprecise query,

sider the semantic relaxations rather than the purely synta the answers to which must have the attribitake bound
tic ones. by a valuesimilar to Ford.

Our proposed approach for answering an imprecise se-
lection query over a database is given in Algorithm 1. Given
3 The AIMQ approach an imprecise query Q to be executed over relation R, the
threshold of similarityT’,;,,, and the attribute relaxation or-
The AIMQ system as illustrated in Figure 1 consists of der A, c100 (derived using Algorithm 2 in Section 4), we
four subsystems: Data Collector, Dependency Miner, Sim- begin by mapping the imprecise query Q to a precise query
ilarity Miner and the Query Engine. The Data Collec- @), having a non-null answerset (Stép The set of an-
tor probes the databases to extract sample subsets of thewers for the mapped precise query formshibee setd;.
databases. Dependency Miner mines AFDs and approxi-By extracting tuples having similarity above a predefined
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Algorithm 1 Finding Relevant Answers is measured as a ratio of the tuples that violate the depen-
Require: Q, R, Aeian: Toim dency to the total number of tuplesin
1: Let Qpr = {Map(Q)|Aps = Qpr(R), |Ass| > 0} Approximate Key (AKey): An attribute setX C R is a
2.Vt e Aps N key over relation- if no two distinct tuples in agree onX.
3. Q¢ = CreateQueries(td,¢iaz) However, if the uniqueness of does not hold over a small
4 Yq€ Qg fraction of tuples inr, thenX is considered aapproximate
5 Arer = q(R) key Specifically, X is an approximate key #rror(X) <
6: Vi e A Terr, WhereT,,.,. € (0,1) anderror(X) is measured as the
7: if Sim(t,t') > Tsim minimum fraction of tuples that need to be removed from
8: Aes = Acs Ut relationr for X to be a key.
9: Return Top-k@.s). Several authors [14, 13, 5] have proposed various mea-

sures to approximate the functional dependencies and keys
that hold in a database. Among them, themeasure pro-
threshold,T;.,,, to the tuples ind,, we can get a larger posed by Kivinen and Mannila [13], is widely accepted.
subset of potential answers callegtended setA.;). To The g3 measure is defined as the ratio of minimum num-
ensure more relevant tuples are retrieved after relaxation ber of tuples that need be removed from relatidto make

we use the Algorithm 2 to determine an attribute relaxation X — Y a functional dependency to the total number of tu-
order A, .iup. Using A,.1.., We generate a set of precise ples inR. This definition is consistent with our definition of
queriesQ,.; from each tuple ind,, (Step 3). Executing a  approximate dependencies and keys given above. Hence we
queryq € Q,.; over R will give us a set of tuplesd,.;, useTANE[11], the algorithm developed by Huhtala et al for
that are relevant to the corresponding tuple A,, (Step  efficiently discovering AFDs and approximate keys whose
5). Identifying possibly relevant answers only solves part g3 approximation measure is below a given error threshold.
of the problem since we must now rank the tuples in terms We mine the AFDs and keys using a subset of the database
of the similarity they show to the tuple Therefore we  extracted by probing.

use the query-tuple similarity estimation functi®imde-  Attribute Relaxation Order: Our solution for answering
fined in Section 5 to measure the similarity of each tuple 5 imprecise query requires us to generate new selection
t' € Ay tothe tuplet € Ay, (Step 7). Only ift’ shows  queries by relaxing the constraints of the tuples in the base
similarity above the threshol;,,, do we add ittothe setof et 4, . The underlying motivation there is to identify tu-
relevant answers.., for Q (Step 8). Only the toptuples e that are closest to some tuple As. In theory the

(in terms of similarity to Q) are shown to the user. tuples most similar ta will have differences only in the
least important attribute. Therefore the first attributdogo
4  Attribute Ordering using AFDs relaxed must be thkeast important attribute an attribute

whose binding value, when changed, has minimal effect on
values binding other attributes.

Identifying the least important attribute necessitates an
ordering of the attributes in terms of their dependence on
each other. A simple solution is to make a dependence
graph between attributes and perform a topological sort
over the graph. Functional dependencies can be used to
derive the attribute dependence graph that we need. But,
full functional dependencies (i.e. witth0% support) be-
tween all pairs of attributes (or sets encompassing all at-

4Algorithm 1 assumes that similarity threshdit;,,, and the number  tributes) are often not available. Therefore we use approxi
of tuples (k) to be returned to the user are tuned by the sydesigners. mate functional dependencies (AFDs) between attributes to

We estimate the importance of an attribute by learning
AFDs from a sample of the database.

