
Answering Imprecise Queries over Autonomous Web Databases

Ullas Nambiar∗ & Subbarao Kambhampati

Department of Computer Science & Engineering
Arizona State University, USA

E-mail:{ubnambiar, rao}@asu.edu

Abstract

Current approaches for answering queries with impre-
cise constraints require user-specific distance metrics and
importance measures for attributes of interest - metrics that
are hard to elicit from lay users. We present AIMQ, a do-
main and user independent approach for answering impre-
cise queries over autonomous Web databases. We devel-
oped methods for query relaxation that use approximate
functional dependencies. We also present an approach to
automatically estimate the similarity between values of cat-
egorical attributes. Experimental results demonstratingthe
robustness, efficiency and effectiveness of AIMQ are pre-
sented. Results of a preliminary user study demonstrating
the high precision of the AIMQ system is also provided.

1 Introduction

Database query processing models have always assumed
that theuser knows what she wantsand is able to formulate
a query that accurately expresses her needs. But with the
rapid expansion of the World Wide Web, a large number of
databases like bibliographies, scientific databases etc. are
becoming accessible to lay users demanding “instant grati-
fication”. Often, these users may not know how to precisely
express their needs and may formulate queries that lead to
unsatisfactory results. Although users may not know how
to phrase their queries, when presented with a mixed set
of results having varying degrees of relevance to the query
they can often tell which tuples are of interest to them. Thus
database query processing models must embrace the IR sys-
tems’ notion thatuser only has vague ideas of what she
wants, is unable to formulate queries capturing her needs
and would prefer getting a ranked set of answers. This
shift in paradigm would necessitate supportingimprecise
queries. This sentiment is also reflected by several database
researchers in a recent database research assessment [1].

∗Current affiliation: Dept. of Computer Science, University of Califor-
nia, Davis.

In this paper, we presentAIMQ [19] - a domain and user
independent solution for supporting imprecise queries over
autonomous Web databases1. We will use the illustrative
example below to motivate and provide an overview of our
approach.

Example: Suppose a user wishes to search forsedans
pricedaround$10000 in a used car database,CarDB(Make,
Model, Year, Price, Location). Based on the database
schema the user may issue the following query:

Q:- CarDB(Model = Camry, Price< 10000)
On receiving the query, CarDB will provide a list ofCamrys
that are priced below$10000. However, given thatAccord
is a similar car, the user may also be interested in viewing
all Accordspriced around$10000. The user may also be
interested in aCamrypriced$10500. 2

In the example above, the query processing model used
by CarDB would not suggest theAccordsor the slightly
higher pricedCamryas possible answers of interest as the
user did not specifically ask for them in her query. This will
force the user to enter the tedious cycle of iteratively issu-
ing queries for all “similar” models before she can obtain
a satisfactory answer. One way to automate this is to pro-
vide the query processor information about similar models
(e.g. to tell it thatAccordsare0.9 similar toCamrys). While
such approaches have been tried, their achilles heel has been
the acquisition of the domain specific similarity metrics–a
problem that will only be exacerbated as the publicly acces-
sible databases increase in number.

This is the motivation for the AIMQ approach: rather
than shift the burden of providing the value similarity func-
tions and attribute orders to the users, we propose a domain
independent approach for efficiently extracting and auto-
matically ranking tuples satisfying an imprecise query over
an autonomous Web database. Specifically, our intent is to
mine the semantics inherently present in the tuples (as they
represent real-world objects) and the structure of the rela-
tions projected by the databases. Our intent is not to take
the human being out of the loop, but to considerably reduce

1We use the term “Web database” to refer to a non-local autonomous
database that is accessible only via a Web (form) based interface.

the amount of input she has to provide to get a satisfac-
tory answer. Specifically, we want to testhow far we can
go (in terms of satisfying users) by using only the informa-
tion contained in the database: How closely can we model
the user’s notion of relevance by using only the information
available in the database?

Below we illustrate our proposed solution, AIMQ, and
highlight the challenges raised by it. Continuing with the
example given above, let the user’s intended query be:

Q:- CarDB(Model like Camry, Price like10000)

We begin by assuming that the tuples satisfying some spe-
cialization ofQ – called thebase queryQpr, areindicative
of the answers of interest to the user. For example, it is
logical to assume that a user looking for cars likeCamry
would be happy if shown aCamrythat satisfies most of her
constraints. Hence, we deriveQpr

2 by tightening the con-
straints from“likeliness” to “equality” :

Qpr:- CarDB(Model = Camry, Price =10000)

Our task then is to start with the answer tuples forQpr –
called thebase set, (1) find other tuples similar to tuples
in the base set and (2) rank them in terms of similarity to
Q. Our idea is to consider each tuple in the base set as a
(fully bound) selection query, and issue relaxations of these
selection queries to the database to find additional similar
tuples. For example, if one of the tuples in the base set is

Make=Toyota, Model=Camry, Price=10000, Year=2000

we can issue queries relaxing any of the attribute bindings
in this tuple. This idea leads to our first challenge:Which
relaxations will produce more similar tuples?Once we han-
dle this and decide on the relaxation queries, we can issue
them to the database and get additional tuples that are sim-
ilar to the tuples in the base set. However, unlike the base
tuples, these tuples may have varying levels of relevance to
the user. They thus need to berankedbefore being pre-
sented to the user. This leads to our second challenge:How
to compute the similarity between the query and an answer
tuple? Our problem is complicated by our interest in mak-
ing this similarity judgement not depend on user-supplied
distance metrics.

