Planning Graph Heuristics for Selecting Objectives
in Over-subscription Planning Problems

Romeo Sanchez Nigenda and Subbarao Kambhampati
Department of Computer Science and Engineering
Ira A. FULTON School of Engineering
Arizona State University, Tempe AZ, 85287-5406
{rsanchez, rag@asu.edu

Abstract

Partial Satisfaction or Over-subscription Planning problems
arise in many real world applications. Applications in which
the planning agent does not have enough resources to accom-
plish all of their given goals, requiring plans that satisfy only

a subset of them. Solving such partial satisfaction planning
(PSP) problems poses several challenges, from new models
for handling plan quality to efficient heuristics for selecting
the most beneficial goals. In this paper, we extend plan-
ning graph-based reachability heuristics with mutex analysis
to overcome complex goal interactions in PSP problems. We
start by describing one of the most general PSP problems, the
PSP NeT BENEFIT problem, where actions have execution
costs and goals have utilities. Then, we pregdtit/it,* our
heuristic approach augmented with a multiple goal set selec-
tion process and mutex analysis. Our empirical studies show
that AltWit is able to generate the most beneficial solutions,
while incurring only a small fraction of the cost of other PSP
approaches.

Introduction

Most planners handle goals of attainment, where the ob-
jective is to find a sequence of actions that transforms a
given initial statel to some goal stat&’, whereG =

g1 AN g2 A ... \ g, IS & conjunctive list of goal fluents. Plan

the best “net benefit” (i.e., cumulative utility minus curaul
tive cost).

Despite the ubiquity of PSP problems, surprisingly lit-
tle attention has been paid to the development of effective
approaches for solving them. Some preliminary work by
Smith (2004) proposed a planner for over-subscribed plan-
ning problems, in which an abstract planning problem (e.g.
Orienteering graph) is built to select the subset of goats an
orders to achieve them. Smith (2004) speculated that the
heuristic distance estimates derived from a planning graph
data structure are not particularly suitable for PSP proble
given that they make the assumption that goals are inde-
pendent, without solving the problem of interactions among
them.

In this paper, we show that in fact although planning graph
estimates for PSP problems are not very accurate in the pres-
ence of complex goal interactions, they can also be extended
to overcome such problems. In particular, our approach
namedAltWIt that builds on theltAlt?* planner (van den
Briel et al. 2004), involves a sophisticated multiple goal set
selection process augmented with mutex analysis in order to
solve complex PSP problems. The goal set selection process
of AltWit considers multiple combinations of goals and as-
signs penalty costs based on mutex analysis when interac-
tions are found. Once a subset of goal conjuncts is selected,

success for these planning problems is measured in terms ofthey are solved by a regression search planner with cost sen-

whether or not all the conjuncts @ are achieved. However,

in many real world scenarios, the agent may only be able to
partially satisfyGG, because of subgoal interactions, or lack-
ing of resources and time. Effective handling of partial sat
isfaction planning (PSP) problems poses several chaltenge
including the problem of designing efficient goal selection

heuristics, and an added emphasis on the need to differen-

tiate between feasible and optimal plans. In this paper, we

sitive planning graph heuristics.

The rest of this paper is organized as follows. In the
next section, we provide a brief description of the PSPrN
BENEFIT problem. After that, we revievAltAlt?* , which
forms the basis for our current approach, emphasizing its
goals set selection algorithm and cost-sensitive realityabi
heuristics. Then, in the next part of the paper, we introduce
our proposed approachJtWit, pointing out the limitations

focus on one of the most general PSP problems, called PSP of AJtAlt?s with some clarifying examples, and the exten-

NET BENEFIT. In this problem, each goal conjunct has a
fixed utility attached to it, and each ground action has a fixed
cost associated with it. The objective is to find a plan with

*We thank the ICAPS reviewers for many helpful comments.
This research is supported in part by the NSF grant 11S-0308139.
Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A Little of This and a Whole Lot of That

sions to overcome them. We then present a set of complex
PSP problems and an empirical study on them that compares
the effectiveness olltWIt with respect to its predecessor,
and Sap&® (van den Brielet al. 2004), another planning-
graph based heuristic PSP planner. We also show some il-
lustrative data on an optimal MDP and IP approach to PSP
NET BENEFITto assess the quality of the solutions returned
by AltWit. Finally, we end with a discussion of the related