Approximate Functional Dependency (AFD): The func-
tional dependencX — A over relatiornr is anapproximate
functional dependendyit does not hold over a small frac-
tion of the tuples. SpecificallyX — A is an approximate
functional dependency if and only #ror(X — A) <
T, Where the error thresholfi.,,. € (0,1) and the error




develop the attribute dependence graph with attributes agsance (i.e. how deciding an attribute is) is returned (Step
nodes and the relations between them as weighted directed 1). Given the attribute order, we compute the weight to be
edges. However, the graph so developed often is stronglyassigned to each attribukec Wt 4 as

connected and hence contains cycles thereby making it im-

possible to do a topological sort over it. Constructing a RelaxOrder (k)

DAG by removing all edges forming a cycle will result in count(Attributes(R))
much loss of information.

We therefore propose an alternate approach to break th
cycle. We partition the attribute set inttependenandde-
ciding sets, with the criteria being each member of a given
group either depends or decides at least one member of th ompute importance weightd: ¢ Wt
other group. Atopplogi_cal sort of members in_egch subset The relaxation order we produéé(.using Algorithm 2
\(/;v?t%?gsdpoenc? tboy;itg:]::'tg%&gg d_?ﬁg:iinrté?;;fénglItrrfgr:_reonly provides the order for relaxing a single attribute of
bers in the dependent group ahead of those in the decidin the query at a time. G|ve|j thg single attrlpute orderlng,

. . : e greedily generate multi-attribute relaxation assuming
lgrouopllf\(ve Ca\llr\]l ensurehthat the Igast |mkportaln:1ar:'trlgute 'S "€%he multi-attribute ordering strictly follows the singlé-a
axed first. We use the approximate key with highest sup- _ . : :
port to partition the attriblftz set. Al attri};)utes fo?mitige > tribute ordering. For example, flay, 3, as, 2} s the 1-

approximate kev become members of deeiding sewvhile attribute relaxation order, then tReattribute order will be
PP L. y L 9 {(11(13, a1a4,0a102,a304,a309, (14(12}. The3-attribute order
the remaining attributes form tltependent set

will be a cartesian product dfand2-attribute orders and so
on.

Wtdecides (k)
Z Wtdecides

where RelaxOrder returns the position at whichvill be

felaxed. The position ranges froinfor least important
attribute tocount(Attributes(R)jor the most important at-
tribute. By usingWtgepenas instead ofiVtgeciqes WE CaN

Wimp(k) =

Algorithm 2 Attribute Relaxation Order
Require: Relation R, Dataset r, Error threshdld,.,.
1: Sapp={z|z € GetAFDs(R,1gs(z) < Tepr}
2: Sax={z|x € GetAKeys(R,Ngs(z) < Terr}
3: AK={k|k € Sak, Vk' € Sax support(k)> sup-

5 Query-Tuple Similarity Estimation

We measure the similarity between an imprecise query

port(k’)} Q and an answer tupleas

4 AK = {klk € R— AK .
up e A{K‘ < } VSim(Q.A;, t.A;)
6: Wia k)= support(A—k') n if Domain(A ;) = Categorical

. de(ndes( )_Z R size(A) R S7m(Q7 t) = Z Wim,p(Ai) X

wherek € AC R,k € R— A i=1 1- Sastds

7 Wtﬁz Wtakx U [ka Wtdecides(k)} if Domain(A;) = Numerical
8 VjeAK
9 Wtaepends(j) =3 support(A—j) \nhere A c R wheren = Count(boundattributes(Q)), Wimp O_iy

. -  size(4) , Wimp = 1) is the importance weight of each attribute, and
1(1)‘ Re%iﬁsgr%//iﬁys[‘gr%?mﬁs (7)] VSimmeasures the similarity between the categorical val-

: AK/) AK)]-

ues as explained below. If the numeric distances computed
using &4=EA4s > 1, we assume the distance to beo

Given a database relation R and error threshgld., maintain a lowerbound df for numeric similarity.

