
Planning Graph Heuristics for Selecting Objectives
in Over-subscription Planning Problems

Romeo Sanchez Nigenda and Subbarao Kambhampati∗

Department of Computer Science and Engineering
Ira A. FULTON School of Engineering

Arizona State University, Tempe AZ, 85287-5406
{rsanchez, rao}@asu.edu

Abstract

Partial Satisfaction or Over-subscription Planning problems
arise in many real world applications. Applications in which
the planning agent does not have enough resources to accom-
plish all of their given goals, requiring plans that satisfy only
a subset of them. Solving such partial satisfaction planning
(PSP) problems poses several challenges, from new models
for handling plan quality to efficient heuristics for selecting
the most beneficial goals. In this paper, we extend plan-
ning graph-based reachability heuristics with mutex analysis
to overcome complex goal interactions in PSP problems. We
start by describing one of the most general PSP problems, the
PSP NET BENEFIT problem, where actions have execution
costs and goals have utilities. Then, we presentAltWlt ,1 our
heuristic approach augmented with a multiple goal set selec-
tion process and mutex analysis. Our empirical studies show
thatAltWlt is able to generate the most beneficial solutions,
while incurring only a small fraction of the cost of other PSP
approaches.

Introduction

Most planners handle goals of attainment, where the ob-
jective is to find a sequence of actions that transforms a
given initial stateI to some goal stateG, where G =
g1 ∧ g2 ∧ ... ∧ gn is a conjunctive list of goal fluents. Plan
success for these planning problems is measured in terms of
whether or not all the conjuncts inG are achieved. However,
in many real world scenarios, the agent may only be able to
partially satisfyG, because of subgoal interactions, or lack-
ing of resources and time. Effective handling of partial sat-
isfaction planning (PSP) problems poses several challenges,
including the problem of designing efficient goal selection
heuristics, and an added emphasis on the need to differen-
tiate between feasible and optimal plans. In this paper, we
focus on one of the most general PSP problems, called PSP
NET BENEFIT. In this problem, each goal conjunct has a
fixed utility attached to it, and each ground action has a fixed
cost associated with it. The objective is to find a plan with

∗We thank the ICAPS reviewers for many helpful comments.
This research is supported in part by the NSF grant IIS-0308139.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1A Little of This and a Whole Lot of That

the best “net benefit” (i.e., cumulative utility minus cumula-
tive cost).

Despite the ubiquity of PSP problems, surprisingly lit-
tle attention has been paid to the development of effective
approaches for solving them. Some preliminary work by
Smith (2004) proposed a planner for over-subscribed plan-
ning problems, in which an abstract planning problem (e.g.
Orienteering graph) is built to select the subset of goals and
orders to achieve them. Smith (2004) speculated that the
heuristic distance estimates derived from a planning graph
data structure are not particularly suitable for PSP problems
given that they make the assumption that goals are inde-
pendent, without solving the problem of interactions among
them.

In this paper, we show that in fact although planning graph
estimates for PSP problems are not very accurate in the pres-
ence of complex goal interactions, they can also be extended
to overcome such problems. In particular, our approach
namedAltWlt that builds on theAltAlt ps planner (van den
Briel et al. 2004), involves a sophisticated multiple goal set
selection process augmented with mutex analysis in order to
solve complex PSP problems. The goal set selection process
of AltWlt considers multiple combinations of goals and as-
signs penalty costs based on mutex analysis when interac-
tions are found. Once a subset of goal conjuncts is selected,
they are solved by a regression search planner with cost sen-
sitive planning graph heuristics.

The rest of this paper is organized as follows. In the
next section, we provide a brief description of the PSP NET

BENEFIT problem. After that, we reviewAltAlt ps , which
forms the basis for our current approach, emphasizing its
goals set selection algorithm and cost-sensitive reachability
heuristics. Then, in the next part of the paper, we introduce
our proposed approach,AltWlt , pointing out the limitations
of AltAlt ps with some clarifying examples, and the exten-
sions to overcome them. We then present a set of complex
PSP problems and an empirical study on them that compares
the effectiveness ofAltWlt with respect to its predecessor,
andSapaps (van den Brielet al. 2004), another planning-
graph based heuristic PSP planner. We also show some il-
lustrative data on an optimal MDP and IP approach to PSP
NET BENEFIT to assess the quality of the solutions returned
by AltWlt . Finally, we end with a discussion of the related



PLAN EXISTENCE

PLAN LENGTH

PSP GOAL LENGTH

PSP GOAL

PLAN COST PSP UTILITY

PSP UTILITY COST

PSP NETBENEFIT

Figure 1: Hierarchical overview of several types of complete
and partial satisfaction planning problems.

work and conclusions.

Preliminaries: PSP NET BENEFIT definition

The following notation will be used:F is a finite set of flu-
ents andA is a finite set of actions, where each action con-
sists of a list of preconditions and a list of add and delete
effects.I ⊆ F is the set of fluents describing the initial state
andG ⊆ F is the set of goal conjuncts. Hence we define
a planning problem as a tupleP = (F,A, I,G). Figure 1
gives a taxonomic overview of several types of complete and
partial satisfaction planning problems. The problem of PSP
NET BENEFIT is a combination of the problem of finding
minimum cost plans (PLAN COST) and the problem of find-
ing plans with maximum utility (PSP UTILITY ), as a result
is one of the more general PSP problems.2 In the follow-
ing, we formally define the problem of finding a plan with
maximum net benefit:

Definition 1 (PSP Net Benefit:) Given a planning problem
P = (F,A, I,G) and, for each action a “cost” Ca ≥ 0 and,
for each goal specificationf ∈ G a “utility” U f ≥ 0, and
a positive numberk. Is there a finite sequence of actions
∆ = 〈a1, ..., an〉 that starting fromI leads to a stateS that
has net benefit

∑

f∈(S∩G) Uf −
∑

a∈∆Ca ≥ k?

