
Sequential Monte Carlo in Reachability Heuristics
for Probabilistic Planning

Daniel Bryce, aSubbarao Kambhampati, a and David E. Smith b

a Arizona State University, Department of Computer Science and Engineering
Brickyard Suite 501, 699 South Mill Avenue, Tempe, AZ 85281

b NASA Ames Research Center, Intelligent Systems Division
MS 269-2 Moffett Field, CA 94035-1000

Abstract

The current best conformant probabilistic planners encode the problem as a bounded length
CSP or SAT problem. While these approaches can find optimal solutions for given plan
lengths, they often do not scale for large problems or plan lengths. As has been shown in
classical planning, heuristic search outperforms CSP/SAT techniques (especially when a
plan length is not given a priori). The problem with applying heuristic search in probabilis-
tic planning is that effective heuristics are as yet lacking.

In this work, we apply heuristic search to conformant probabilistic planning by adapting
planning graph heuristics developed for non-deterministic planning. We evaluate a straight-
forward application of these planning graph techniques, which amounts to exactly comput-
ing the distribution over reachable relaxed planning graph layers. Computing these distri-
butions is costly, so we apply Sequential Monte Carlo (SMC) to approximate them. A key
issue we explore within SMC is how to automatically determine the number of samples
required for effective heuristic computation. We demonstrate on several domains how our
approach enables our planner to far out-scale existing (optimal) probabilistic planners and
still find reasonable quality solutions.

Key words: Planning, Heuristics

1 Introduction

Despite long standing interest [21,25,15,16], probabilistic plan synthesis algorithms
have a terrible track record in terms of scalability. The current best conformant
probabilistic planners are only able to handle very small problems. In contrast, there
has been steady progress in scaling deterministic planning. Much of this progress
has come from the use of sophisticated reachability heuristics. In this work, we

Preprint submitted to Artificial Intelligence 7 July 2006

rao
Text Box
ASU CSE TR-06-013; July 2006

show how to effectively use reachability heuristics [4] to solve conformant prob-
abilistic planning (CPP) problems. We use work on planning graph heuristics for
non-deterministic planning [5,12] as our starting point.

We investigate an extension of the work by Bryce, et. al. [5] that uses a planning
graph generalization called the labelled uncertainty graph (LUG). The LUG is used
to symbolically represent a set of relaxed planning graphs (much like the planning
graphs used by Conformant GraphPlan, [30]), where each is associated with a pos-
sible state. While the LUG (as described by, [5]) works only with state uncertainty,
it is necessary in CPP to handle action uncertainty. Extending the LUG to consider
action uncertainty involves symbolically representing how at each level CGP ex-
plicitly splits the planning graph over all joint outcomes of uncertain actions. In
order to capture all possible worlds, each time step has a set of planning graph lay-
ers defined by the cross product of an exponential set of joint action outcomes and
an exponential number of proposition layers from the previous level. The planning
graph becomes tree-like, where each branch corresponds to a possible world. A
possible world corresponds to the joint outcome of a set of uncertain events (i.e., a
path starting with a possible initial state and continuing through a joint outcome of
actions at each planning graph level).

Without uncertain actions, the LUG worked well because while there were an expo-
nential number of possible worlds at each time step the number was held constant.
With uncertain actions, an explicit or symbolic representation of planning graphs
for all possible worlds at each time step is exactly representing an exponentially
increasing set. Since we are only interested in planning graphs to compute heuris-
tics, it is both impractical and unnecessary to exactly represent all of the possible
worlds. We turn to approximate methods for representing the possible worlds. Since
we are applying planning graphs in a probabilistic setting, we can use Monte Carlo
techniques to construct planning graphs.

There are a wealth of methods, that fall under the name sequential Monte Carlo
(SMC) [9] for reasoning about a hidden random variable over time. SMC applied
to “on-line” Bayesian filtering is often called particle filtering, however we use
SMC for “off-line” prediction. The idea behind SMC is to represent a probabil-
ity distribution as a set of samples (particles), which evolve recursively over time
by sampling a transition function. In our application, each particle is a possible
world in a conformant planning graph (i.e., a particle is a (simulated) deterministic
planning graph). Using particles is much cheaper than splitting over all joint out-
comes of uncertain actions to represent the true distribution over possible worlds
in the planning graph. By using more particles, we capture more possible worlds,
exploiting the natural affinity between SMC approximation and heuristic accuracy.

The SMC technique requires multiple planning graphs (each a particle), but their
number is fixed. We could represent each planning graph explicitly, but they may
have considerable redundant structure. Instead, we generalize the LUG to symbol-

2

ically represent the set of planning graph particles in a planning graph we call the
Monte Carlo LUG (McLUG). We show that by using the McLUG to extract a
relaxed plan heuristic we are able to greatly out-scale the current best conformant
probabilistic planner CPplan [16,15] in a number of domains, without giving up
too much in terms of plan quality.

A natural question that accompanies most SMC approaches is deciding how many
samples to use. As we will demonstrate, each planning problem requires a differ-
ent number of samples in each McLUG. In order to support the ideal of domain-
independent planning, we present a technique to automatically determine the num-
ber of samples. The automated technique, which relies on existing research [10] on
particle filters, outperforms the best manually selected number of particles across
many domains.

Our presentation starts by describing the relevant background of CPP and repre-
sentation within our planner, and then gives a brief primer on SMC for prediction.
We follow with a worked example of how to construct planning graphs that ex-
actly compute the probability distribution over possible worlds versus using SMC,
as well as how one would symbolically represent planning graph particles. After
the intuitive example, we give the details of McLUG, the associated relaxed plan
heuristic, and the technique for determining the number of samples. We also ad-
dress the all important issue of finding an appropriate number of particles to use in
each McLUG. Finally, we present an empirical analysis of our techniques by com-
paring with CPplan, analyzing the effect of using a different number of particles.We
finish with a discussion of related work, and conclusions.