Algorithm 2 begins by extracting all possible AFDs and

approximate keys (AKeys). As mentioned earlier, we use 5.1 Categorical Value Similarity

the TANE algorithm to extract AFDs and AKeys whoge

measures are belofl.,.,. (Step 1,2). Next we identify the The similarity between two values binding a categorical
approximate key with the highest support (or least error), attribute,VSim is measured as the percentage of common
AK, to partition the attribute set into the deciding group Attribute-Value pairs(AV-pairsthat are associated to them.
(attributes belonging tel K') and those that are dependent An AV-pair consists of a distinct combination of a categor-
on AK (belong toAK)(Step 3,4). Then for each attribute ical attribute and a value binding the attribuddake=Ford

in deciding group we sum all support values for each AFD is an example of an AV-pair.

wherek belongs to the antecedent of the AFD (Step 5-7).  We consider two values as being associated if they occur
Similarly we measure the dependence weight for each at-in the same tuple. Two AV-pairs are associated if their val-
tribute j belonging to the dependent group by summing up ues are associated. The similarity between two AV-pairs can
the support of each AFD wheyds in the consequent (Step be measured as the percentage of associated AV-pairs com-
8-10). The two sets are then sorted in ascending order andnon to them. More specifically, given a categorical value,
a totally ordered set of attributes in terms of their impor- all the AV-pairs associated to the value can be seen as the



features describing the value. Consequently, the siryilari

6 Evaluation

between two values can be estimated by the commonality in

the features (AV-pairs) describing them. For example,mgive
tuplet ={Ford, Focus, 15k, 2002 the AV-pairMake=Ford

is associated to the AV-paiModel=Focus, Price=15land
Year=2002

5.2 Estimating Value Similarity

Model Focus:5, ZX2:7, F150:8 ..
Mileage | 10k-15k:3, 20k-25k:5, ..
Price 1k-5k:5, 15k-20k:3, ..
Color White:5, Black:5, ...

Year 2000:6, 199935, ....

Table 1. Supertuple for Make='Ford’

In this section we present evaluation results showing the
efficiency and effectiveness of the AIMQ system in answer-
ing imprecise queries. We used two real-life databasek:- (1
the online used car databa¥ghoo Autosand (2) theCen-
sus Datasefrom UCI Machine Learning Repositdtyto
evaluate our system.

6.1 Experimental Setup

Databases:We set up a MySQL based used car search sys-
tem that projects the relatioBarDB(Make, Model, Year,
Price, Mileage, Location, Colorand populated it using
100,000 tuples extracted fron¥Yahoo Autos We con-
sidered the attributetake, Model, Year, Locatiomand
Color in the relation CarDB as being categorical in na-

An AV-pair can be visualized as a selection query that ture. The Census database we used projected the rela-
binds only a single attribute. By issuing such a query over tion CensusDB(Age, Workclass, Demographic-weight, Ed-
the extracted database we can identify a set of tuples al con Ucation, Marital-Status, Occupation, Relationship, Race
taining the AV-pair. We represent the answerset containing Sex, Capital-gain, Capital-loss, Hours-per-week, Native

each AV-pair as a structure called thepertuple The su-

Country)and was populated with5, 000 tuples provided

pertuple contains a bag of keywords for each attribute in theby theCensus datasefge, Demographic-weight, Capital-
relation not bound by the AV-pair. Table 1 shows the super- 9in, Capital-lossandHours-per-weekvere numeric (con-

tuple forMake=Fordover the relation CarDB as2acolumn

tinuous valued) attributes and the remaining were categori

tabular structure. To represent a bag of keywords we extendcal: _ _
the semantics of a set of keywords by associating an occurimplemented Algorithms: We designed two query relax-
rence count for each member of the set. Thus for attribute@tion algorithmsGuidedRelaxand RandomRelaxor cre-

Colorin Table 1, we se®hitewith an occurrence count of
five, suggesting that there are fi¢hite coloredFord cars
in the database that satisfy the AV-pair query.

ating selection queries by relaxing the tuples in the base
set. GuidedRelaxnakes use of the AFDs and approximate
keys and decides a relaxation scheme as described in Al-

We measure the similarity between two AV-pairs as the gorithm 2. TheRandomRelaximics the random process
similarity shown by their supertuples. The supertuples con By which users would relax queries by arbitrarily picking

tain bags of keywords for each attribute in the relation.