Contributions: In response to these challenges, we devel-
oped AIMQ - a domain and user independent imprecise
query answering system. Given an imprecise query, AIMQ
begins by deriving a precise query (called base query) that
is a specialization of the imprecise query. Then to extract
other relevant tuples from the database it derives a set of
precise queries by considering each answer tuple of the base
query asa relaxable selection query.3 Relaxation involves

2We assume a non-null resultset forQpr or one of its generalizations.
The attribute ordering heuristic we describe later in this paper is useful in
relaxingQpr also.

3The technique we use is similar to the pseudo-relevance feedback
technique used in IR systems.Pseudo-relevance feedback (also known as
local feedback or blind feedback) involves using topk retrieved documents

extracting tuples by identifying and executing new queries
obtained by reducing the constraints on an existing query.
However, randomly picking attributes to relax could gener-
ate a large number of tuples with low relevance. In theory,
the tuples closest to a tuple in the base set will have dif-
ferences in the attribute that least affects the binding values
of other attributes. Such relationships can be captured by
approximate functional dependencies(AFDs). Therefore,
AIMQ makes use of AFDs between attributes to determine
the degree to which a change in the value of an attribute af-
fects other attributes. Using the mined attribute dependency
information AIMQ obtains a heuristic to guide the query
relaxation process. To the best of our knowledge, there is
no prior work that automatically learns attribute importance
measures (required for efficient query relaxation). Hence,
the first contributionof AIMQ is a domain and user inde-
pendent approach for learning attribute importance. The tu-
ples obtained after relaxation must be ranked in terms of
their similarity to the query. While we can by default use a
Lp distance metric such as Euclidean distance to capture
similarity between numerical values, no such widely ac-
cepted measure exists for categorical attributes. Therefore,
thesecond contributionof this paper (and AIMQ system) is
an association based domain and user independent approach
for estimating similarity between values binding categorical
attributes.

Organization: In the next section, Section 2, we list related
research efforts. An overview of our approach is given in
Section 3. Section 4 explains the AFD based attribute order-
ing heuristic we developed. Section 5 describes our domain
independent approach for estimating the similarity among
values binding categorical attributes. Section 6 presents
evaluation results over two real-life databases, Yahoo Au-
tos and Census data, showing the robustness, efficiency of
our algorithms and the high relevance of the suggested an-
swers. We summarize our contributions in Section 7.

2 Related Work

Information systems based on the theory of fuzzy
sets [15] were the earliest to attempt answering queries
with imprecise constraints. The WHIRL [4] system pro-
vides ranked answers by converting the attribute values in
the database to vectors of text and ranking them using the
vector space model. In [16], Motro extends a conventional
database system by adding asimilar-to operator that uses
distance metrics given by an expert to answer vague queries.
Binderberger [20] investigates methods to extend database
systems to support similarity search and query refinement
over arbitrary abstract data types. In [7], Goldman et al pro-
pose to provide ranked answers to queries over Web data-
bases but require users to provide additional guidance in

to form a new query to extract more relevant results.

Figure 1. AIMQ system architecture

deciding the similarity. However, [20] requires changing
the data models and operators of the underlying database
while [7] requires the database to be represented as a graph.
In contrast, our solution provides ranked results without re-
organizing the underlying database and thus is easier to im-
plement over any database. A recent work in query opti-
mization [12] also learns approximate functional dependen-
cies from the data but uses it to identify attribute sets for
which to remember statistics. In contrast, we use it for cap-
turing semantic patterns from the data.

The problem of answering imprecise queries is related
to three other problems. They are (1)Empty answerset
problem- where the given query has no answers and needs
to the relaxed. In [17], Muslea focuses on solving the
empty answerset problem by learning binding values and
patterns likely to generate non-null resultsets. Coopera-
tive query answering approaches have also looked at solv-
ing this problem by identifying generalizations that will re-
turn a non-null result [6]. (2)Structured query relaxation
- where a query is relaxed using only the syntactical infor-
mation about the query. Such an approach is often used in
XML query relaxation e.g. [21]. (3)Keyword queries in
databases- Recent research efforts [2, 10] have looked at
supporting keyword search style querying over databases.
These approaches only return tuples containing at least one
keyword appearing in the query. The results are then ranked
using a notion of popularity captured by thelinks. The im-
precise query answering problem differs from the first prob-
lem in that we are not interested in just returning some an-
swers but those that are likely to be relevant to the user.
It differs from the second and third problems as we con-
sider the semantic relaxations rather than the purely syntac-
tic ones.

3 The AIMQ approach

The AIMQ system as illustrated in Figure 1 consists of
four subsystems: Data Collector, Dependency Miner, Sim-
ilarity Miner and the Query Engine. The Data Collec-
tor probes the databases to extract sample subsets of the
databases. Dependency Miner mines AFDs and approxi-

mate keys from the probed data and uses them to deter-
mine a dependence based importance ordering among the
attributes. This ordering is used by the Query Engine for
efficient query relaxation and by the Similarity Miner to as-
sign weights to similarity over an during ranking. The Simi-
larity Miner uses an association based similarity mining ap-
proach to estimate similarities between categorical values.
Figure 2 shows a flow graph of our approach for answering
an imprecise query.