| PLAN EXISTENCE |

<
'~
~eo
~
Seeo

~~~~~

-
Prie
-
-
-
.-

< -
~—. Lo
~ -
s~ -

- -
.~ "
~ -

-~ -
~le

| PSP NET BENEFIT |

| PSP UTILI.TY CosT |

Figure 1: Hierarchical overview of several types of complet
and partial satisfaction planning problems.

work and conclusions.

Preliminaries: PSP NET BENEFIT definition

The following notation will be usedF is a finite set of flu-
ents andA is a finite set of actions, where each action con-
sists of a list of preconditions and a list of add and delete
effects./ C F'is the set of fluents describing the initial state
andG C F'is the set of goal conjuncts. Hence we define
a planning problem as a tuple = (F, A, I,G). Figure 1
gives a taxonomic overview of several types of complete and
partial satisfaction planning problems. The problem of PSP
NET BENEFIT is a combination of the problem of finding
minimum cost plans (BaN CosT) and the problem of find-
ing plans with maximum utility (PSP tLITY), as a result

is one of the more general PSP problémmn the follow-

ing, we formally define the problem of finding a plan with
maximum net benefit:

Definition 1 (PSP Net Benefit:) Given a planning problem
P = (F,A,I,G)and, for each action a “cost” ¢ > 0 and,
for each goal specificatiorf € G a “utility” U ; > 0, and

a positive numbek. Is there a finite sequence of actions
A = (ay, ..., a,,) that starting from/ leads to a stateS that
has net beneflt_ ;. gy Ur — >-,eaCa = £?

Example 1: Figure 2 illustrates a small example from the
rover domain (Long & Fox 2003) to motivate the need for
partial satisfaction. In this problem, a rover that has &hd
on Mars needs to collect scientific data from some rock and
soil samples. Some waypoints have been identified on the
surface. Each waypoint has scientific samples. For exam-
ple, waypoints has a rock sample, whileaypoint, has

a soil sample. The rover needs to travel to a correspond-
ing waypoint to collect its samples. Each travel action has

2For a more comprehensive study on the complexity and taxon-
omy of PSP problems see (van den Beehl. 2004).

Figure 2: Rover domain problem

a cost associated to it. For example, the cost of traveling
from waypointy to waypoint, is given by G,qpei, , = 10.

In addition to thetravel, , actions, we have two more ac-
tions sample and comm to collect and communicate the
data respectively to the lander. To simplify our problem,
these actions have uniform costs independent of the loca-
tions where they take place. These costs are specified by
Csampleaara, = 5 aNd Commy,,,.,, = 4 Each sample
(or subgoal) has a utility attached to it. We have a utility
of U,oer, = 30 for the rock sample atvaypoints, and a
utility U, = 20 for a soil sample atvaypointy. The
goal of the rover is to find a travel plan that achieves the best
cost-utility tradeoff for collecting the samples. In this-e
ample, the best plan i® = {travelps , samplerock, 2,
COMMyock,,2,0, travelgyl, Samplerockl,lx COMMyrock,,1,0,
samplesoir, 1, cOMMsoi, 1,05 Which achieves the goals
rocks, rock; andsoily, and ignores the rest of the samples
atwaypoints andwaypoint, giving the net benefit 45.

Background: AltAlt?* Cost-based Heuristic
Search and Goal Selection

In this section, we introducAltAlt?* because it forms the
basis forAltWit, the new proposed algorithm that handles
complex goal interactionsAltAlt?* is a heuristic regres-
sion planner that can be seen as a variat/tAlt (Nguyen,
Kambhampati, & Sanchez 2002) equipped with cost sensi-
tive heuristics. An obvious, if naive, way of solving the PSP
NET BENEFIT problem with such a planner is to consider all
plans for the2” subsets of an-goalproblem, and see which

of them will wind up leading to the plan with the highest net
benefit. Since this is infeasibl@JtAlt?* uses a greedy ap-
proach to pick a goal subset up front. The greediness of the
approach is offset by considering the net benefit of covering
a goal not in isolation, but in the context of the potential(r
laxed) plan for handling the already selected goals. Once a
subset of goal conjuncts is selectedtAlt?* finds a plan



Action Tem%‘

Graphplan
Plan Extension Phase
(based on STAN)

4t

Cost-sensitive
Planning
Graph

Cost Propagation

Problem Spec

(Init, Goal statel\

Goal Set selection

Algorithm

7

Solution Plan

Figure 3:AltAltP* Architecture

10 Travely,

8 Travel,,

Figure 4: Cost function ofit(waypoint; )

oo otherwise;Va € A : C(a,0) = co. The propagation

that achieves such subset using its regression searcheengin ryles are as follows:

augmented with cost sensitive heuristics. This descriptio
can be seen in the overall architectureAsfAlt?* in Fig-
ure 3.

Given that the quality of the plans for PSP problems de-

pends on both the utility of the goals achieved and the cost

to achieve themAltAlt?* needs heuristic guidance that is
sensitive to both action cost and goal utility. Because only

o C(f, 1) =min{C(a,1)+ C,): f € Eff(a)}
e Max-prop:C(a,l) = max{C(f,l): f € Prec(a)}
e Sum-prop:C(a,l) = 3{C(f,1): f € Prec(a)}

The max-propagation rule will lead to an admissible
heuristic, while the sum-propagation rule does not. As-

the execution costs of the actions and the achievement costsume that we want to reachaypoint; in our rover ex-

of propositions in the initial state (zero cost) are knowe, w
need to docost-propagatiorfrom the initial state through

actions to estimate the cost to achieve other propositions,

ample. We can reach it directly fromaypointy, within
a unit of time, or we can travel throughaypoint, and
reach it within two steps. Figure 4 shows the cost function

especially the top level goals. We can see in Figure 3 that for propositionp; = At(waypoint,), which indicates that

AltAItP¢ is using the planning graph structure to compute
this cost information. This information over the planning
graph is the basis for heuristic estimationAftAlt?* , and

the earliest level to achievg, is ati = 1 with the low-
est cost of 10 (routewaypointy — waypointy). The
lowest cost to achieve, reduces to 8 at = 2 (route:

is also used to estimate the most beneficial subset of goals waypointy, — waypoints — waypoint,) for the leveled

upfront and guide the search in the planner. The cost sensi-

tive heuristics, as well as the goal set selection algorihen
described in more detail in the next sections.

Propagating cost as the basis for computing
heuristics

Following (Do & Kambhampati 2003), we use cost func-

tions to capture the way cost of achievement changes as the