Hence we usdaccard Coefficient [9, 3] with bag semantics
to determine the similarity between two supertuples. Unlik

attributes to relax.
To compare the relevance of answers we provide, we
also set up another query answering system that uses the

pure text documents, supertuples would rarely share key-ROCK [8] clustering algorithm to cluster all the tuples in

words across attributes. Moreover all attributes (feafure

the dataset and then uses these clusters to determine sim-

may not be equally important for deciding the similarity be- ilar tuples. We chose ROCK to compare as it is also a
tween two categorical values. For example, given two cars,domain and user-independent solution like AIMQ. ROCK
their prices may have more importance than their color in differs from AIMQ in the way it identifies tuples similar to
deciding the similarity between them. Hence, given the an- @ tuple in the base set. ROCK'’s computational complexity
swersets for an AV-pair, we generate bags for each attributds O(2°), wheren is the number of tuples in the dataset.

in the corresponding supertuple. The value similarity éith

In contrast,AIMQ’s complexity is Ofn x k2) wherem is

computed as a weighted sum of the attribute bag similari- the number of categorical attributésjs the average num-
ties. Calculating the similarity in this manner allows us to ber of distinct values binding each categorical attriburte a
vary the importance ascribed to different attributes. Thus m < k < n. The pre-processing times for AIMQ and

similarity between two categorical values is calculated as
VSimC’l7 CQ) :Z;ZI Wi?np(Ai) X Ssz(ClA“ CgAl)
where(C1, Cy are supertuples withn attributes,4; is the
bag corresponding to thé&" attribute,W;,,,,,(4;) is the im-
portance weight ofA; and Sim s is the Jaccard Coefficient

and is computed aSim (A, B)= }f‘gg{.

ROCK shown in Table 2 do verify our claims. The over-
all processing time required by AIMQ is significantly lesser
than that for ROCK. Both AIMQ and ROCK were devel-

5Available at http://autos.yahoo.com.

6Available at http://www.ics.uci.edu/ mlearn/MLRepositdtml.

"Henceforth, we use ROCK to refer to the query answering syste
using ROCK.



o CarbB (25k) | CensusDB (45k) Figure 3 shows the dependence of remaining attributes in
SuperTuple Generation  3min 4 min CarDB. We can see th&todelis the least dependent among
Similarity Estimation 15 min 20 min the dependent attributes whiléakeis the most dependent.
E%?(KComputation 2k) 20 min 35 min The dependence values are highest when estimated over the
Initial Clustering (2k) 45 min 86 min 100k sample and lowest when estimated ovek sample.

Data Labeling 30 min 50 min This variation (due to sampling) is expected, however the

change in the dataset size does not affect the relative or-
dering of the attributes and therefore will not impact our
attribute ordering approach.

oped using Java. The evaluations were conducted on a Win- Figure 4 compares the quality of approximate keys

d based svst ith5GHz CPU and 768MB RAM. r_nined from the sample dataset_s to that mined. over the en-
ows based system withsGHz an tire CarDB databasd (0k). Quality of an approximate key

is defined as the ratio of support over size (in terms of at-

tributes) of the key. The quality metric is designed to give

. ) ~ preference to shorter keys. In Figure 4, the approximate
In order to learn the attribute importance and value sim- keys are arranged in increasing order of their quality. Of

ilarities , we need to first collect a representative sample 0 e 926 keys found in database onliylow-quality keys that

the data stored in the sources. Since the sources are aloyld not have been used in query relaxation are absent in

tonomqus, this_will involveprobing the sources with a set  he sampled datasets. The approximate key with the high-

of probing queries _ est quality in the database also has the highest quality in al
Issues raised by Sampling:We note at the outset that  the sampled datasets. Thus, even with the smallest sample

the details of the dependency mining and value similarity (15k) of the database we would have picked the right ap-

estimation tasks do not depend on how the probing queriesproximate key during the query relaxation process.
are selected. However, since we are approximating the

model of dependencies and similarities by using the sam-

ple, we may end up learning dependencies and similarities NARES =
that do not reflect the actual distribution of the database. o] =
Intuitively, the larger the sample obtained, the better our
approximation of the database. The loss of accuracy due
to sampling is not a critical issue for us as it is tieda-

tive rather than th@bsolutevalues of the dependencies and —
value similarities that are more important in query relax- o :
ation and result ranking. Modet Dependent Attribute. Make

In this paper, we select the probing queries from a set of
spanning queri€si.e. queries which together cover all the
tuples stored in the data sources (the second approach can
be used for refining statistics later).