3.1 The Problem

Given a conjunctive queryQ over an autonomous Web
database projecting the relationR, find all tuples ofR that
show similarity toQ above a thresholdTsim ∈ (0, 1).
Specifically,

Ans(Q) ={x|x ∈ R, Similarity(Q,x)> Tsim}
Constraints: (1) R supports the boolean query processing
model (i.e. a tuple either satisfies or does not satisfy a
query). (2) The answers toQ must be determined with-
out altering the data model or requiring additional guidance
from users.2

3.2 Finding Relevant Answers

Imprecise Query: A user query that requires a close but
not necessarily exact match is an imprecise query. Answers
to such a query must be ranked according to their close-
ness/similarity to the query constraints. For example, the
query Q:- CarDB(Make like Ford)is an imprecise query,
the answers to which must have the attributeMakebound
by a valuesimilar to Ford.

Our proposed approach for answering an imprecise se-
lection query over a database is given in Algorithm 1. Given
an imprecise query Q to be executed over relation R, the
threshold of similarityTsim and the attribute relaxation or-
der Ârelax (derived using Algorithm 2 in Section 4), we
begin by mapping the imprecise query Q to a precise query
Qpr having a non-null answerset (Step1). The set of an-
swers for the mapped precise query forms thebase setAbs.
By extracting tuples having similarity above a predefined

Figure 2. FlowGraph of AIMQ’s query answering approach

Algorithm 1 Finding Relevant Answers

Require: Q, R,Ârelax, Tsim

1: Let Qpr = {Map(Q)|Abs = Qpr(R), |Abs| > 0}
2: ∀ t ∈ Abs

3: Qrel = CreateQueries(t,̂Arelax)
4: ∀ q ∈ Qrel

5: Arel = q(R)
6: ∀ t′ ∈ Arel

7: if Sim(t, t′) > Tsim

8: Aes = Aes

⋃
t′

9: Return Top-k(Aes).

threshold,Tsim, to the tuples inAbs we can get a larger
subset of potential answers calledextended set(Aes). To
ensure more relevant tuples are retrieved after relaxation,
we use the Algorithm 2 to determine an attribute relaxation
order Ârelax. Using Ârelax, we generate a set of precise
queriesQrel from each tuple inAbs (Step 3). Executing a
queryq ∈ Qrel over R will give us a set of tuples,Arel,
that are relevant to the corresponding tuplet ∈ Abs (Step
5). Identifying possibly relevant answers only solves part
of the problem since we must now rank the tuples in terms
of the similarity they show to the tuplet. Therefore we
use the query-tuple similarity estimation functionSimde-
fined in Section 5 to measure the similarity of each tuple
t′ ∈ Arel to the tuplet ∈ Abs (Step 7). Only ift′ shows
similarity above the thresholdTsim do we add it to the set of
relevant answersAes for Q (Step 8). Only the top-k4 tuples
(in terms of similarity to Q) are shown to the user.

4 Attribute Ordering using AFDs

We estimate the importance of an attribute by learning
AFDs from a sample of the database.

Approximate Functional Dependency (AFD):The func-
tional dependencyX → A over relationr is anapproximate
functional dependencyif it does not hold over a small frac-
tion of the tuples. Specifically,X → A is an approximate
functional dependency if and only iferror(X → A) ≤
Terr, where the error thresholdTerr ∈ (0, 1) and the error

4Algorithm 1 assumes that similarity thresholdTsim and the number
of tuples (k) to be returned to the user are tuned by the systemdesigners.

is measured as a ratio of the tuples that violate the depen-
dency to the total number of tuples inr.

Approximate Key (AKey): An attribute setX ⊂ R is a
key over relationr if no two distinct tuples inr agree onX.
However, if the uniqueness ofX does not hold over a small
fraction of tuples inr, thenX is considered anapproximate
key. Specifically,X is an approximate key iferror(X) ≤
Terr, whereTerr ∈ (0, 1) anderror(X) is measured as the
minimum fraction of tuples that need to be removed from
relationr for X to be a key.

Several authors [14, 13, 5] have proposed various mea-
sures to approximate the functional dependencies and keys
that hold in a database. Among them, theg3 measure pro-
posed by Kivinen and Mannila [13], is widely accepted.
The g3 measure is defined as the ratio of minimum num-
ber of tuples that need be removed from relationR to make
X → Y a functional dependency to the total number of tu-
ples inR. This definition is consistent with our definition of
approximate dependencies and keys given above. Hence we
useTANE[11], the algorithm developed by Huhtala et al for
efficiently discovering AFDs and approximate keys whose
g3 approximation measure is below a given error threshold.
We mine the AFDs and keys using a subset of the database
extracted by probing.

Attribute Relaxation Order: Our solution for answering
an imprecise query requires us to generate new selection
queries by relaxing the constraints of the tuples in the base
setAbs. The underlying motivation there is to identify tu-
ples that are closest to some tuplet ∈ Abs. In theory the
tuples most similar tot will have differences only in the
least important attribute. Therefore the first attribute tobe
relaxed must be theleast important attribute- an attribute
whose binding value, when changed, has minimal effect on
values binding other attributes.