graph gets expanded. In the following, we briefly review the
procedure.

The purpose of the cost-propagation process is to build
the cost functions’(f,1;) and C(a,!,) that estimate the
cheapest cost to achieve flughat levell; of the planning
graph, and the cost to execute actiomt levell,. At the
beginning { = 0), let S;,;: be the initial state and Cbe the
cost of actioms ther?: C(f,0) = 0if f € Sinie, CO(f,0)

3C, andC(a, 1) are different. Ifa = Travely; then G, is the
travel cost and”(a, 1) is the cost to achieve preconditionsoht
levell, which is the cost incurred to be atiypoint, atl.

planning graph.

There are many ways to terminate the cost-propagation
process (Do & Kambhampati 2003): We can stop when
all the goals are achievable, when the cost of all the goals
are stabilized (i.e. guaranteed not to decrease anymare), o
lookahead several steps after the goals are achieved. For
classical planning, we can also stop propagating cost when
the graphlevels-off (Nguyen, Kambhampati, & Sanchez
2002).

Cost-sensitive heuristics

After building the planning graph with cost information,
AltAltP* uses variations of the relaxed plan extraction
process (Hoffman & Nebel 2001; Nguyen, Kambhampati, &
Sanchez 2002) guided by the cost-functions to estimate thei
heuristic value&.(S) (Do & Kambhampati 2003). The basic
idea is to compute the cost of the relaxed plans in terms of
the costs of the actions comprising them, and use such costs
as heuristic estimates. The general relaxed plan extractio
process foAltAltP* works as follows:



1. Start from the goal se&t containing the top level goals,
remove a goa from G and select a lowest cost actiop
(indicated byC'(g, 1)) to supporty

2. RegressG over action a4, setting G =
Prec(ag)\Ef f(ay)

The process above continues recursively until each propo-
sitionq € G is also in the initial staté. This regression ac-
counts for the positive interactions in the stéteiven that
by subtracting the effects aef,, any other proposition that
is co-achieved whep is being supported is not counted in
the cost computation. The relaxed plan extraction proaedur
indirectly extracts a sequence of actioRs, which would
have achieved the sétfrom the initial statel if there were
no negative interactions. The summation of the costs of the
actionsa, € Rp can be used to estimate the cost to achieve
all goals inG, in summary we have:

Relax Cost Heuristic 1 hciqzc(S) = > C

G U

Procedure GoalSetSelectidr)
g < getBestBenefitialGoal(G);
if(g = NULL)
return Failure;
G —{g}G—G\g
R} « extractRelaxedPlan(G', D)
Birax « getUtil(G') — getCost(Rp);
Buax < Buax
while(Byax > 0A G # 0)
for(g e G\ G')
Gp «— G' U g,
Rp < ExtractRelaxedPlan(Gp, Rp)
By «— getUtil(Gp) — getCost(Rp);
if(Bg > Barax)
9" + g, Birax + Bg; Ry «— Rp;
else
Buyax < Bg — Byax
end for

achy 7 if(g* # NULL)
! ! * . * . * .
AltAlt?* Goal set selection algorithm G'— G U9 G Gy Buax — Biraxi
end while
return G';

The main idea of the goal set selection procedure in

AltAItPs is to incrementally construct a new partial goal

setG’ from the top level goal€s such that the goals con-

sidered for inclusion increase the final net benefit, usieg th

goals utilities and costs of achievement. The process is com

plicated by the fact that the net benefit offered by a goal

g depends on what other goals have already been selected subgoalg that maximizes the net benefit, updating the nec-

Specifically, while the utility of a goay remains constant,  essary values for the next iteration. This iterative proced

the expected cost of achieving it will depend upon the other stops as soon as the net benefit does not increase, or when

selected goals (and the actions that will anyway be needed to there are no more subgoals to add, returning the new goal

support them). To estimate the “residual cost” of a gpai subset’.

the context of a set of already selected g@#lswe compute ; - _

a relaxed pIarR_p fo_r supportingG’ + g, which is biz_:tsed/to s 0;?1,0;2 r:ur;rgglgl 'E);irip:i,clt{:,e ;i'ﬂ’lﬂ Czl;,b%(;ais 8@0%4}’

(re)gse the apﬂonsmthg rglaxed plap forsupportmgG. with final costsC(g,t) = {17,17,14,34,24} and utili-
Figure 5 gives a description of the goal set selection algo- (¢ vectors U= (20,30, 30, 30,20} respectively, where

rithm. The first block of instructions before the loop initia ~ , _ levelof f in thevpla7nnihg braph. Following’] our al-

izes our goal subs€t’,* and finds an initial relaxed plaR’ gorithm, our starting goal would be g; because it re-

for it using the procedurextractRelaxedPlad{’,(). Notice turns th,e biggest benefit (e.g. 30 - 14). TheH, is set

that two arguments are passed to the function. The first one to g3, and its initial relaxed plamR?, is compute'd. As-

is the current partial goal set from where the relaxed plan sumé that the initial relaxed plan foSnd}@, = {travelo.»

will be computed. The second parameter is the current re- SAMPleroet,» COMMyouy 2.0}. We proceed to computé ’the

laxed plan that will be u_sed as a guidance for co_mputing the past net benefit using?’ , which in our example would
new relaxed plan. The idea is that we want to bias the com- . Bix = 30— (5 +P5 +4) = 16. Having found our

utation of the new relaxed plan to re-use the actions in the ; ... ; ; ; o
Pelaxed lan from the revioFl)Js iteration. Having found the initial values, we continue lterating on th_e remaining goal
Lo P , ep e 9 G = {91,92,94,95}. On the first iteration we compute
initial subsetG’ and its relaxed plark?, we compute the four different set of values, they are: @p, = {g; U g1}
current best net benefity, , , by subtracting the costs of = _ " N ’

. . " p, = {travels 1, samplesyir,, commseir, 2.0, travely o,
the actions in the relaxed plaR}, from the total utility of samplerock comm. hoob andB, = 94 (i) Gp "~
the goals inZ’. B}, 4 Will work as a threshold for our iter- {g5U T}Océ' -~ {t;;‘;ezl’ am leg“ o
ative procedure. In other words, we would continue adding trgsfuelg2 ,sapﬁi_le Cf)%m p Toc}’fléndB Tocﬁl’%ij
subgoaly € G to G’ only if the overall net benefiB}, , rove0,2, SGMPCrockss rock2;2,0 | gpzl = 9%
increases. We consider one subgoal at a time, always com- () G, = {gs U 94%' Rp, = l{t”we 0,3, SAMPLErocky,
puting the benefit added by the subgoal in terms of the cost Comngock&?{ trg’e 072’d5a’_np gockz' fommwckz%‘)}’
of its relaxed plarR » and goal utilityB,. We then pick the 9ps , and (v) Gp, = {g3 U g5},

p, = {travely s, samplesoir,, commeseir, 2.0, travelp o,
samplerocky s COMMpocky,2,0 } With By, = 12. Notice then