Below we present results of evaluations done to test the
robustness of our learning algorithms over various sample
sizes. The results will show that while the absolute support
for the AFDs and approximate keys does vary over differ-
ent data samples, their relative ordering is not considgrab
affected.

Table 2. Offline Computation Time

6.2 Robustness over Sampling

0.25

0.2

Dependence

0.15

0.1

Figure 3. Robustness of Attribute Ordering

Quality

Learning Attribute Importance: Using simple random
sampling without replacement we constructed three subsets
of CarDB containingl5k, 25k and 50k tuples. Then we
mined AFDs and approximate keys from each subset and
also from thel 00k tuples of CarDB. Using only the AFDs
we computed the dependence of each attribute on all other
attributes in the relation (S€&tgepends iN Algorithm 2).

Figure 4. Robustness in mining Keys

Robust Similarity Estimation: We estimated value sim-
®An alternate approach is to pick the set of probe queries ficsst ilarities for the attributedlake, Model, Year, Locatioand

of actual queries that were directed at the system over agefitime. Color as described in Section 5 using both 166k and25k
Although more sensitive to the actual queries, such an apprbas a

chicken-and-egg problem as no statistics can be learndicthmisystem datasets. Time required for Sim”arity estimation dirgctl
has processed a sufficient number of user queries. depends on the number of AV-pairs extracted from the data-




Value Similar Values | 25k 100k 180 -

Make=Kia Hyundai 0.17 | 0.17 150 .
Isuzu 0.15 | 0.15 R
Subaru 0.13 | 0.13 10

Model=Bronco | Aerostrar 0.19 | 0.21 120
F-350 0 0.12 100

EconolineVan | 0.11 | 0.11

Year=1985 1986 0.16 | 0.18 6o /
1984 0.13 | 0.14 £ L. /\
1987 0.12 | 0.12 e ; i
20 - R % :
o OV L JURE, SN B P L —\4

Table 3. Robust Similarity Estimation . a R s

WorkiRelevant Tuple - GuidedRelax

Chevrolet

Work/Relevant Tuple- RandomRelax

100 + Y8 - S om
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0 A7 S ol TR =l me e T
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Figure 5. Similarity Graph for Make="Ford" Querios

Figure 7. Efficiency of RandomRelax

base and not on the size of the dataset. This is reflected in
Table 2 where the time required to estimate similarity over
45k dataset is similar to that of tik dataset even though is the number of extracted tuples showed similarity above
the dataset size has doubled. Table 3 shows th8 t@gdes  the threshold;,,, . Specifically,M#M is a measure
similar to Make=Kia, Model=Broncoand Year=1985 that of the average number of tuples that an user would have to
we obtain from tha 00k and25% datasets. Even though the look at before finding a relevant tuple.
actual similarity values are lower for tR6% dataset the rel- The graphs in figures 6 and 7 show the average num-
ative ordering among values is maintained. Similar results ber of tuples that had to be extracted GyidedRelaxand
were also seen for other Av-pairs. We reiterate the fact thatRandomRelaxespectively to identify a relevant tuple for
it is therelativeand not theabsolutevalue of similarity (and  the query. Intuitively the larger the expected similaritye
attribute importance) that is crucial in providing ranked a  more the work required to identify a relevant tuple. While
swers. both algorithms do follow this intuition, we note that for

Figure 5 provides a graphical representation of the es-higher threshold®andomRelagFigure 7) ends up extract-
timated similarity between some of the values binding at- ing hundreds of tuples before finding a relevant tu@eaid-
tribute Make The valuesFord and Chevroletshow high edRelaxFigure 6) is much more resilient and generally ex-
similarity while BMW is not connected tBord as the simi-  tracts4 tuples before identifying a relevant tuple.
larity is below threshold. We found these results to be intu-
itively reasonable and feel our approach is able to effigent 6.4 User Study using CarDB
determine the distances between categorical values. ibater
the section we will provide results of a user study that show
our similarity measures as being acceptable to the users. N S doantaa

— - —ROCK

0.8 -

6.3 Efficient query relaxation

0.6 4
-
<

0.4

Average MRR .