Identifying the least important attribute necessitates an
ordering of the attributes in terms of their dependence on
each other. A simple solution is to make a dependence
graph between attributes and perform a topological sort
over the graph. Functional dependencies can be used to
derive the attribute dependence graph that we need. But,
full functional dependencies (i.e. with100% support) be-
tween all pairs of attributes (or sets encompassing all at-
tributes) are often not available. Therefore we use approxi-
mate functional dependencies (AFDs) between attributes to

develop the attribute dependence graph with attributes as
nodes and the relations between them as weighted directed
edges. However, the graph so developed often is strongly
connected and hence contains cycles thereby making it im-
possible to do a topological sort over it. Constructing a
DAG by removing all edges forming a cycle will result in
much loss of information.

We therefore propose an alternate approach to break the
cycle. We partition the attribute set intodependentandde-
ciding sets, with the criteria being each member of a given
group either depends or decides at least one member of the
other group. A topological sort of members in each subset
can be done by estimating how dependent/deciding they are
with respect to other attributes. Then by relaxing all mem-
bers in the dependent group ahead of those in the deciding
group we can ensure that the least important attribute is re-
laxed first. We use the approximate key with highest sup-
port to partition the attribute set. All attributes formingthe
approximate key become members of thedeciding setwhile
the remaining attributes form thedependent set.

Algorithm 2 Attribute Relaxation Order
Require: Relation R, Dataset r, Error thresholdTerr

1: SAFD={x|x ∈ GetAFDs(R,r),g3(x) < Terr}
2: SAK={x|x ∈ GetAKeys(R,r),g3(x) < Terr}
3: AK={k|k ∈ SAK , ∀k′ ∈ SAK support(k)≥ sup-

port(k’)}
4: AK = {k|k ∈ R − AK}
5: ∀ k ∈ AK

6: Wtdecides(k)=
∑ support(Â→k′)

size(Â)

wherek ∈ Â ⊂ R, k′ ∈ R − Â

7: WtAK = WtAK

⋃
[k,Wtdecides(k)]

8: ∀ j ∈ AK

9: Wtdepends(j) =
∑ support(Â→j)

size(Â)
whereÂ ⊂ R

10: WtAK = WtAK

⋃
[j,Wtdepends(j)]

11: Return [Sort(WtAK), Sort(WtAK)].

Given a database relation R and error thresholdTerr,
Algorithm 2 begins by extracting all possible AFDs and
approximate keys (AKeys). As mentioned earlier, we use
the TANE algorithm to extract AFDs and AKeys whoseg3

measures are belowTerr (Step 1,2). Next we identify the
approximate key with the highest support (or least error),
AK, to partition the attribute set into the deciding group
(attributes belonging toAK) and those that are dependent
onAK (belong toAK)(Step 3,4). Then for each attributek

in deciding group we sum all support values for each AFD
wherek belongs to the antecedent of the AFD (Step 5-7).
Similarly we measure the dependence weight for each at-
tributej belonging to the dependent group by summing up
the support of each AFD wherej is in the consequent (Step
8-10). The two sets are then sorted in ascending order and
a totally ordered set of attributes in terms of their impor-

tance (i.e. how deciding an attribute is) is returned (Step
11). Given the attribute order, we compute the weight to be
assigned to each attributek ∈ WtAK as

Wimp(k) =
RelaxOrder(k)

count(Attributes(R))
×

Wtdecides(k)∑
Wtdecides

where RelaxOrder returns the position at whichk will be
relaxed. The position ranges from1 for least important
attribute tocount(Attributes(R))for the most important at-
tribute. By usingWtdepends instead ofWtdecides we can
compute importance weights∀k ∈ WtAK .

The relaxation order we produce using Algorithm 2
only provides the order for relaxing a single attribute of
the query at a time. Given the single attribute ordering,
we greedily generate multi-attribute relaxation assuming
the multi-attribute ordering strictly follows the single at-
tribute ordering. For example, if{a1, a3, a4, a2} is the1-
attribute relaxation order, then the2-attribute order will be
{a1a3, a1a4, a1a2, a3a4, a3a2, a4a2}. The3-attribute order
will be a cartesian product of1 and2-attribute orders and so
on.

5 Query-Tuple Similarity Estimation

We measure the similarity between an imprecise query
Q and an answer tuplet as

Sim(Q, t) =

n∑

i=1

Wimp(Ai) ×






V Sim(Q.Ai, t.Ai)
if Domain(Ai) = Categorical

1 − Q.Ai−t.Ai

Q.Ai

if Domain(Ai) = Numerical

wheren = Count(boundattributes(Q)), Wimp (
∑n

i=1
Wimp = 1) is the importance weight of each attribute, and
VSimmeasures the similarity between the categorical val-
ues as explained below. If the numeric distances computed
using Q.Ai−t.Ai

Q.Ai
> 1, we assume the distance to be1 to

maintain a lowerbound of0 for numeric similarity.

5.1 Categorical Value Similarity

The similarity between two values binding a categorical
attribute,VSim, is measured as the percentage of common
Attribute-Value pairs(AV-pairs)that are associated to them.
An AV-pair consists of a distinct combination of a categor-
ical attribute and a value binding the attribute.Make=Ford
is an example of an AV-pair.

We consider two values as being associated if they occur
in the same tuple. Two AV-pairs are associated if their val-
ues are associated. The similarity between two AV-pairs can
be measured as the percentage of associated AV-pairs com-
mon to them. More specifically, given a categorical value,
all the AV-pairs associated to the value can be seen as the

features describing the value. Consequently, the similarity
between two values can be estimated by the commonality in
the features (AV-pairs) describing them. For example, given
tuplet ={Ford, Focus, 15k, 2002}, the AV-pairMake=Ford
is associated to the AV-pairsModel=Focus, Price=15kand
Year=2002.