Example 1: Figure 2 illustrates a small example from the
rover domain (Long & Fox 2003) to motivate the need for
partial satisfaction. In this problem, a rover that has landed
on Mars needs to collect scientific data from some rock and
soil samples. Some waypoints have been identified on the
surface. Each waypoint has scientific samples. For exam-
ple, waypoint3 has a rock sample, whilewaypoint4 has
a soil sample. The rover needs to travel to a correspond-
ing waypoint to collect its samples. Each travel action has

2For a more comprehensive study on the complexity and taxon-
omy of PSP problems see (van den Brielet al. 2004).

Wp
0

Wp
2

Wp
1

C = 5

Wp3

Wp
4

C = 10

C = 3

C = 15

C = 25

U = 30

U = 30

U = 30

U = 20

U = 20

Figure 2: Rover domain problem

a cost associated to it. For example, the cost of traveling
from waypoint0 to waypoint1 is given by Ctravel0,1

= 10.
In addition to thetravelx,y actions, we have two more ac-
tions sample and comm to collect and communicate the
data respectively to the lander. To simplify our problem,
these actions have uniform costs independent of the loca-
tions where they take place. These costs are specified by
Csampledata,x

= 5 and Ccommdata,x,y
= 4. Each sample

(or subgoal) has a utility attached to it. We have a utility
of Urock3

= 30 for the rock sample atwaypoint3, and a
utility Usoil4 = 20 for a soil sample atwaypoint4. The
goal of the rover is to find a travel plan that achieves the best
cost-utility tradeoff for collecting the samples. In this ex-
ample, the best plan isP = {travel0,2 , samplerock2,2,
commrock2,2,0, travel2,1, samplerock1,1, commrock1,1,0,
samplesoil1,1, commsoil1,1,0} which achieves the goals
rock2, rock1 andsoil1, and ignores the rest of the samples
atwaypoint3 andwaypoint4 giving the net benefit 45.

Background: AltAlt ps Cost-based Heuristic
Search and Goal Selection

In this section, we introduceAltAlt ps because it forms the
basis forAltWlt , the new proposed algorithm that handles
complex goal interactions.AltAlt ps is a heuristic regres-
sion planner that can be seen as a variant ofAltAlt (Nguyen,
Kambhampati, & Sanchez 2002) equipped with cost sensi-
tive heuristics. An obvious, if naive, way of solving the PSP
NET BENEFIT problem with such a planner is to consider all
plans for the2n subsets of ann-goalproblem, and see which
of them will wind up leading to the plan with the highest net
benefit. Since this is infeasible,AltAlt ps uses a greedy ap-
proach to pick a goal subset up front. The greediness of the
approach is offset by considering the net benefit of covering
a goal not in isolation, but in the context of the potential (re-
laxed) plan for handling the already selected goals. Once a
subset of goal conjuncts is selected,AltAlt ps finds a plan



Action Templates

Problem Spec

(Init, Goal state)

Solution Plan

Graphplan
Plan Extension Phase

(based on STAN)

+ 

Cost Propagation

Cost-sensitive 
Planning
Graph

Extraction of
Heuristics

Heuristics
Actions in the

Last Level

Goal Set selection

Algorithm

Cost sensitive

Search

Action Templates

Problem Spec

(Init, Goal state)

Solution Plan

Graphplan
Plan Extension Phase

(based on STAN)

+ 

Cost Propagation

Cost-sensitive 
Planning
Graph

Extraction of
Heuristics

Heuristics
Actions in the

Last Level

Goal Set selection

Algorithm

Cost sensitive

Search

Figure 3:AltAlt ps Architecture

that achieves such subset using its regression search engine
augmented with cost sensitive heuristics. This description
can be seen in the overall architecture ofAltAlt ps in Fig-
ure 3.

Given that the quality of the plans for PSP problems de-
pends on both the utility of the goals achieved and the cost
to achieve them,AltAlt ps needs heuristic guidance that is
sensitive to both action cost and goal utility. Because only
the execution costs of the actions and the achievement cost
of propositions in the initial state (zero cost) are known, we
need to docost-propagationfrom the initial state through
actions to estimate the cost to achieve other propositions,
especially the top level goals. We can see in Figure 3 that
AltAlt ps is using the planning graph structure to compute
this cost information. This information over the planning
graph is the basis for heuristic estimation inAltAlt ps , and
is also used to estimate the most beneficial subset of goals
upfront and guide the search in the planner. The cost sensi-
tive heuristics, as well as the goal set selection algorithmare
described in more detail in the next sections.

Propagating cost as the basis for computing
heuristics

Following (Do & Kambhampati 2003), we use cost func-
tions to capture the way cost of achievement changes as the
graph gets expanded. In the following, we briefly review the
procedure.

The purpose of the cost-propagation process is to build
the cost functionsC(f, lf ) and C(a, la) that estimate the
cheapest cost to achieve fluentf at levellf of the planning
graph, and the cost to execute actiona at level la. At the
beginning (l = 0), let Sinit be the initial state and Ca be the
cost of actiona then3: C(f, 0) = 0 if f ∈ Sinit, C(f, 0) =

3Ca andC(a, l) are different. Ifa = Travel0,1 then Ca is the
travel cost andC(a, l) is the cost to achieve preconditions ofa at
level l, which is the cost incurred to be atwaypoint0 at l.

Figure 4: Cost function ofat(waypoint1)

∞ otherwise;∀a ∈ A : C(a, 0) = ∞. The propagation
rules are as follows:

• C(f, l) = min{C(a, l)+ Ca) : f ∈ Eff(a)}

• Max-prop:C(a, l) = max{C(f, l) : f ∈ Prec(a)}

• Sum-prop:C(a, l) = Σ{C(f, l) : f ∈ Prec(a)}

The max-propagation rule will lead to an admissible
heuristic, while the sum-propagation rule does not. As-
sume that we want to reachwaypoint1 in our rover ex-
ample. We can reach it directly fromwaypoint0 within
a unit of time, or we can travel throughwaypoint2 and
reach it within two steps. Figure 4 shows the cost function
for propositionp1 = At(waypoint1), which indicates that
the earliest level to achievep1 is at l = 1 with the low-
est cost of 10 (route:waypoint0 → waypoint1). The
lowest cost to achievep1 reduces to 8 atl = 2 (route:
waypoint0 → waypoint2 → waypoint1) for the leveled
planning graph.