that our net benefiB}, , v could be improved most if we

End GoalSetSelectign

Figure 5: Goal set selection algorithm.

“get Best BenefitialGoal(G) returns the subgoal with the
best benefit, Y — C(g, 1) tradeoff



Example 2: Consider the modified Rover example from
Figure 6. This time, we have added extra goals, and dif-
ferent cost-utility metrics to our problem. Notice also
that the traversal of the paths has changed. For exam-
ple, we can travel fromvaypointy to waypoint;, but we

can not do the reverse. Our top-level goals &g =
soily, g2 = rocky, g3 = rocks, g4 = rocks,

gs = soils, g = rocky, g7 = soily}, with final
costsC(g,t) = {19,19,14,59,59, 29,29} and utilities U

= {20, 30, 40, 50, 50, 20, 20} respectively. Following this
example, the goal set selection algorithm would choose goal
gs as its initial subgoal because it returns the highest net
benefit (e.g. 40 - 14). Notice this time that considering the
most promising subgoal is not the best option. Once the
rover reachewaypoint,, it can not achieve any other sub-
goal. In fact, there is a plaR for this problem with a bigger
net benefit that involves going toeaypoints, and then to
waypointy collecting their samples. Our current goal selec-
tion algorithm can not deted? because it ignores the sam-
ples on such waypoints given that they do not look individ-
ually better tharys (e.g. g4 has a benefit 00 — 59). This
problem arises because the heuristic estimates derived fro
our planning graph cost propagation phase assume that the
. goals are independent, in other words, they may not provide
AltWit: Extending AltAlt?* to handle complex enough information if we want to achieve several consecu-

goal scenarios tive goals.
The second problem about negative interactions among
The advantage oAltAlt»> for solving PSP problems is that goals is als_o exhibited in the last example. We already men-
after committing to a subset of goals, the overall problem is tioned that if we choosg; we can not select any other goal.
simplified to the planning problem of finding the least cost However, our goal set selection algorithm would also select

plan to achieve the goal set selected, avoiding the exponen- 91 @ndgs given that the residual cost returned by the re-
tial search or2™ goal subsets. However, the goal set se- laxed plan heuristic is lower than the benefit added because

lection algorithm OfAltAlt”* is greedy, and as a result it is it ignores the negative interactions among go_als. So, our fi-
not immune from selecting a bad subset. The main problem Nal goal set would bé& = {gs, g2, 91}, which is not even
with the algorithm is that it does not consider goal interac- achievable. Clearly, we need to identify such goal interac-

tions. Because of this limitation the algorithm may: tions and add some cost metric when they exist.
We extended our goal selection algorithm AftWit to

e return a wrong initial subgoal affecting the whole selec- overcome these problems. Specifically, we consider mul-
tion process, and tiple groups of subgoals, in which each subgoal from the
top level goal set is forced to be true in at least one of the
groups, and we also consider adding penalty costs based on
mutex analysis to account for complex interactions among
The first problem corresponds to the selection of the ini- goals to overcome the limitations of the relaxed plan heuris
tial subgoalg from where the final goal set will be com- tic. Although these problems could be solved independgntly
puted, which is one of the critical decisions of the algarith they can be easily combined and solved together. We discuss
Currently, the algorithm selects only the subggavith the these additions in the next section.
highest positive net benefit. Although, this first assumptio . ) .
seems to be reasonable, there may be situations in which Goal set selection with multiple goal groups
starting with the most promising goal may not be the best The general idea behind the goal set selection with multi-
option. Specifically, when a large action execution cost is ple groups procedure is to consider each ggdrom the
required upfront to support a subset of the top level goals, top level goal seti as a feasible starting goal, such that we
in which each isolated goal component in the subset would can be able to find what the benefit would be if such ggal
have a very low benefit estimate (even negative), precluding were to be part of our final goal set selected. The idea is to
the algorithm for considering them initially, but in whidmet consider more aggressively multiple combinations of goals
conjunction of them could return a better quality solution. in the selection process. Although, we relax the assumption
The problem is that we are considering each goal individ- of having a positive net benefit for our starting goals, the ap
ually in the beginning, without looking ahead into possible proach is still greedy. It modifies the relaxed plan extacti
combinations of goals in the heuristic computation. procedure to bias not only towards those actions found in the

Figure 6: Modified Rover example with goal interactions

consider goal,. So, we updaté&s’ = g3 U g2, Ry = Rp,,
andBj, 4,y = 34. The procedure keeps iterating until only
g4 andgs remain, which decrease the final net benefit. The
procedure returns the®’ = {gi1, 92,93} as our goal set,
which in fact it is the optimal goal set. In this example, ther

is also a plan that achieves the five goals with a positive ben-
efit, but itis not as good as the plan that achieves the sédlecte
G'.

e select a set of subgoals that may not even be achievable
due to negative interactions among them.



ProcedureMGSG)
Biyax « —00,G" 0
for (g: € G)
GL; < nonStaticMutex(g;, G \ gi)
Rp; + extractGreedyRelaxedPlan(g;, D)
G « greedyGoalSetSelection(g;, GL;, Rp;)
NB; « getUtil(G}) — getCost(Rp;)
if(NB; > Bisax)
Biiax — NB;,G* — G
end for
return G*;
End MGS

Figure 7: Multiple Goal Set Selection Algorithm

relaxed plan of the previous iteration, but also towards¢ho
facts that are reflected in the history of partial states ef th
previous relaxed plan computation to account for more4inter
actions. The algorithm will stop computing a new goal set as

in the aggregated cost of the action This greedy modifi-
cation of our relaxed plan extraction procedure biases even
more to our previous relaxed plans, ordering differently th
actions that will be used to support our current subggal