5.2 Estimating Value Similarity

Model Focus:5, ZX2:7, F150:8 ...
Mileage 10k-15k:3, 20k-25k:5, ..
Price 1k-5k:5, 15k-20k:3, ..
Color White:5, Black:5, ...
Year 2000:6, 1999:5,

Table 1. Supertuple for Make=‘Ford’

An AV-pair can be visualized as a selection query that
binds only a single attribute. By issuing such a query over
the extracted database we can identify a set of tuples all con-
taining the AV-pair. We represent the answerset containing
each AV-pair as a structure called thesupertuple. The su-
pertuple contains a bag of keywords for each attribute in the
relation not bound by the AV-pair. Table 1 shows the super-
tuple forMake=Fordover the relation CarDB as a2-column
tabular structure. To represent a bag of keywords we extend
the semantics of a set of keywords by associating an occur-
rence count for each member of the set. Thus for attribute
Color in Table 1, we seeWhitewith an occurrence count of
five, suggesting that there are fiveWhitecoloredFord cars
in the database that satisfy the AV-pair query.

We measure the similarity between two AV-pairs as the
similarity shown by their supertuples. The supertuples con-
tain bags of keywords for each attribute in the relation.
Hence we useJaccard Coefficient [9, 3] with bag semantics
to determine the similarity between two supertuples. Unlike
pure text documents, supertuples would rarely share key-
words across attributes. Moreover all attributes (features)
may not be equally important for deciding the similarity be-
tween two categorical values. For example, given two cars,
their prices may have more importance than their color in
deciding the similarity between them. Hence, given the an-
swersets for an AV-pair, we generate bags for each attribute
in the corresponding supertuple. The value similarity is then
computed as a weighted sum of the attribute bag similari-
ties. Calculating the similarity in this manner allows us to
vary the importance ascribed to different attributes. Thus,
similarity between two categorical values is calculated as

VSim(C1, C2) =
∑m

i=1 Wimp(Ai) × SimJ(C1.Ai, C2.Ai)

whereC1, C2 are supertuples withm attributes,Ai is the
bag corresponding to theith attribute,Wimp(Ai) is the im-
portance weight ofAi andSimJ is the Jaccard Coefficient
and is computed asSimJ(A,B)= |A∩B|

|A∪B| .

6 Evaluation

In this section we present evaluation results showing the
efficiency and effectiveness of the AIMQ system in answer-
ing imprecise queries. We used two real-life databases:- (1)
the online used car databaseYahoo Autos5 and (2) theCen-
sus Datasetfrom UCI Machine Learning Repository6, to
evaluate our system.

6.1 Experimental Setup

Databases:We set up a MySQL based used car search sys-
tem that projects the relationCarDB(Make, Model, Year,
Price, Mileage, Location, Color)and populated it using
100, 000 tuples extracted fromYahoo Autos. We con-
sidered the attributesMake, Model, Year, Locationand
Color in the relation CarDB as being categorical in na-
ture. The Census database we used projected the rela-
tion CensusDB(Age, Workclass, Demographic-weight, Ed-
ucation, Marital-Status, Occupation, Relationship, Race,
Sex, Capital-gain, Capital-loss, Hours-per-week, Native-
Country)and was populated with45, 000 tuples provided
by theCensus dataset. Age, Demographic-weight, Capital-
gain, Capital-lossandHours-per-weekwere numeric (con-
tinuous valued) attributes and the remaining were categori-
cal.
Implemented Algorithms: We designed two query relax-
ation algorithmsGuidedRelaxand RandomRelaxfor cre-
ating selection queries by relaxing the tuples in the base
set. GuidedRelaxmakes use of the AFDs and approximate
keys and decides a relaxation scheme as described in Al-
gorithm 2. TheRandomRelaxmimics the random process
by which users would relax queries by arbitrarily picking
attributes to relax.

To compare the relevance of answers we provide, we
also set up another query answering system that uses the
ROCK [8] clustering algorithm to cluster all the tuples in
the dataset and then uses these clusters to determine sim-
ilar tuples. We chose ROCK to compare as it is also a
domain and user-independent solution like AIMQ. ROCK7

differs from AIMQ in the way it identifies tuples similar to
a tuple in the base set. ROCK’s computational complexity
is O(n3), wheren is the number of tuples in the dataset.
In contrast,AIMQ’s complexity is O(m × k2) wherem is
the number of categorical attributes,k is the average num-
ber of distinct values binding each categorical attribute and
m < k < n. The pre-processing times for AIMQ and
ROCK shown in Table 2 do verify our claims. The over-
all processing time required by AIMQ is significantly lesser
than that for ROCK. Both AIMQ and ROCK were devel-

5Available at http://autos.yahoo.com.
6Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.
7Henceforth, we use ROCK to refer to the query answering system

using ROCK.

CarDB (25k) CensusDB (45k)
AIMQ
SuperTuple Generation 3 min 4 min
Similarity Estimation 15 min 20 min

ROCK
Link Computation (2k) 20 min 35 min
Initial Clustering (2k) 45 min 86 min
Data Labeling 30 min 50 min

Table 2. Offline Computation Time

oped using Java. The evaluations were conducted on a Win-
dows based system with1.5GHz CPU and 768MB RAM.