There are many ways to terminate the cost-propagation
process (Do & Kambhampati 2003): We can stop when
all the goals are achievable, when the cost of all the goals
are stabilized (i.e. guaranteed not to decrease anymore), or
lookahead several steps after the goals are achieved. For
classical planning, we can also stop propagating cost when
the graphlevels-off (Nguyen, Kambhampati, & Sanchez
2002).

Cost-sensitive heuristics

After building the planning graph with cost information,
AltAlt ps uses variations of the relaxed plan extraction
process (Hoffman & Nebel 2001; Nguyen, Kambhampati, &
Sanchez 2002) guided by the cost-functions to estimate their
heuristic valuesh(S) (Do & Kambhampati 2003). The basic
idea is to compute the cost of the relaxed plans in terms of
the costs of the actions comprising them, and use such costs
as heuristic estimates. The general relaxed plan extraction
process forAltAlt ps works as follows:



1. Start from the goal setG containing the top level goals,
remove a goalg from G and select a lowest cost actionag

(indicated byC(g, l)) to supportg

2. RegressG over action ag, setting G = G ∪
Prec(ag)\Eff(ag)

The process above continues recursively until each propo-
sition q ∈ G is also in the initial stateI. This regression ac-
counts for the positive interactions in the stateG given that
by subtracting the effects ofag, any other proposition that
is co-achieved wheng is being supported is not counted in
the cost computation. The relaxed plan extraction procedure
indirectly extracts a sequence of actionsRP , which would
have achieved the setG from the initial stateI if there were
no negative interactions. The summation of the costs of the
actionsag ∈ RP can be used to estimate the cost to achieve
all goals inG, in summary we have:

Relax Cost Heuristic 1 hrelaxC(S) =
∑

a∈Rp
Ca

AltAlt ps Goal set selection algorithm

The main idea of the goal set selection procedure in
AltAlt ps is to incrementally construct a new partial goal
setG′ from the top level goalsG such that the goals con-
sidered for inclusion increase the final net benefit, using the
goals utilities and costs of achievement. The process is com-
plicated by the fact that the net benefit offered by a goal
g depends on what other goals have already been selected.
Specifically, while the utility of a goalg remains constant,
the expected cost of achieving it will depend upon the other
selected goals (and the actions that will anyway be needed to
support them). To estimate the “residual cost” of a goalg in
the context of a set of already selected goalsG′, we compute
a relaxed planRP for supportingG′ + g, which is biased to
(re)use the actions in the relaxed planR′

P for supportingG′.
Figure 5 gives a description of the goal set selection algo-

rithm. The first block of instructions before the loop initial-
izes our goal subsetG′,4 and finds an initial relaxed planR∗

P

for it using the procedureextractRelaxedPlan(G′,∅). Notice
that two arguments are passed to the function. The first one
is the current partial goal set from where the relaxed plan
will be computed. The second parameter is the current re-
laxed plan that will be used as a guidance for computing the
new relaxed plan. The idea is that we want to bias the com-
putation of the new relaxed plan to re-use the actions in the
relaxed plan from the previous iteration. Having found the
initial subsetG′ and its relaxed planR∗

P , we compute the
current best net benefitB∗

MAX by subtracting the costs of
the actions in the relaxed planR∗

P from the total utility of
the goals inG′. B∗

MAX will work as a threshold for our iter-
ative procedure. In other words, we would continue adding
subgoalsg ∈ G to G′ only if the overall net benefitB∗

MAX

increases. We consider one subgoal at a time, always com-
puting the benefit added by the subgoal in terms of the cost
of its relaxed planRP and goal utilityBg. We then pick the

4getBestBenefitialGoal(G) returns the subgoal with the
best benefit, Ug − C(g, l) tradeoff

ProcedureGoalSetSelection(G)
g ← getBestBenefitialGoal(G);
if (g = NULL)

return Failure;
G′ ← {g}; G← G \ g;
R∗

P ← extractRelaxedP lan(G′, ∅)
B∗

MAX ← getUtil(G′)− getCost(R∗

P );
BMAX ← B∗

MAX

while(BMAX > 0 ∧G 6= ∅)
for (g ∈ G \G′)

GP ← G′ ∪ g;
RP ← ExtractRelaxedP lan(GP , R∗

P )
Bg ← getUtil(GP )− getCost(RP );
if (Bg > B∗

MAX )
g∗ ← g; B∗

MAX ← Bg; R∗

g ← RP ;
else

BMAX ← Bg −B∗

MAX

end for
if (g∗ 6= NULL)

G′ ← G′ ∪ g∗; G← G \ g∗; BMAX ← B∗

MAX ;
end while
return G′;

End GoalSetSelection;

Figure 5: Goal set selection algorithm.

subgoalg that maximizes the net benefit, updating the nec-
essary values for the next iteration. This iterative procedure
stops as soon as the net benefit does not increase, or when
there are no more subgoals to add, returning the new goal
subsetG′.

In our running example, the original subgoals are{g1 =
soil1, g2 = rock1, g3 = rock2, g4 = rock3, g5 = soil4},
with final costsC(g, t) = {17, 17, 14, 34, 24} and utili-
ties vectors U= {20, 30, 30, 30, 20} respectively, where
t = leveloff in the planning graph. Following our al-
gorithm, our starting goalg would be g3 because it re-
turns the biggest benefit (e.g. 30 - 14). Then,G′ is set
to g3, and its initial relaxed planR∗

P is computed. As-
sume that the initial relaxed plan found isR∗

P = {travel0,2,
samplerock2

, commrock2,2,0}. We proceed to compute the
best net benefit usingR∗

P , which in our example would
be B∗

MAX = 30 − (5 + 5 + 4) = 16. Having found our
initial values, we continue iterating on the remaining goals
G = {g1, g2, g4, g5}. On the first iteration we compute
four different set of values, they are: (i)GP1

= {g3 ∪ g1},
RP1

= {travel2,1, samplesoil1 , commsoil1,2,0, travel0,2,
samplerock2

, commrock2,2,0}, andBgp1
= 24; (ii) GP2

=

{g3 ∪ g2}, RP2
= {travel2,1, samplerock1

, commrock1,2,0,
travel0,2, samplerock2

, commrock2,2,0}, andBgp2
= 34;