The idea is to try to adjust the heuristic positively to over-
come the independence assumption among subgoals.

For example, on Figure 6, assume that our previous re-
laxed planRp; has achieved the subgoalsatypoints, and
we want to achieve subgoal = soily. In order to collect
the sample, we need to bewatypoint,, the cheapest action
in terms of its aggregated cost that supports that condgion
a = travely 4 With cost of20 which precludeg; for being
considered (no benefit added). However, notice that there is
another actiorb = travels 4 with original aggregated cost
of 50 (due to its precondition), whose cost gets modified by
our new relaxed plan extraction procedure since its precon-
dition (atwaypoints) is being supported indirectly by our
previousRp}. By considering actio, the residual cost for
supportingsoil, lowers to5, and as a result it can be con-
sidered for inclusion.

soon as the benefit returned decreases. The new algorithm  Finally, the algorithm will output the goal se&* that
also uses mutex analysis to avoid computing non-achievable maximizes the net benefi?, ,, among all the different

goal groups. The output of the algorithm is the goal group
that maximizes our net benefit. A more detailed description
of the algorithm is shown in Figure 7, and is discussed be-
low.

Given the set of top level goals, the algorithm considers
each goaly; € G and finds a corresponding goal sub&ét
with positive net benefit. To get such subset, the algorithm
uses a modified greedy version of our origiGalalSetSelec-
tion function (from Figure 5), in which the gog} has been
set as the initial goal fo;, and the initial relaxed plaRp;
for supportingg; is passed to the function. Furthermore, the
procedure only considers those top-level goalsddit C G
which are not pair-wise static mutex with. The setGL;
is obtained using the procedur®nStaticMutexn the al-
gorithm. By selecting only the non-static mutex goals, we
partially solve the problem of negative interactions, agd r
duce the running time of the algorithm. However, we still
need to do additional mutex analysis to overcome complex
goal interactions (e.g. dynamic mutexes); and we shall get
back to this below. At each iteration, the algorithm will out
put a selected goal sét; giveng;, and a relaxed plafp;
supporting it.

As mentioned in the beginning of this section, the modi-
fied extractGreedyRelaxed Plan procedure takes into ac-
count the relaxed plan from the previous iteration (&2g;)
as well as its partial execution history to compute the new
relaxed planRp; for the current subgog};. The idea is
to adjust the aggregated cost of the actigi&;,!) sup-
porting g;, to order them for inclusion iRp;, when their

goal partitions;. Following Example 2 from Figure 6, we
would consider 7 goal groups having the following parti-
tions: g1 = soily & GLy = {g2}, g2 = rock; & GLy =
{gl}, gz = TOCI{ZQ & GLg = @, g4 = TOCkg & GL4 =
{95,96,97}, g5 = soils & GLs = {g4,96.97}, 96 =
rocky & GLg = {97}, g7 = soily & GL7 = {gs}. The
final goal set returned by the algorithm in this example is
G* = {94, 95, g6, g7}, Which corresponds to the fourth par-
tition G/;, with maximum benefit o49. Running the original
algorithm (from Figure 5) in this example would select goal
groupG% = {g3} with final benefit 0f26.

Even though our algorithm may look expensive since it is
looking at different goal combinations on multiple groups,
it is still a greedy approximation of the futf* combinations
of an optimal approach. The reduction comes from setting
up the initial subgoals at each goal group at each iteration.
The worst case scenario of our algorithm would involve to
consider problems with no interactions and high goal wtilit
values, in which the whole set of remaining subgoals would
need to be considered at each group. Givéop level goals
leading ton goal groups, the worst case running time sce-
nario of our approach would be in terms ofx Z;:ll i
which is much better than the fact®t.

Penalty costs through mutex analysis

Although the MGS algorithm considers static mutexes, it
still misses negative interactions among goals that cold a
fect the goal selection process. This is mainly due to the

preconditions have been accomplished by the relaxed plan optimistic reachability analysis provided by the planning

Rp; from the previous iteration. Remember ti@fa;, )

graph. Consider again Example 2, and notice that goals

has been computed using our cost propagation rules, we de-gs; = soils and g; = soil, are not statically interfering, and

crease this cost wheRrec(a;) N3a,erp: Ef f(ar) # s
satisfied. In other words, if our previous relaxed plap;
supports already some of the preconditions at better be

they require a minimum of three steps (actions) to become
true in the planning graph (e.gravel - sample - comn
However, at level 3 of the planning graph these goals are

the case that such preconditions are not being over-countedmutex, implying that there are some negative interactions



among them. Having found such interactions, we could as-
sign apenalty P¢ to our residual cost estimate for ignoring
them.

Penalty costs through subgoal interactions A first ap-
proach for assigning such a penalty cé%st, which we call
NEGFM 5’ follows our work from (Nguyen, Kambham-
pati, & Sanchez 2002) considering the binary interaction de
greed among a pair of propositions. The idea is that every
time a new subgoa} gets considered for inclusion in our
goal setG’, we computed amongg and every other sub-
goalg’ € G'. Atthe end, we output the paig[g'] with
highest interaction degreaf any. Recalling from (Nguyen,
Kambhampati, & Sanchez 2002)gets computed using the
following equation:

6(p1,p2) = lev(p1 A p2) — maz{lev(p1),lev(p2)} (1)

Wherelev(S) corresponds to the set level heuristic that
specifies the earliest level in the planning graph in which
the propositions in the se&f appear and are not mutex to
each other (Nguyen, Kambhampati, & Sanchez 2002). Ob-
viously, if not such level exists thelav(S) = oo, which is
the case for static mutex propositions.

The binary degree of interacti@rprovide a clean way for
assigning a penalty cost to a pair of propositions in the con-
text of heuristics based on number of actions, given ghat
is representing the number of extra steps (actions) redjuire
to make such pair of propositions mutex free in the planning
graph. Following our current exampl&uv(gs A g7) = 5
(due to dummy actions), as a restélys, g7) = 2 represents
the cost for ignoring the interactions. However, in the con-