To verify the efficiency of the query relaxation technique
we proposed in Section 4, we setup a test scenario using o { A ;
the CarDB database and a setl6frandomly picked tuples. L Y L
For each of these tuples our aim was to extrtuples 1z 2 4 s e 7T 3 5 M0 11 1z 13 14
from CarDB that had similarity above some threshblgd,,

(0.5 < Tsim < 1). The efficiency of our relaxation algo- Figure 8. Average MRR over CarDB
rithms is measured ag_ ‘2% = pstracieal \yhere

elevantTuple [ TRetevant| ’

TEziracted gives the total tuples extracted whil&;coant The results presented so far only verify the robustness




and efficiency of the imprecise query answering model we 6.5 Evaluating domain-independence of AIMQ
propose. However these results do not show that the at-
tribute importance and similarity relations we capture are
acceptable to the user. Hence, in order to verify the correct
ness of the attribute and value relationships we learn and

use, we setup a small user study over the used car databas __ (985

CarDB. We randomly picket# tuples from the 00k tuples £ ==k

in CarDB to form the query set. Next, using both fRan- E ors /
domRelaxandGuidedRelaxnethods, we identifietld most g
similar tuples for each of theskel queries. We also chose — 1P I~ I — -

10 answers using ROCK. We used th#k dataset to learn =

the attribute importance weights used®yidedRelaxThe >

categorical value similarities were also estimated udeg t = ®%° *" rons o Tobet
25k sample dataset. Even though in the previous section we Similar Answers
presentedRandomRelaas almost a “strawman algorithm”,

itis not true here. SincRandomRelalooks at a larger per- Figure 9. Accuracy over CensusDB

centage of tuples in the database before returning thessimil

answers it is likely that it can obtain a larger number of rel-

evant answers. Moreover, boRandomRelaxand ROCK Evaluating the user study results given above in conjunc-
give equal importance to all the attributes and only differ tion with those checking efficiency (in Section 6.3), we can
in the similarity estimation model they use. Théqueries claim that AIMQ is efficiently able to provide ranked an-
and the three sets of ranked answers were givehgiad- swers to imprecise queries with high levels of user satisfac
uate studetvolunteers. To keep the feedback unbiased, tion. However, the results do not provide conclusive evi-
information about the approach generating the answers waslence of domain-independence. Hence, below we briefly
withheld from the users. Users were asked to re-order theprovide results over the Census database. Each tuple in the
answers according to their notion of relevance (simildrity database contains information that can be used to decide
Tuples that seemed completely irrelevant were to be givenwhether the surveyed individual’'s yearly income:is50%’

a rank of zero. or ‘<= 50k’. A sample query over CensusDB could be

Results of user study: We used MRR (mean recipro-
cal rank) [22], the metric for relevance estimation used in
TREC QA evaluations, to compare the relevance of the an- Answering Q' would require learning both the impor-
swers provided byRandomRelaxand GuidedRelax The tance to be ascribed to each attribute and the similari-
reciprocal rank (RR) of a query, Q, is the reciprocal of the ties between values binding the categorical attributeso- tw
position at which the single correct answer was found i.e. tasks that are efficiently and accurately accomplished by
if correct answer is at position 1: RR(Q)=1, RR(Q)for AIMQ. We began by using a sample 8§k tuples of Cen-
position 2 and so on. If no answer is correct then RR(Q)=0. susDB to learn the attribute dependencies and categorical
MRR is the average of the reciprocal rank of each questionvalue similarities. AIMQ picked the approximate kége,
in a set of questions. While TREC QA evaluations assume Demographic-Weight, Hours-per-weak the best key and
unigue answer for each query, we assume a unique answeused it to derive the relaxation order. Since tuples were pre
for each of the top-0 answers of a query. Hence, we re- classified, we can safely assume that tuples belonging to
defined MRR as same class are more similar. Therefore, we estimated the
MRR(Q)zAVS( relevance of AIMQ’s answers based on the number of an-
o , , swers having identical class as the query. We uk#n)
wheret; is i ranked answer given to the query. Figure 8 y,hje5 not appearing in the 15k sample as queries to test
shows the average MRR ascribed to both the query relax-the system. The queries were equally distributed over the