(iii) GP3
= {g3 ∪ g4}, RP3

= {travel0,3, samplerock3
,

commrock3,2,0, travel0,2, samplerock2
, commrock2,2,0},

and Bgp3
= 12, and (iv) GP4

= {g3 ∪ g5},
RP4

= {travel0,4, samplesoil4 , commsoil4,2,0, travel0,2,
samplerock2

, commrock2,2,0} with Bgp4
= 12. Notice then

that our net benefitB∗
MAX could be improved most if we



Figure 6: Modified Rover example with goal interactions

consider goalg2. So, we updateG′ = g3 ∪ g2, R∗
P = RP2

,
andB∗

MAX = 34. The procedure keeps iterating until only
g4 andg5 remain, which decrease the final net benefit. The
procedure returns thenG′ = {g1, g2, g3} as our goal set,
which in fact it is the optimal goal set. In this example, there
is also a plan that achieves the five goals with a positive ben-
efit, but it is not as good as the plan that achieves the selected
G′.

AltWlt : Extending AltAlt ps to handle complex
goal scenarios

The advantage ofAltAlt ps for solving PSP problems is that
after committing to a subset of goals, the overall problem is
simplified to the planning problem of finding the least cost
plan to achieve the goal set selected, avoiding the exponen-
tial search on2n goal subsets. However, the goal set se-
lection algorithm ofAltAlt ps is greedy, and as a result it is
not immune from selecting a bad subset. The main problem
with the algorithm is that it does not consider goal interac-
tions. Because of this limitation the algorithm may:

• return a wrong initial subgoal affecting the whole selec-
tion process, and

• select a set of subgoals that may not even be achievable
due to negative interactions among them.

The first problem corresponds to the selection of the ini-
tial subgoalg from where the final goal set will be com-
puted, which is one of the critical decisions of the algorithm.
Currently, the algorithm selects only the subgoalg with the
highest positive net benefit. Although, this first assumption
seems to be reasonable, there may be situations in which
starting with the most promising goal may not be the best
option. Specifically, when a large action execution cost is
required upfront to support a subset of the top level goals,
in which each isolated goal component in the subset would
have a very low benefit estimate (even negative), precluding
the algorithm for considering them initially, but in which the
conjunction of them could return a better quality solution.
The problem is that we are considering each goal individ-
ually in the beginning, without looking ahead into possible
combinations of goals in the heuristic computation.

Example 2: Consider the modified Rover example from
Figure 6. This time, we have added extra goals, and dif-
ferent cost-utility metrics to our problem. Notice also
that the traversal of the paths has changed. For exam-
ple, we can travel fromwaypoint0 to waypoint1, but we
can not do the reverse. Our top-level goals are{g1 =
soil1, g2 = rock1, g3 = rock2, g4 = rock3,
g5 = soil3, g6 = rock4, g7 = soil4}, with final
costsC(g, t) = {19, 19, 14, 59, 59, 29, 29} and utilities U
= {20, 30, 40, 50, 50, 20, 20} respectively. Following this
example, the goal set selection algorithm would choose goal
g3 as its initial subgoal because it returns the highest net
benefit (e.g. 40 - 14). Notice this time that considering the
most promising subgoal is not the best option. Once the
rover reacheswaypoint2, it can not achieve any other sub-
goal. In fact, there is a planP for this problem with a bigger
net benefit that involves going towaypoint3, and then to
waypoint4 collecting their samples. Our current goal selec-
tion algorithm can not detectP because it ignores the sam-
ples on such waypoints given that they do not look individ-
ually better thang3 (e.g. g4 has a benefit of50 − 59). This
problem arises because the heuristic estimates derived from
our planning graph cost propagation phase assume that the
goals are independent, in other words, they may not provide
enough information if we want to achieve several consecu-
tive goals.

The second problem about negative interactions among
goals is also exhibited in the last example. We already men-
tioned that if we chooseg3 we can not select any other goal.
However, our goal set selection algorithm would also select
g1 and g2 given that the residual cost returned by the re-
laxed plan heuristic is lower than the benefit added because
it ignores the negative interactions among goals. So, our fi-
nal goal set would beG = {g3, g2, g1}, which is not even
achievable. Clearly, we need to identify such goal interac-
tions and add some cost metric when they exist.�

We extended our goal selection algorithm inAltWlt to
overcome these problems. Specifically, we consider mul-
tiple groups of subgoals, in which each subgoal from the
top level goal set is forced to be true in at least one of the
groups, and we also consider adding penalty costs based on
mutex analysis to account for complex interactions among
goals to overcome the limitations of the relaxed plan heuris-
tic. Although these problems could be solved independently,
they can be easily combined and solved together. We discuss
these additions in the next section.

Goal set selection with multiple goal groups
The general idea behind the goal set selection with multi-
ple groups procedure is to consider each goalgi from the
top level goal setG as a feasible starting goal, such that we
can be able to find what the benefit would be if such goalgi

were to be part of our final goal set selected. The idea is to
consider more aggressively multiple combinations of goals
in the selection process. Although, we relax the assumption
of having a positive net benefit for our starting goals, the ap-
proach is still greedy. It modifies the relaxed plan extraction
procedure to bias not only towards those actions found in the



ProcedureMGS(G)
B∗

MAX ← −∞, G∗ ← ∅
for (gi ∈ G)

GLi ← nonStaticMutex(gi, G \ gi)
Rpi ← extractGreedyRelaxedP lan(gi, ∅)
G′

i ← greedyGoalSetSelection(gi, GLi, Rpi)
NBi ← getUtil(G′

i)− getCost(Rpi)
if (NBi > B∗

MAX )
B∗

MAX ← NBi, G∗ ← G′

i

end for
return G∗;

End MGS;

Figure 7: Multiple Goal Set Selection Algorithm

relaxed plan of the previous iteration, but also towards those
facts that are reflected in the history of partial states of the
previous relaxed plan computation to account for more inter-
actions. The algorithm will stop computing a new goal set as
soon as the benefit returned decreases. The new algorithm
also uses mutex analysis to avoid computing non-achievable
goal groups. The output of the algorithm is the goal group
that maximizes our net benefit. A more detailed description
of the algorithm is shown in Figure 7, and is discussed be-
low.