ProcedureNEGFAMG, Rpc., ¢, ay)
costy «— 0, costo — 0
Pco «— 0, maxCost <+ 0
for (g: € G)
a; — getSupportingAction(g;, Rpc)
costy «— competingNeedsCost(g;, ai, g, ayr)
coste «+ inter ferenceCost(g;, ai, g, ag/)
maxCost — max(costi, costs)
if(maxCost > Pc)
Pco +— maxCost
end for
return Pc;
End NEGFAM

Figure 8: Interactions through actions

Penalty costs through action interactions A better idea
for computing the negative interactions among subgoats is t
consider the interactions among the actions supporting suc
subgoals in our relaxed plans, and locate the possiblemeaso
for such interactions to penalize them. Interactions could
arise because our relaxed plan computation is greedy.yit onl
considers the cheapest acfida support a given subgoal,
ignoring any negative interactions of the subgoal. Thessfo
the intuition behind this idea is to adjust the residual cost
returned by our relaxed plans, by assigning a penalty cost
when interactions among their actions are found in order to
get better estimates. We called this idé& G F AM."
NEGFAM is also greedy because it only considers the

text of our PSP problem, where actions have real execution actions directly supporting the subgoals in the relaxed,pla
costs and propositions have costs of achievement attached@nd it always keeps the interaction with maximum cost as its

to them, it is not clear how to compute a penalty cost when
negative interactions are found.

Having found the pair with highesi(g, ¢'), ecs value,
our first solutionN EGFM considers the maximum cost
among both subgoals in the final levg}; of the planning
graph as the penalty co#t for ignoring such interaction.
This is defined as:

(loff}) }

»9"))
)
NEGF M is greedy in the sense that it only considers the
pair of interacting goals with maximum value. It is also
greedy in considering only the maximum cost among the
subgoals in the interacting pair as the minimum amount of

(O(gv loff)a C(g/a

Pco(9,G"YNparm = ma:c{ 19 € G" Amax(§

penalty cost. In case that there is no supporting action for a
given subgoaly’ (e.g. if¢’ € I), the algorithm will takey’
itself for comparison.N EGF AM considers the following
types of action interaction based on (Weld 1999):

1. Competing Needs: Two actiomsandb have precondi-
tions that arestaticallymutually exclusive, or at least one
precondition ofz is statically mutually exclusive with the
subgoaly’ given.

. Interference: Two actions andb, or one actioru and
a subgoaly’ are interfering if the effect of. deletesh’s
preconditions, ot deletesy’.

Notice that we are only considering pairs of static mutex
propositions when we do the action interaction analysi® Th

extra cost needed to overcome the interactions generated byreason for this is that we just want to identify those precon-

the subgoay being evaluated. AlthoughV EGF M is easy

to compute, it is not very informative affecting the quality
of the solutions returned. The main reason for this is that
we have already considered partially the cost of achieying

ditions that are critically responsible for the action®natc-
tions, and give a penalty cost based on them. Once found
a pair of static propositions, we have different ways of pe-
nalizing them. We show the description of t(heG F AM

when its relaxed plan is computed, and we are in some sensetechnique on Figure 8. The procedure gets the current se-

blindly over-counting the cost if'(g, I, ) gets selected as
the penaltyP:. Despite these clear problem$EGF M is
able to improve in problems with complex interactions over
our original algorithm.

>Negative Factor: Max

lected goals7, the relaxed plariRps supporting them, and
the subgoay’ being evaluated and actiery: supporting it.
Then, it computes two different costs, one based on the com-

®With respect taC(a, 1) + Ca
"Negative Factor By Actions: Max



Rover

i 400
50 Drivertog Total Time

—e— AltAlps-M 53 Secs
Total Time 350 4 |-®—AltAlps 8 Secs
i AltAltps-M

400 G R 27 Secs ——OptiPlan | 13320 Secs

—&— AltAltps 15 Secs
—x— SapaPS |1488 Secs a6 —¢ SapaPs 60499 Secs

350 4

300 -

(%)

&

o
L

Net Benefit
5%
3
Net Benefit

=)
=1
=1

Problems Problems

a) DriverLog Domain b) Rover Domain

Figure 9: Empirical Evaluation: Solution quality and tatahning time

peting needs of actions, and the second one based on theircomm,.ocx, 1,0}. Notice that the supporting actions fgg
interference: and g; are commyocky,2,0 aNd commego, 1,0 respectively.
These actions have competing needs, one action requires
the rover to be atvaypoint2 while the other one assumes
the rover is atwaypointl. The penalty cosP:- given by
NEGFAM for ignoring such interaction is 10, which is
the maximum cost among the static mutex preconditions.
Adding this value to our residual cost gives us a final cost
of 29, which precludes the algorithm for consideringi.e.

e For competing needs, we identify the proposition with
maximum cost in the pair of static preconditions of
the actions, and we sef- to this cost. The
idea is to identify what the minimum cost would
be in order to support two competing preconditions.
Given p; A p2, wherep; € Prec(a;) and p; €

Prec(ay), orp; = ¢’ when—3, ,, the cost iscost; benefit = 20 - 29). AlthoughVEGFAM is also greedy

= maz(C(p1,levelof f),C(pz,levelof f)) if lev(py A since it may over increase the residual cost of a subgoal

p2) = oc. This penalty gets computed using the proce- t improves over our original algorithm an¥f EGF M, re-

durecompetingN eedsCost(g;, a;, g, ag) in Figure 8. turning better quality solutions for problems with complex
e In case of interference, our pena|ty cait is set to interactions (as will be shown in our next section).

the cheapest alternate way (i.e. action) for supporting a . )

proposition being deleted. The idea is to identify what the Empirical Evaluation

additional cost would be in order to restore a critical pre- . . . .
condition, which needs to be deleted to achieve another In the foregoing, we have described with illustrative exam-

; , _ , ples, how complex interactions may affect the goal set selec
syb_goal. Glverp, € Pmc(al)_’ an.d . e EBfflag)or tion process ofAltAltPs . Our aim in this section is to show
g = —p1, the cost iscosty = min{C, : V, st p1 € - - N .
Eff(z)}. This cost is computed using the procedure that planning _graph reac_hablllty _heurlstl_cs augmentet wit
mutex analysis still provide efficient estimates for sofyin
the PSP T BENEFIT problem in the presence of complex