ation approachessuidedRelahas higher MRR thaRan-  ¢|555es. For each query, using béiidedRelaxand ROCK
domRelaxand ROCK. Even thougfsuidedRelaxooks at  gigorithms we identified théirst 10 tuplesthat had simi-

fewer tuples of the database, it is able to extract more rele'larity above0.4. Figure 9 compares the average classifi-
vgnt answers thaRand_omRelamnd ROCK. Thus, _the at-  .ation accuracy of theop-k (wherek={10,5,3,3) answers
fmbute ordering heunst_lc is able to cllosely approxmdmet given by AIMQ and ROCK. We can see that the accuracy
importance users ascribe to the various attributes of the re ;,reases as we reduce the number of similar answers given
lation. to each query. AIMQ comprehensively outperforms ROCK
in all the cases thereby further substantiating our cla@h th
AIMQ is a domain-independent solution and is applicable
over a multitude of domains.

Q’:-CensusDB(Education like Bachelors, Hours-per-week4ike

1
|User Rank(t;)—SystemRank(t;)|+1 )

9Graduate students by virtue of their low salaries are alsittared
experts in used cars.



7 Conclusion

In this paper we first motivated the need for supporting
imprecise queries over databases in a domain-independent[5]
way. Then we presented AIMQ, a domain independent ap-

[4] W. Cohen. Integration of Heterogeneous Databases without

Common Domains Using Queries based on Textual Similar-
ity. In proceedings of SIGMO[pages 201-212, June 1998.

M. Dalkilic and E. Robertson. Information Dependenciks.
proceedings of POD2000.

proach for answering imprecise queries over autonomous [6] T. Gasterland. Cooperative Answering through Controlled

databases. The efficiency and effectiveness of our system
has been evaluated over two real-life databases, Yahoo Au- 7
tos and Census database. We presented evaluation results
showing our approach is able to overcome inaccuracies that
arise due to sampling. We also presented results from a [8]
preliminary user study showing the ability of AIMQ to ef-
ficiently provide ranked answers with high levels of user
satisfaction. To the best of our knowledge, AIMQ is the
only domain independent system currently available for an-
swering imprecise queries. It can be (and has been) imple-
mented without affecting the internals of a database tlyereb
showing that it could be easily implemented over any au- [

tonomous Web database.

Approaches for estimating attribute importance can be

divided into two classes:- (1data driven- where the at-

tribute importance is identified using correlations betwee

columns of database and (@)ery driven- where the im-

portance of an attribute is decided by the frequency with [12]
which it appears in a user query. But such approaches are
constrained by their need for user queries - an artifactishat

not often available for new systems. Howewgrery driven

approaches are able to exploit user interest when the query

Query RelaxationlEEE Experf 1997.

R. Goldman, N .Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity Search in Databasés.pro-
ceedings of VLDB1998.

S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust Clus-
tering Algorithm for Categorical Attributesn proceedings
of ICDE, 1999.

[9] T.Haveliwala, A. Gionis, D. Klein, and P Indyk. Evaluating

Strategies for Similarity Search on the Wdh.proceedings
of WWW, Hawai, USAMay 2002.

V. Hristidis and Y. Papakonstantinou. Discover: Keyword
Search in Relational Databasem proceedings of VLDB
2002.

Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. Effi-
cient Discovery of Functional and Approximate Dependen-
cies Using Partitionsin proceedings of ICDEL998.

P. Haas P. Brown I.F lllyas, V. Markl and A. Aboulnaga.
CORDS: Automatic Discovery of Correlations and Soft Fun-
cional Dependenciessigmod 2004.

[13] J. Kivinen and H. Mannila. Approximate Dependency Infer-

ence from RelationsTheoretical Computer SciencE995.

workloads become available. Therefore, in [18] we answer [14] T. Lee. An lynformation-theoretic Analysis of relational

imprecise queries by using queries previously issued over
the system. Thelata drivenapproach AIMQ, presented in

this paper complements our solution in [18] by allowing us

to answer imprecise queries even in the absence of queny15]

workloads.

Traditionally, IR systems have attempted to use rele-
vance feedback over results generated by a query to refing16)
the query. On similar lines, we plan to use relevance feed-
back to tune the importance weights assigned to an attribute
Moreover, the feedback given can also be used to tune thg;7)

distance between values binding an attribute.
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