Given the set of top level goalsG, the algorithm considers
each goalgi ∈ G and finds a corresponding goal subsetG′

i

with positive net benefit. To get such subset, the algorithm
uses a modified greedy version of our originalGoalSetSelec-
tion function (from Figure 5), in which the goalgi has been
set as the initial goal forG′

i, and the initial relaxed planRpi

for supportinggi is passed to the function. Furthermore, the
procedure only considers those top-level goals leftGLi ⊆ G
which are not pair-wise static mutex withgi. The setGLi

is obtained using the procedurenonStaticMutexin the al-
gorithm. By selecting only the non-static mutex goals, we
partially solve the problem of negative interactions, and re-
duce the running time of the algorithm. However, we still
need to do additional mutex analysis to overcome complex
goal interactions (e.g. dynamic mutexes); and we shall get
back to this below. At each iteration, the algorithm will out-
put a selected goal setG′

i givengi, and a relaxed planRpi

supporting it.
As mentioned in the beginning of this section, the modi-

fied extractGreedyRelaxedP lan procedure takes into ac-
count the relaxed plan from the previous iteration (e.g.Rp∗i )
as well as its partial execution history to compute the new
relaxed planRpi for the current subgoalgi. The idea is
to adjust the aggregated cost of the actionsC(ai, l) sup-
porting gi, to order them for inclusion inRpi, when their
preconditions have been accomplished by the relaxed plan
Rp∗i from the previous iteration. Remember thatC(ai, l)
has been computed using our cost propagation rules, we de-
crease this cost whenPrec(ai) ∩∃ak∈Rp∗

i
Eff(ak) 6= ∅ is

satisfied. In other words, if our previous relaxed planRp∗i
supports already some of the preconditions ofai it better be
the case that such preconditions are not being over-counted

in the aggregated cost of the actionai. This greedy modifi-
cation of our relaxed plan extraction procedure biases even
more to our previous relaxed plans, ordering differently the
actions that will be used to support our current subgoalgi.
The idea is to try to adjust the heuristic positively to over-
come the independence assumption among subgoals.

For example, on Figure 6, assume that our previous re-
laxed planRp∗i has achieved the subgoals atwaypoint3, and
we want to achieve subgoalgi = soil4. In order to collect
the sample, we need to be atwaypoint4, the cheapest action
in terms of its aggregated cost that supports that conditionis
a = travel0,4 with cost of20 which precludesgi for being
considered (no benefit added). However, notice that there is
another actionb = travel3,4 with original aggregated cost
of 50 (due to its precondition), whose cost gets modified by
our new relaxed plan extraction procedure since its precon-
dition (at waypoint3) is being supported indirectly by our
previousRp∗i . By considering actionb, the residual cost for
supportingsoil4 lowers to5, and as a result it can be con-
sidered for inclusion.

Finally, the algorithm will output the goal setG∗ that
maximizes the net benefitB∗

MAX among all the different
goal partitionsG′

i. Following Example 2 from Figure 6, we
would consider 7 goal groups having the following parti-
tions: g1 = soil1 & GL1 = {g2}, g2 = rock1 & GL2 =
{g1}, g3 = rock2 & GL3 = ∅, g4 = rock3 & GL4 =
{g5, g6, g7}, g5 = soil3 & GL5 = {g4, g6, g7}, g6 =
rock4 & GL6 = {g7}, g7 = soil4 & GL7 = {g6}. The
final goal set returned by the algorithm in this example is
G∗ = {g4, g5, g6, g7}, which corresponds to the fourth par-
tition G′

4, with maximum benefit of49. Running the original
algorithm (from Figure 5) in this example would select goal
groupG′

3 = {g3} with final benefit of26.
Even though our algorithm may look expensive since it is

looking at different goal combinations on multiple groups,
it is still a greedy approximation of the full2n combinations
of an optimal approach. The reduction comes from setting
up the initial subgoals at each goal group at each iteration.
The worst case scenario of our algorithm would involve to
consider problems with no interactions and high goal utility
values, in which the whole set of remaining subgoals would
need to be considered at each group. Givenn top level goals
leading ton goal groups, the worst case running time sce-
nario of our approach would be in terms ofn ∗

∑n−1
i=1 i,

which is much better than the factor2n.

Penalty costs through mutex analysis

Although theMGS algorithm considers static mutexes, it
still misses negative interactions among goals that could af-
fect the goal selection process. This is mainly due to the
optimistic reachability analysis provided by the planning
graph. Consider again Example 2, and notice that goals
g5 = soil3 and g7 = soil4 are not statically interfering, and
they require a minimum of three steps (actions) to become
true in the planning graph (e.g.travel - sample - comm).
However, at level 3 of the planning graph these goals are
mutex, implying that there are some negative interactions



among them. Having found such interactions, we could as-
sign apenaltyPC to our residual cost estimate for ignoring
them.

Penalty costs through subgoal interactions A first ap-
proach for assigning such a penalty costPC , which we call
NEGFM ,5 follows our work from (Nguyen, Kambham-
pati, & Sanchez 2002) considering the binary interaction de-
greeδ among a pair of propositions. The idea is that every
time a new subgoalg gets considered for inclusion in our
goal setG′, we computeδ amongg and every other sub-
goal g′ ∈ G′. At the end, we output the pair [g, g′] with
highest interaction degreeδ if any. Recalling from (Nguyen,
Kambhampati, & Sanchez 2002)δ gets computed using the
following equation:

δ(p1, p2) = lev(p1 ∧ p2) − max{lev(p1), lev(p2)} (1)

Wherelev(S) corresponds to the set level heuristic that
specifies the earliest level in the planning graph in which
the propositions in the setS appear and are not mutex to
each other (Nguyen, Kambhampati, & Sanchez 2002). Ob-
viously, if not such level exists thenlev(S) = ∞, which is
the case for static mutex propositions.