Our algorithm then selects the cost that maximizes ourmetur goal interactions.
value P given by the two techniques mentioned above. Our  Since there are no benchmark PSP problems, we used
P is then added to the residual cost of subggal existing STRIPS planning domains from the 2002 Interna-

Following our example 2 (Figure 6), we already men- tional Planning Competition (Long & Fox 2003), and modi-
tioned that if we chosgs = rocks we would also select fied them to support explicit declaration of goal utilitiesda

Inter ferenceCost(g;, ai, g', ag ).

g1 = soily and go = rock; in our original algorithm, action costs. In particular, our experiments include the do
which is not feasible. However, by taking into account the mains of DriverLog and Rover. For the DriverLog domain,
negative interactions among subgoals WiMli*G F'AM we goal utilities ranged from 40 to 100, while the costs of the
would discard such unfeasible sets. For example, supposeactions ranged from 3 to 70. Goal interactions were in-
that G = {g3} and Rpg = {travelpa, samplerock, 2, creased by considering bigger action execution costs, and
commyock, 2,05, and the goal being considered for in- modified paths in the network that the planning agent has to
clusion isg’ = ¢; with residual cost 19, correspond- traverse. The idea was to place the most rewarding goals in

ing to its relaxed plamRp, = {travely 1, samplesoi, 1, the costlier paths of the network in order to increase the-com



plexity of finding the most beneficial subset of goals. For

the Rover domain, utilities ranged from 20 to 30, and action
execution costs ranged from 4 to 45. In addition to the modi-
fications introduced in the DriverLog domain to increase the
level of interactions among goals, the Rover domain also al-
lows for dead-ends, and loops in the network that the rover

Sapé&*® or OptiPlan

Looking at the run times, it could appear at first glance
that the set of problems are relatively easy to solve given th
total accumulated time ofltAlt?s . However, remember
that for many classes of PSP problems, a trivially feasible,
but decidedly non-optimal solution would be the “null” pJan

has to traverse. The idea was to present more options for theandAltAltP* is in fact returning faster but much lower qual-

planning agent to fail. Consequently, it proved to be much
more difficult to solve restricting even more the attainabil
ity of multiple goal sets. The design of this domain was in-
spired by the Rover domain presented by Smith(2004), with-
out considering resources in our domain description.

We compared our new approaditWit to its predecessor
(AltAltPs ), and Sap&°® (van den Brielet al. 2004). Al-
thoughSapa&® also uses planning graph heuristics to rank
their goals, it does not provide mutex analysis and its $earc
algorithm is different. UnlikeAltWit, Sap&° does not se-
lect a subset of the goals up front, but uses an anytime
A* heuristic search framework in which goals are treated
as "soft constraints” to select them during planning. Any
executable plan is considered a potential solution, wi¢h th
guality of the plan measured in terms of its net benefit. We
considered it pertinent to take into account both planreers t
see more clearly the impact of the techniques introduced in
this paper. We have also included in this section a run of
OptiPlan(van den Brielet al. 2004) in the Rover domain,
to demonstrate that our greedy approach is able to return
high quality plans.OptiPlanis a planner that builds on the
work of solving planning problems through IP (Vossen, Ball,
& Nau 1999), which generates plans that are optimal for a
given plan lengtf. We did not compare to the approach

ity solutions. We can see that the techniques introduced in
AltWit are helping the approach to select better goal sets
by accounting for interactions. This is not happening in

AltAltPs | where the goal sets returned are very small and
easier to solve.

We also tested the performance AfWit in problems
with less interactions. Specifically, we solved the suite of
random problems from (van den Briet al. 2004), includ-
ing the ZenoTravel and Satellite planning domains (Long &
Fox 2003). Although the gains there were less impressive,
AltWit was able to produce in general better quality solu-
tions than the other approaches, returning bigger total net
benefits.

Related Work

As we mentioned earlier, there has been very little work on
PSP in planning. One possible exception is the PYRRHUS
planning system (Williamson & Hanks 1994) which consid-
ers an interesting variant of the partial satisfaction piag
problem. In PYRRHUS, the quality of the plans is measured
by the utilities of the goals and the amount of resource con-
sumed. Utilities of goals decrease if they are achieved late
than the goals’ deadlines. Unlike the PSP problem discussed

presented by Smith(2004) because his approach was not yetin this paper, all the logical goals still need to be achidwed

available by the time of this writing All four planners were
run on a P4 2.67Ghz CPU machine with 1.0GB RAM.
Figure 9 shows our results in the DriverLog and Rover
domains. We see thaltWit outperformsAltAlt?s and
Sap&°® in most of the problems, returning higher quality
solutions. In fact, it can be seen th@tWit returns 13 times
as much net benefit on average tEPAILPS in the Driver-
Log domain (i.e al300% benefit increase). A similar sce-
nario occurs withSapé® , whereAltWit returns 1.42 times
as much more benefit on average4@¥ benefit increase).
A similar situation occurs with the Rover domain in Figure 9
(b), in which AltWIt returns 10 and 12 times as much more
benefit on average thafltAlt?* and Sapd® respectively.
This corresponds to &000% and 1200% benefit increase
over them. AlthoughOptiPlanshould in theory return op-
timal solutions for a given length, it is not able to scale up,
reporting only upper bounds on most of its solutions. Fur-
thermore, notice also in the plots that the total runningetim
taken byAltWit incurs a very little additional overhead over
AltAltPs | and it is completely negligible in comparison to

8For a more comprehensive description o@ptiPlan
see (van den Brigdt al. 2004).

9Smith's approach takes as input a non-standard PDDL lan-
guage, without the explicit representation of the operators descrip-
tions.

PYRRHUS for the plan to be valid. It would be interesting
to extend the PSP model to consider degree of satisfaction
of individual goals.

More recently, Smith (2003) motivated oversubscription