6.2 Robustness over Sampling

In order to learn the attribute importance and value sim-
ilarities , we need to first collect a representative sample of
the data stored in the sources. Since the sources are au-
tonomous, this will involveprobing the sources with a set
of probing queries.

Issues raised by Sampling:We note at the outset that
the details of the dependency mining and value similarity
estimation tasks do not depend on how the probing queries
are selected. However, since we are approximating the
model of dependencies and similarities by using the sam-
ple, we may end up learning dependencies and similarities
that do not reflect the actual distribution of the database.
Intuitively, the larger the sample obtained, the better our
approximation of the database. The loss of accuracy due
to sampling is not a critical issue for us as it is therela-
tive rather than theabsolutevalues of the dependencies and
value similarities that are more important in query relax-
ation and result ranking.

In this paper, we select the probing queries from a set of
spanning queries8 i.e. queries which together cover all the
tuples stored in the data sources (the second approach can
be used for refining statistics later).

Below we present results of evaluations done to test the
robustness of our learning algorithms over various sample
sizes. The results will show that while the absolute support
for the AFDs and approximate keys does vary over differ-
ent data samples, their relative ordering is not considerably
affected.

Learning Attribute Importance: Using simple random
sampling without replacement we constructed three subsets
of CarDB containing15k, 25k and50k tuples. Then we
mined AFDs and approximate keys from each subset and
also from the100k tuples of CarDB. Using only the AFDs
we computed the dependence of each attribute on all other
attributes in the relation (seeWtdepends in Algorithm 2).

8An alternate approach is to pick the set of probe queries froma set
of actual queries that were directed at the system over a period of time.
Although more sensitive to the actual queries, such an approach has a
chicken-and-egg problem as no statistics can be learned until the system
has processed a sufficient number of user queries.

Figure 3 shows the dependence of remaining attributes in
CarDB. We can see thatModelis the least dependent among
the dependent attributes whileMakeis the most dependent.
The dependence values are highest when estimated over the
100k sample and lowest when estimated over15k sample.
This variation (due to sampling) is expected, however the
change in the dataset size does not affect the relative or-
dering of the attributes and therefore will not impact our
attribute ordering approach.

Figure 4 compares the quality of approximate keys
mined from the sample datasets to that mined over the en-
tire CarDB database (100k). Quality of an approximate key
is defined as the ratio of support over size (in terms of at-
tributes) of the key. The quality metric is designed to give
preference to shorter keys. In Figure 4, the approximate
keys are arranged in increasing order of their quality. Of
the26 keys found in database only4 low-quality keys that
would not have been used in query relaxation are absent in
the sampled datasets. The approximate key with the high-
est quality in the database also has the highest quality in all
the sampled datasets. Thus, even with the smallest sample
(15k) of the database we would have picked the right ap-
proximate key during the query relaxation process.

Figure 3. Robustness of Attribute Ordering

Figure 4. Robustness in mining Keys

Robust Similarity Estimation: We estimated value sim-
ilarities for the attributesMake, Model, Year, Locationand
Color as described in Section 5 using both the100k and25k

datasets. Time required for similarity estimation directly
depends on the number of AV-pairs extracted from the data-

Value Similar Values 25k 100k
Make=Kia Hyundai 0.17 0.17

Isuzu 0.15 0.15
Subaru 0.13 0.13

Model=Bronco Aerostrar 0.19 0.21
F-350 0 0.12
Econoline Van 0.11 0.11

Year=1985 1986 0.16 0.18
1984 0.13 0.14
1987 0.12 0.12

Table 3. Robust Similarity Estimation

Ford

Chevrolet

Toyota

Honda

Dodge

Nissan

B M W

0.25

0.16

0.11

0.15

0.12

0.22

Ford

Chevrolet

Toyota

Honda

Dodge

Nissan

B M W

0.25

0.16

0.11

0.15

0.12

0.22

Figure 5. Similarity Graph for Make=“Ford"

base and not on the size of the dataset. This is reflected in
Table 2 where the time required to estimate similarity over
45k dataset is similar to that of the25k dataset even though
the dataset size has doubled. Table 3 shows the top-3 values
similar to Make=Kia, Model=BroncoandYear=1985 that
we obtain from the100k and25k datasets. Even though the
actual similarity values are lower for the25k dataset the rel-
ative ordering among values is maintained. Similar results
were also seen for other AV-pairs. We reiterate the fact that
it is therelativeand not theabsolutevalue of similarity (and
attribute importance) that is crucial in providing ranked an-
swers.

Figure 5 provides a graphical representation of the es-
timated similarity between some of the values binding at-
tribute Make. The valuesFord and Chevroletshow high
similarity while BMW is not connected toFord as the simi-
larity is below threshold. We found these results to be intu-
itively reasonable and feel our approach is able to efficiently
determine the distances between categorical values. Laterin
the section we will provide results of a user study that show
our similarity measures as being acceptable to the users.