The binary degree of interactionδ provide a clean way for
assigning a penalty cost to a pair of propositions in the con-
text of heuristics based on number of actions, given thatδ
is representing the number of extra steps (actions) required
to make such pair of propositions mutex free in the planning
graph. Following our current example,lev(g5 ∧ g7) = 5
(due to dummy actions), as a resultδ(g5, g7) = 2 represents
the cost for ignoring the interactions. However, in the con-
text of our PSP problem, where actions have real execution
costs and propositions have costs of achievement attached
to them, it is not clear how to compute a penalty cost when
negative interactions are found.

Having found the pair with highestδ(g, g′)g′∈G′ value,
our first solutionNEGFM considers the maximum cost
among both subgoals in the final levelloff of the planning
graph as the penalty costPC for ignoring such interaction.
This is defined as:

PC(g,G′)NEGFM = max

{

(C(g, loff ), C(g′, loff ))
: g′ ∈ G′ ∧ max(δ(g, g′))

}

(2)
NEGFM is greedy in the sense that it only considers the

pair of interacting goals with maximumδ value. It is also
greedy in considering only the maximum cost among the
subgoals in the interacting pair as the minimum amount of
extra cost needed to overcome the interactions generated by
the subgoalg being evaluated. AlthoughNEGFM is easy
to compute, it is not very informative affecting the quality
of the solutions returned. The main reason for this is that
we have already considered partially the cost of achievingg
when its relaxed plan is computed, and we are in some sense
blindly over-counting the cost ifC(g, loff ) gets selected as
the penaltyPC . Despite these clear problems,NEGFM is
able to improve in problems with complex interactions over
our original algorithm.

5Negative Factor: Max

ProcedureNEGFAM(G, RpG, g′, ag′ )
cost1 ← 0, cost2 ← 0
PC ← 0, maxCost← 0
for (gi ∈ G)

ai ← getSupportingAction(gi, RpG)
cost1 ← competingNeedsCost(gi, ai, g

′, ag′)
cost2 ← interferenceCost(gi, ai, g

′, ag′)
maxCost← max(cost1, cost2)
if (maxCost > PC )

PC ← maxCost

end for
return PC ;

End NEGFAM;

Figure 8: Interactions through actions

Penalty costs through action interactions A better idea
for computing the negative interactions among subgoals is to
consider the interactions among the actions supporting such
subgoals in our relaxed plans, and locate the possible reason
for such interactions to penalize them. Interactions could
arise because our relaxed plan computation is greedy. It only
considers the cheapest action6 to support a given subgoalg′,
ignoring any negative interactions of the subgoal. Therefore,
the intuition behind this idea is to adjust the residual cost
returned by our relaxed plans, by assigning a penalty cost
when interactions among their actions are found in order to
get better estimates. We called this ideaNEGFAM .7

NEGFAM is also greedy because it only considers the
actions directly supporting the subgoals in the relaxed plan,
and it always keeps the interaction with maximum cost as its
penalty cost. In case that there is no supporting action for a
given subgoalg′ (e.g. if g′ ∈ I), the algorithm will takeg′

itself for comparison.NEGFAM considers the following
types of action interaction based on (Weld 1999):

1. Competing Needs: Two actionsa and b have precondi-
tions that arestaticallymutually exclusive, or at least one
precondition ofa is statically mutually exclusive with the
subgoalg′ given.

2. Interference: Two actionsa and b, or one actiona and
a subgoalg′ are interfering if the effect ofa deletesb’s
preconditions, ora deletesg′.

Notice that we are only considering pairs of static mutex
propositions when we do the action interaction analysis. The
reason for this is that we just want to identify those precon-
ditions that are critically responsible for the actions interac-
tions, and give a penalty cost based on them. Once found
a pair of static propositions, we have different ways of pe-
nalizing them. We show the description of theNEGFAM
technique on Figure 8. The procedure gets the current se-
lected goalsG, the relaxed planRpG supporting them, and
the subgoalg′ being evaluated and actionag′ supporting it.
Then, it computes two different costs, one based on the com-

6With respect toC(a, l) + Ca
7Negative Factor By Actions: Max



a) DriverLog Domain b) Rover Domain

Figure 9: Empirical Evaluation: Solution quality and totalrunning time

peting needs of actions, and the second one based on their
interference:

• For competing needs, we identify the proposition with
maximum cost in the pair of static preconditions of
the actions, and we setPC to this cost. The
idea is to identify what the minimum cost would
be in order to support two competing preconditions.
Given p1 ∧ p2, where p1 ∈ Prec(ai) and p2 ∈
Prec(ag′), or p2 = g′ when ¬∃ag′

, the cost iscost1
= max(C(p1, leveloff),C(p2, leveloff)) if lev(p1 ∧
p2) = ∞. This penalty gets computed using the proce-
durecompetingNeedsCost(gi, ai, g

′, ag′) in Figure 8.

• In case of interference, our penalty costPC is set to
the cheapest alternate way (i.e. action) for supporting a
proposition being deleted. The idea is to identify what the
additional cost would be in order to restore a critical pre-
condition, which needs to be deleted to achieve another
subgoal. Givenp1 ∈ Prec(ai), and¬p1 ∈ Eff(ag′) or
g′ = ¬p1, the cost iscost2 = min{Cx : ∀x s.t p1 ∈
Eff(x)}. This cost is computed using the procedure
InterferenceCost(gi, ai, g

′, ag′).

Our algorithm then selects the cost that maximizes our return
valuePC given by the two techniques mentioned above. Our
PC is then added to the residual cost of subgoalg′.