problems in terms of their applicability to the NASA plan-
ning problems. Smith (2004) also proposed a planner for
oversubscription in which the solution of the abstracted
planning problem is used to select the subset of goals and
the orders to achieve them. The abstract planning problem
is built by propagating the cost on the planning graph and
constructing therienteeringproblem. The goals and their
orderings are then used to guide a POCL planner. In this
sense, this approach is similarA&tAlt P* ; however, the ori-
enteering problem needs to be constructed using domain-
knowledge for different planning domains. Smith (2004)
also speculated that planning-graph based heuristics are
not particularly suitable for PSP problems where goals are
highly interacting. His main argument is that heuristic es-
timates derived from planning graphs implicitly make the
assumption that goals are independent. However, as shown
in this paper, reachability estimates can be improved using
the mutex information also contained in planning graphs, al
lowing us to solve problems with complex goal interactions.

Probably the most obvious way to optimally solve the
PSP NeT BENEFIT problem is by modeling it as a fully-
observable Markov Decision Process (MDP) (Boutilier,



Dean, & Hanks 1999) with a finite set of states. MDPs nat-
urally permit action cost and goal utilities, but we found in
our studies that an MDP based approach for the P&P N
BENEFIT problem appears to be impractical, even the very
small problems generate too many states. To prove our as-
sumption, we modeled a set of test problems as MDPs and
solved them using SPUDD (Hoest al. 1999)° SPUDD

is an MDP solver that uses value iteration on algebraic deci-
sion diagrams, which provides an efficient representatfon o
the planning problem. Unfortunately, SPUDD was not able
to scale up, solving only the smallest probleths.

Over-subscription issues have received relatively more
attention in the scheduling community. Earlier work in
scheduling over-subscription used greedy approaches, in
which tasks of higher priorities are scheduled first (Kramer
& Giuliano 1997; Potter & Gasch 1998). The approach
used byAltWiIt is more sophisticated in that it considers
the residual cost of a subgoal in the context of an existing
partial plan for achieving other selected goals, taking int
account complex interactions among the goals. More re-

cent efforts have used stochastic greedy search algorithms

on constraint-based intervals (Fragikal. 2001), genetic al-
gorithms (Globuset al. 2003), and iterative repairing tech-
nigue (Kramer & Smith 2003) to solve this problem more
effectively.

Conclusions

Motivated by the observations in (Smith 2004) that Planning
Graph based heuristics may not be able to handle complex

subgoals interactions in PSP problems, we extended our pre-

vious work onAltAltP* (van den Brielet al. 2004) to over-
come such problems. In this paper, we have introdutled
tWit, a greedy approach based 4ftAlt?* that augments
its goal set selection procedure by considering multipl go
groups and mutex analysis.

The general idea behind our new approach is to consider
more aggressively multiple combinations of subgoals durin
the selection procesaltWit is still greedy since it modifies
the original relaxed plan extraction procedure to better ac
count for positive interactions among subgoals, adding als
penalty costs for ignoring negative interactions among the
actions supporting them.

Our empirical results show thaltWit is able to gen-
erate plans with better quality than the ones generated by
its predecessor an8apd® , while incurring only a frac-
tion of the running time. We demonstrated that the tech-
niques employed iltWIt really pay off in problems with
highly interacting goals. This shows that selection of obje
tives in over-subscription problems could be handled using
planning-graph based heuristics.

10We thank Will Cushing and Menkes van den Briel who first
suggested the MDP modeling idea.

"Details on the MDP model and results can be found in (van den
Briel et al. 2005).

References

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
JAIR11:1-94.

Do, M., and Kambhampati, S. 2003. Sapa: a multi-objective
metric temporal plannedAIR20:155-194.

Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001. Planning
and scheduling for fleets of earth observing satelliteSixth Int.
Symp. on Artificial Intelligence, Robotics, Automation & Space

Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2003. Scliedu
ing earth observing sateliites with evolutionary algorithms. In
Proceedings Int. Conf. on Space Mission Challenges for Infor.
Tech.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. Spudd:
Stochastic planning using decision diagrams.Pinceedings of
the 15th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-99)279-288.

Hoffman, J., and Nebel, B. 2001. The ff planning system: Fast
plan generation through heuristic seardAIR 14:253-302.

Kramer, L., and Giuliano, M. 1997. Reasoning about and
scheduling linked hst observations with spike. Rroceedings
of Int. Workshop on Planning and Scheduling for Space

Kramer, L., and Smith, S. 2003. Maximizing flexibility: A re-
traction heuristic for oversubscribed scheduling problemBrén
ceedings of IJCAI-03

Long, D., and Fox, M. 2003. The 3rd international planning
competition: results and analysi3AIR20:1-59.

Nguyen, X.; Kambhampati, S.; and Sanchez, R. 2002. Planning
graph as the basis for deriving heuristics for plan synthesis by
state space and CSP seardttificial Intelligence135(1-2):73—
123.

Potter, W., and Gasch, J. 1998. A photo album of earth:
Scheduling landsat 7 mission daily activities. Rroceedings of
SpaceOps

Smith, D. 2003. The mystery talk. Plannet Summer School.
Smith, D. 2004. Choosing objectives in over-subscription plan-
ning. InProceedings of ICAPS-04

van den Briel, M.; Sanchez, R.; Do, M.; and Kambhampati,
S. 2004. Effective approaches for partial satisfation (over-
subscription) planning. IRProceedings of AAAI-04

van den Briel, M.; Sanchez, R.; Do, M.; and Kambhampati, S.
2005. Planning for over-subscription problems. Arizona State
University, Technical Report.

Vossen, T.; Ball, M.; and Nau, D. 1999. On the use of integer
programming models in ai planning. Rroceedings of IJCAI-Q9
Weld, D. 1999. Recent advances in ai plannirg. Magazine
20(2):93-123.

Williamson, M., and Hanks, S. 1994. Optimal planning with a
goal-directed utility model. IfProceedings of AIPS-94