6.3 Efficient query relaxation

To verify the efficiency of the query relaxation technique
we proposed in Section 4, we setup a test scenario using
the CarDB database and a set of10 randomly picked tuples.
For each of these tuples our aim was to extract20 tuples
from CarDB that had similarity above some thresholdTsim

(0.5 ≤ Tsim < 1). The efficiency of our relaxation algo-
rithms is measured as Work

RelevantTuple
= |TExtracted|

|TRelevant|
, where

TExtracted gives the total tuples extracted whileTRelevant

Figure 6. Efficiency of GuidedRelax

Figure 7. Efficiency of RandomRelax

is the number of extracted tuples showed similarity above
the thresholdTsim. Specifically, Work

RelevantTuple
is a measure

of the average number of tuples that an user would have to
look at before finding a relevant tuple.

The graphs in figures 6 and 7 show the average num-
ber of tuples that had to be extracted byGuidedRelaxand
RandomRelaxrespectively to identify a relevant tuple for
the query. Intuitively the larger the expected similarity,the
more the work required to identify a relevant tuple. While
both algorithms do follow this intuition, we note that for
higher thresholdsRandomRelax(Figure 7) ends up extract-
ing hundreds of tuples before finding a relevant tuple.Guid-
edRelax(Figure 6) is much more resilient and generally ex-
tracts4 tuples before identifying a relevant tuple.

6.4 User Study using CarDB

Figure 8. Average MRR over CarDB

The results presented so far only verify the robustness

and efficiency of the imprecise query answering model we
propose. However these results do not show that the at-
tribute importance and similarity relations we capture are
acceptable to the user. Hence, in order to verify the correct-
ness of the attribute and value relationships we learn and
use, we setup a small user study over the used car database
CarDB. We randomly picked14 tuples from the100k tuples
in CarDB to form the query set. Next, using both theRan-
domRelaxandGuidedRelaxmethods, we identified10 most
similar tuples for each of these14 queries. We also chose
10 answers using ROCK. We used the25k dataset to learn
the attribute importance weights used byGuidedRelax. The
categorical value similarities were also estimated using the
25k sample dataset. Even though in the previous section we
presentedRandomRelaxas almost a “strawman algorithm”,
it is not true here. SinceRandomRelaxlooks at a larger per-
centage of tuples in the database before returning the similar
answers it is likely that it can obtain a larger number of rel-
evant answers. Moreover, bothRandomRelaxand ROCK
give equal importance to all the attributes and only differ
in the similarity estimation model they use. The14 queries
and the three sets of ranked answers were given to8 grad-
uate student9 volunteers. To keep the feedback unbiased,
information about the approach generating the answers was
withheld from the users. Users were asked to re-order the
answers according to their notion of relevance (similarity).
Tuples that seemed completely irrelevant were to be given
a rank of zero.

Results of user study: We used MRR (mean recipro-
cal rank) [22], the metric for relevance estimation used in
TREC QA evaluations, to compare the relevance of the an-
swers provided byRandomRelaxand GuidedRelax. The
reciprocal rank (RR) of a query, Q, is the reciprocal of the
position at which the single correct answer was found i.e.
if correct answer is at position 1: RR(Q)=1, RR(Q)=1

2 for
position 2 and so on. If no answer is correct then RR(Q)=0.
MRR is the average of the reciprocal rank of each question
in a set of questions. While TREC QA evaluations assume
unique answer for each query, we assume a unique answer
for each of the top-10 answers of a query. Hence, we re-
defined MRR as

MRR(Q)=Avg
(

1
|UserRank(ti)−SystemRank(ti)|+1

)

whereti is ith ranked answer given to the query. Figure 8
shows the average MRR ascribed to both the query relax-
ation approaches.GuidedRelaxhas higher MRR thanRan-
domRelaxand ROCK. Even thoughGuidedRelaxlooks at
fewer tuples of the database, it is able to extract more rele-
vant answers thanRandomRelaxand ROCK. Thus, the at-
tribute ordering heuristic is able to closely approximate the
importance users ascribe to the various attributes of the re-
lation.

9Graduate students by virtue of their low salaries are all considered
experts in used cars.

6.5 Evaluating domain-independence of AIMQ

Figure 9. Accuracy over CensusDB

Evaluating the user study results given above in conjunc-
tion with those checking efficiency (in Section 6.3), we can
claim that AIMQ is efficiently able to provide ranked an-
swers to imprecise queries with high levels of user satisfac-
tion. However, the results do not provide conclusive evi-
dence of domain-independence. Hence, below we briefly
provide results over the Census database. Each tuple in the
database contains information that can be used to decide
whether the surveyed individual’s yearly income is ‘> 50k’
or ‘<= 50k’. A sample query over CensusDB could be

Q’:-CensusDB(Education like Bachelors, Hours-per-week like40)

Answering Q’ would require learning both the impor-
tance to be ascribed to each attribute and the similari-
ties between values binding the categorical attributes - two
tasks that are efficiently and accurately accomplished by
AIMQ. We began by using a sample of15k tuples of Cen-
susDB to learn the attribute dependencies and categorical
value similarities. AIMQ picked the approximate keyAge,
Demographic-Weight, Hours-per-weekas the best key and
used it to derive the relaxation order. Since tuples were pre-
classified, we can safely assume that tuples belonging to
same class are more similar. Therefore, we estimated the
relevance of AIMQ’s answers based on the number of an-
swers having identical class as the query. We used1000
tuples not appearing in the 15k sample as queries to test
the system. The queries were equally distributed over the
classes. For each query, using bothGuidedRelaxand ROCK
algorithms we identified thefirst 10 tuplesthat had simi-
larity above0.4. Figure 9 compares the average classifi-
cation accuracy of thetop-k (wherek={10,5,3,1}) answers
given by AIMQ and ROCK. We can see that the accuracy
increases as we reduce the number of similar answers given
to each query. AIMQ comprehensively outperforms ROCK
in all the cases thereby further substantiating our claim that
AIMQ is a domain-independent solution and is applicable
over a multitude of domains.