Following our example 2 (Figure 6), we already men-
tioned that if we choseg3 = rock2 we would also select
g1 = soil1 and g2 = rock1 in our original algorithm,
which is not feasible. However, by taking into account the
negative interactions among subgoals withNEGFAM we
would discard such unfeasible sets. For example, suppose
that G = {g3} and RpG = {travel0,2, samplerock2,2,
commrock2,2,0}, and the goal being considered for in-
clusion is g′ = g1 with residual cost 19, correspond-
ing to its relaxed planRpg′ = {travel0,1, samplesoil1,1,

commrock1,1,0}. Notice that the supporting actions forg3

and g1 are commrock2,2,0 and commsoil1,1,0 respectively.
These actions have competing needs, one action requires
the rover to be atwaypoint2 while the other one assumes
the rover is atwaypoint1. The penalty costPC given by
NEGFAM for ignoring such interaction is 10, which is
the maximum cost among the static mutex preconditions.
Adding this value to our residual cost gives us a final cost
of 29, which precludes the algorithm for consideringg1 (i.e.
benefit = 20 - 29). AlthoughNEGFAM is also greedy
since it may over increase the residual cost of a subgoalg′,
it improves over our original algorithm andNEGFM , re-
turning better quality solutions for problems with complex
interactions (as will be shown in our next section).

Empirical Evaluation

In the foregoing, we have described with illustrative exam-
ples, how complex interactions may affect the goal set selec-
tion process ofAltAlt ps . Our aim in this section is to show
that planning graph reachability heuristics augmented with
mutex analysis still provide efficient estimates for solving
the PSP NET BENEFIT problem in the presence of complex
goal interactions.

Since there are no benchmark PSP problems, we used
existing STRIPS planning domains from the 2002 Interna-
tional Planning Competition (Long & Fox 2003), and modi-
fied them to support explicit declaration of goal utilities and
action costs. In particular, our experiments include the do-
mains of DriverLog and Rover. For the DriverLog domain,
goal utilities ranged from 40 to 100, while the costs of the
actions ranged from 3 to 70. Goal interactions were in-
creased by considering bigger action execution costs, and
modified paths in the network that the planning agent has to
traverse. The idea was to place the most rewarding goals in
the costlier paths of the network in order to increase the com-



plexity of finding the most beneficial subset of goals. For
the Rover domain, utilities ranged from 20 to 30, and action
execution costs ranged from 4 to 45. In addition to the modi-
fications introduced in the DriverLog domain to increase the
level of interactions among goals, the Rover domain also al-
lows for dead-ends, and loops in the network that the rover
has to traverse. The idea was to present more options for the
planning agent to fail. Consequently, it proved to be much
more difficult to solve restricting even more the attainabil-
ity of multiple goal sets. The design of this domain was in-
spired by the Rover domain presented by Smith(2004), with-
out considering resources in our domain description.

We compared our new approachAltWlt to its predecessor
(AltAlt ps ), andSapaps (van den Brielet al. 2004). Al-
thoughSapaps also uses planning graph heuristics to rank
their goals, it does not provide mutex analysis and its search
algorithm is different. UnlikeAltWlt , Sapaps does not se-
lect a subset of the goals up front, but uses an anytime
A* heuristic search framework in which goals are treated
as ”soft constraints” to select them during planning. Any
executable plan is considered a potential solution, with the
quality of the plan measured in terms of its net benefit. We
considered it pertinent to take into account both planners to
see more clearly the impact of the techniques introduced in
this paper. We have also included in this section a run of
OptiPlan(van den Brielet al. 2004) in the Rover domain,
to demonstrate that our greedy approach is able to return
high quality plans.OptiPlanis a planner that builds on the
work of solving planning problems through IP (Vossen, Ball,
& Nau 1999), which generates plans that are optimal for a
given plan length.8 We did not compare to the approach
presented by Smith(2004) because his approach was not yet
available by the time of this writing.9 All four planners were
run on a P4 2.67Ghz CPU machine with 1.0GB RAM.

Figure 9 shows our results in the DriverLog and Rover
domains. We see thatAltWlt outperformsAltAlt ps and
Sapaps in most of the problems, returning higher quality
solutions. In fact, it can be seen thatAltWlt returns 13 times
as much net benefit on average thanAltAlt ps in the Driver-
Log domain (i.e a1300% benefit increase). A similar sce-
nario occurs withSapaps , whereAltWlt returns 1.42 times
as much more benefit on average (a42% benefit increase).
A similar situation occurs with the Rover domain in Figure 9
(b), in whichAltWlt returns 10 and 12 times as much more
benefit on average thanAltAlt ps andSapaps respectively.
This corresponds to a1000% and 1200% benefit increase
over them. AlthoughOptiPlanshould in theory return op-
timal solutions for a given length, it is not able to scale up,
reporting only upper bounds on most of its solutions. Fur-
thermore, notice also in the plots that the total running time
taken byAltWlt incurs a very little additional overhead over
AltAlt ps , and it is completely negligible in comparison to

8For a more comprehensive description onOptiPlan
see (van den Brielet al. 2004).

9Smith’s approach takes as input a non-standard PDDL lan-
guage, without the explicit representation of the operators descrip-
tions.

Sapaps or OptiPlan.
Looking at the run times, it could appear at first glance

that the set of problems are relatively easy to solve given the
total accumulated time ofAltAlt ps . However, remember
that for many classes of PSP problems, a trivially feasible,
but decidedly non-optimal solution would be the “null” plan,
andAltAlt ps is in fact returning faster but much lower qual-
ity solutions. We can see that the techniques introduced in
AltWlt are helping the approach to select better goal sets
by accounting for interactions. This is not happening in
AltAlt ps , where the goal sets returned are very small and
easier to solve.

We also tested the performance ofAltWlt in problems
with less interactions. Specifically, we solved the suite of
random problems from (van den Brielet al. 2004), includ-
ing the ZenoTravel and Satellite planning domains (Long &
Fox 2003). Although the gains there were less impressive,
AltWlt was able to produce in general better quality solu-
tions than the other approaches, returning bigger total net
benefits.

Related Work

As we mentioned earlier, there has been very little work on
PSP in planning. One possible exception is the PYRRHUS
planning system (Williamson & Hanks 1994) which consid-
ers an interesting variant of the partial satisfaction planning
problem. In PYRRHUS, the quality of the plans is measured
by the utilities of the goals and the amount of resource con-
sumed. Utilities of goals decrease if they are achieved later
than the goals’ deadlines. Unlike the PSP problem discussed
in this paper, all the logical goals still need to be achievedby
PYRRHUS for the plan to be valid. It would be interesting
to extend the PSP model to consider degree of satisfaction
of individual goals.