7 Conclusion

In this paper we first motivated the need for supporting
imprecise queries over databases in a domain-independent
way. Then we presented AIMQ, a domain independent ap-
proach for answering imprecise queries over autonomous
databases. The efficiency and effectiveness of our system
has been evaluated over two real-life databases, Yahoo Au-
tos and Census database. We presented evaluation results
showing our approach is able to overcome inaccuracies that
arise due to sampling. We also presented results from a
preliminary user study showing the ability of AIMQ to ef-
ficiently provide ranked answers with high levels of user
satisfaction. To the best of our knowledge, AIMQ is the
only domain independent system currently available for an-
swering imprecise queries. It can be (and has been) imple-
mented without affecting the internals of a database thereby
showing that it could be easily implemented over any au-
tonomous Web database.

Approaches for estimating attribute importance can be
divided into two classes:- (1)data driven- where the at-
tribute importance is identified using correlations between
columns of database and (2)query driven- where the im-
portance of an attribute is decided by the frequency with
which it appears in a user query. But such approaches are
constrained by their need for user queries - an artifact thatis
not often available for new systems. However,query driven
approaches are able to exploit user interest when the query
workloads become available. Therefore, in [18] we answer
imprecise queries by using queries previously issued over
the system. Thedata drivenapproach AIMQ, presented in
this paper complements our solution in [18] by allowing us
to answer imprecise queries even in the absence of query
workloads.

Traditionally, IR systems have attempted to use rele-
vance feedback over results generated by a query to refine
the query. On similar lines, we plan to use relevance feed-
back to tune the importance weights assigned to an attribute.
Moreover, the feedback given can also be used to tune the
distance between values binding an attribute.

Acknowledgements: We thank Hasan Davalcu, Gautam
Das and Kevin Chang for helpful discussions and com-
ments. This work was supported by ECR A601, the ASU
Prop 301 grant toETI3 initiative.

References

[1] The Lowell Database Research Self Assessment. June 2003.

[2] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe,
Parag, and S. Sudarshan. BANKS: Browsing and Keyword
Searching in Relational Databases.In proceedings of VLDB,
2002.

[3] R. Baeza-Yates and B. Ribiero-Neto.Modern Information
Retrieval.Addison Wesley Longman Publishing, 1999.

[4] W. Cohen. Integration of Heterogeneous Databases without
Common Domains Using Queries based on Textual Similar-
ity. In proceedings of SIGMOD, pages 201–212, June 1998.

[5] M. Dalkilic and E. Robertson. Information Dependencies.In
proceedings of PODS, 2000.

[6] T. Gasterland. Cooperative Answering through Controlled
Query Relaxation.IEEE Expert, 1997.

[7] R. Goldman, N .Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity Search in Databases.In pro-
ceedings of VLDB, 1998.

[8] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust Clus-
tering Algorithm for Categorical Attributes.In proceedings
of ICDE, 1999.

[9] T. Haveliwala, A. Gionis, D. Klein, and P Indyk. Evaluating
Strategies for Similarity Search on the Web.In proceedings
of WWW, Hawai, USA, May 2002.

[10] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
Search in Relational Databases.In proceedings of VLDB,
2002.

[11] Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. Effi-
cient Discovery of Functional and Approximate Dependen-
cies Using Partitions.In proceedings of ICDE, 1998.

[12] P. Haas P. Brown I.F Illyas, V. Markl and A. Aboulnaga.
CORDS: Automatic Discovery of Correlations and Soft Fun-
cional Dependencies.Sigmod, 2004.

[13] J. Kivinen and H. Mannila. Approximate Dependency Infer-
ence from Relations.Theoretical Computer Science, 1995.

[14] T. Lee. An Iynformation-theoretic Analysis of relational
databases-part I: Data Dependencies and Information Metric.
IEEE Transactions on Software Engineering SE-13, October
1987.

[15] J.M. Morrissey. Imprecise Information and Uncertainty in
Information Systems. ACM Transactions on Information
Systems, 8:159–180, April 1990.

[16] A. Motro. Vague: A user interface to relational databases
that permits vague queries.ACM Transactions on Office In-
formation Systems, 6(3):187–214, 1998.

[17] I. Muslea. Machine Learning for Online Query Relaxation.
KDD, 2004.

[18] U. Nambiar and S. Kambhampati. Answering Imprecise
Database Queries: A Novel Approach.In proceedings of
WIDM, 2003.

[19] U. Nambiar and S. Kambhampati. Answering Imprecise
Queries over Web Databases.VLDB Demonstration, August,
2005.

[20] Micheal Ortega-Binderberger.Integrating Similarity Based
Retrieval and Query Refinement in Databases.PhD thesis,
Ph.D Dissertation, UIUC, 2003.

[21] S. Cho S. Amer-Yahia and D. Srivastava. Tree pattern relax-
ation. EDBT, 2002.

[22] E. Voorhees. The TREC-8 Question Answering Track Re-
port. TREC 8, November 17-19, 1999.