More recently, Smith (2003) motivated oversubscription
problems in terms of their applicability to the NASA plan-
ning problems. Smith (2004) also proposed a planner for
oversubscription in which the solution of the abstracted
planning problem is used to select the subset of goals and
the orders to achieve them. The abstract planning problem
is built by propagating the cost on the planning graph and
constructing theorienteeringproblem. The goals and their
orderings are then used to guide a POCL planner. In this
sense, this approach is similar toAltAlt ps ; however, the ori-
enteering problem needs to be constructed using domain-
knowledge for different planning domains. Smith (2004)
also speculated that planning-graph based heuristics are
not particularly suitable for PSP problems where goals are
highly interacting. His main argument is that heuristic es-
timates derived from planning graphs implicitly make the
assumption that goals are independent. However, as shown
in this paper, reachability estimates can be improved using
the mutex information also contained in planning graphs, al-
lowing us to solve problems with complex goal interactions.

Probably the most obvious way to optimally solve the
PSP NET BENEFIT problem is by modeling it as a fully-
observable Markov Decision Process (MDP) (Boutilier,



Dean, & Hanks 1999) with a finite set of states. MDPs nat-
urally permit action cost and goal utilities, but we found in
our studies that an MDP based approach for the PSP NET

BENEFIT problem appears to be impractical, even the very
small problems generate too many states. To prove our as-
sumption, we modeled a set of test problems as MDPs and
solved them using SPUDD (Hoeyet al. 1999).10 SPUDD
is an MDP solver that uses value iteration on algebraic deci-
sion diagrams, which provides an efficient representation of
the planning problem. Unfortunately, SPUDD was not able
to scale up, solving only the smallest problems.11

Over-subscription issues have received relatively more
attention in the scheduling community. Earlier work in
scheduling over-subscription used greedy approaches, in
which tasks of higher priorities are scheduled first (Kramer
& Giuliano 1997; Potter & Gasch 1998). The approach
used byAltWlt is more sophisticated in that it considers
the residual cost of a subgoal in the context of an existing
partial plan for achieving other selected goals, taking into
account complex interactions among the goals. More re-
cent efforts have used stochastic greedy search algorithms
on constraint-based intervals (Franket al. 2001), genetic al-
gorithms (Globuset al. 2003), and iterative repairing tech-
nique (Kramer & Smith 2003) to solve this problem more
effectively.

Conclusions

Motivated by the observations in (Smith 2004) that Planning
Graph based heuristics may not be able to handle complex
subgoals interactions in PSP problems, we extended our pre-
vious work onAltAlt ps (van den Brielet al. 2004) to over-
come such problems. In this paper, we have introducedAl-
tWlt, a greedy approach based onAltAlt ps that augments
its goal set selection procedure by considering multiple goal
groups and mutex analysis.

The general idea behind our new approach is to consider
more aggressively multiple combinations of subgoals during
the selection process.AltWlt is still greedy since it modifies
the original relaxed plan extraction procedure to better ac-
count for positive interactions among subgoals, adding also
penalty costs for ignoring negative interactions among the
actions supporting them.

Our empirical results show thatAltWlt is able to gen-
erate plans with better quality than the ones generated by
its predecessor andSapaps , while incurring only a frac-
tion of the running time. We demonstrated that the tech-
niques employed inAltWlt really pay off in problems with
highly interacting goals. This shows that selection of objec-
tives in over-subscription problems could be handled using
planning-graph based heuristics.

10We thank Will Cushing and Menkes van den Briel who first
suggested the MDP modeling idea.

11Details on the MDP model and results can be found in (van den
Briel et al. 2005).

References
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
JAIR11:1–94.

Do, M., and Kambhampati, S. 2003. Sapa: a multi-objective
metric temporal planner.JAIR20:155–194.

Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2001. Planning
and scheduling for fleets of earth observing satellites. InSixth Int.
Symp. on Artificial Intelligence, Robotics, Automation & Space.

Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2003. Schedul-
ing earth observing sateliites with evolutionary algorithms. In
Proceedings Int. Conf. on Space Mission Challenges for Infor.
Tech.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. Spudd:
Stochastic planning using decision diagrams. InProceedings of
the 15th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-99), 279–288.

Hoffman, J., and Nebel, B. 2001. The ff planning system: Fast
plan generation through heuristic search.JAIR14:253–302.

Kramer, L., and Giuliano, M. 1997. Reasoning about and
scheduling linked hst observations with spike. InProceedings
of Int. Workshop on Planning and Scheduling for Space.

Kramer, L., and Smith, S. 2003. Maximizing flexibility: A re-
traction heuristic for oversubscribed scheduling problems. InPro-
ceedings of IJCAI-03.

Long, D., and Fox, M. 2003. The 3rd international planning
competition: results and analysis.JAIR20:1–59.

Nguyen, X.; Kambhampati, S.; and Sanchez, R. 2002. Planning
graph as the basis for deriving heuristics for plan synthesis by
state space and CSP search.Artificial Intelligence135(1-2):73–
123.

Potter, W., and Gasch, J. 1998. A photo album of earth:
Scheduling landsat 7 mission daily activities. InProceedings of
SpaceOps.

Smith, D. 2003. The mystery talk. Plannet Summer School.

Smith, D. 2004. Choosing objectives in over-subscription plan-
ning. InProceedings of ICAPS-04.

van den Briel, M.; Sanchez, R.; Do, M.; and Kambhampati,
S. 2004. Effective approaches for partial satisfation (over-
subscription) planning. InProceedings of AAAI-04.

van den Briel, M.; Sanchez, R.; Do, M.; and Kambhampati, S.
2005. Planning for over-subscription problems. Arizona State
University, Technical Report.

Vossen, T.; Ball, M.; and Nau, D. 1999. On the use of integer
programming models in ai planning. InProceedings of IJCAI-99.

Weld, D. 1999. Recent advances in ai planning.AI Magazine
20(2):93–123.

Williamson, M., and Hanks, S. 1994. Optimal planning with a
goal-directed utility model. InProceedings of AIPS-94.