2 Background & Representation

In this section we give a brief introduction to planning graph heuristics, and then
describe our action and belief state representation, the CPP problem, the semantics
of conformant probabilistic plans, and our search algorithm.

Planning Graph Heuristics: Planning graphs have become the foundation for
most modern heuristic search planners [4]. A planning graph relaxes the planning
problem by ignoring some or all negative interactions between actions. The idea
is to hypothesize which actions can be applied to the current search node, then
determine what propositions are possible in successor states. We then find which
actions can be supported by these propositions. This alternation of possible action
and proposition layers continues until we find that all of the goal propositions are
possible in a proposition layer. At this point it is possible to reason backwards to
find the actions needed to support the goals while ignoring negative interactions.
The resulting set of actions is termed a relaxed plan, and the number of actions can

3

be used as a heuristic.

Definition 1 (Conformant Probabilistic Planning Problem) A Conformant Prob-
abilistic Planning Problem defines the tuple CPP = 〈P,A, bI , G, τ〉, where P is a
set of propositions, A is a set of actions, bI is an initial belief state, G is the goal de-
scription (a conjunctive set of propositions), and τ is a goal satisfaction threshold
(0 < τ ≤ 1).

Belief States: A state of the world s is a set of propositions s ⊆ P , where a propo-
sition holds (does not hold) in s if p ∈ s (p �∈ s) . A belief state is a probability
distribution over all states (or equivalently, the power set of propositions). The prob-
ability of a state s in a belief state b is denoted b(s). We say that a state s is in b
(s ∈ b) if b(s) > 0. The marginal probability of a set of propositions Pt ⊆ P that
hold and a set of propositions Pf ⊆ P (Pt ∩Pf = ∅) which do not hold, is denoted
b(Pt, Pf), and computed as b(Pt, Pf) =

∑
s∈b,Pt⊆s,Pf∩s=∅ b(s) .

Actions: An action a is a tuple 〈ρe(a), Φ(a)〉, where ρe(a) is an enabling precon-
dition, and Φ(a) is a set of causative outcomes. The enabling precondition ρe(a) is
a conjunctive set of propositions that determines action applicability. For the ease
of discussion our formalism allows only positive propositions in preconditions, but
our planner implementation directly allows negative propositions in preconditions
and goals. An action a is applicable appl(a, b) to belief state b iff ∀s∈bρ

e(a) ⊆ s.
The causative outcomes Φ(a) are a set of tuples 〈wi(a), Φi(a)〉 representing possi-
ble outcomes (indexed by i), where wi(a) is the probability of outcome i being real-
ized, and Φi(a) is a mutually-exclusive and exhaustive set of conditional effects (in-
dexed by j). Each conditional effect ϕij(a) ∈ Φi(a) is of the form ρij(a) → εij(a),
where both the antecedent (secondary precondition) ρij(a) and consequent εij(a)
are a conjunctive set of propositions. This representation of effects follows the 1ND
normal form presented by Rintanen [29]. As outlined in the PPDDL standard [32],
for every action we can use Φ(a) to derive a state transition function T (s, a, s′) that
defines a probability that executing a in state s will result in state s′. Thus, execut-
ing action a in belief state b, denoted exec(a, b) = ba, defines the probability of
each state in the successor belief state as ba(s

′) =
∑

s∈b b(s)T (s, a, s′).

Definition 2 (Conformant Probabilistic Plan) A conformant plan P is of the form
P ::=⊥ | a | a;P . Executing a plan in belief state b defines successor belief states
as follows: exec(⊥, b) = b, exec(a, b) = ba, and exec(a;P, b) = exec(P, ba). A
plan (a0; a1; ...; am) is executable with respect to bI if each action ai is applicable
appl(ai, bi) to a belief state bi, where bi = exec(a0; ...; ai−1, b0) and bI = b0. If plan
P is executable for bI , and bP = exec(P, bI), then P satisfies G with probability
bP(G, ∅). If bP(G, ∅) ≥ τ , the plan solves the problem.

Search: We use forward-chaining, weighted A* search to find solutions to CPP.
The search graph is organized using nodes to represent belief states, and edges for

4

actions. A solution is a path in the search graph from bI to a terminal node. We
define terminal nodes as belief states where b(G, ∅) ≥ τ . The g-value of a node is
the length of the minimum length path to reach the node from bI . The f-value of a
node is g(b)+ 5h(b), using a weight of 5 for the heuristic. 1 In the remainder of the
paper we concentrate on the very important issue of how to compute h(b) using an
extension of planning graph heuristics to CPP.

3 Sequential Monte Carlo

In many scientific disciplines it is necessary to track the distribution over values
of a random variable X over time. This problem can be stated as a first-order sta-
tionary Markov process with an initial distribution Pr(X0) and transition equation
Pr(Xk|Xk−1). It is possible to compute the probability distribution over the val-
ues of X after k steps as Pr(Xk) =

∫
Pr(Xk|Xk−1)Pr(Xk−1)dXk−1. In general,

Pr(Xk) can be very difficult to compute exactly, even when it is a discrete distri-
bution (as in our scenario).

We can approximate Pr(Xk) as a set of N particles {xn
k}N−1

n=0 , where the probability
that Xk takes value xk,

Pr(Xk = xk) ≈ |{xn
k |xn

k=xk}|
N

is the proportion of particles taking on value xk. At time k = 0, the set of par-
ticles is drawn from the initial distribution Pr(X0). At each time step k > 0,
we simulate each particle from time k − 1 by sampling the transition equation
xn

k ∼ Pr(Xk|xn
k−1). In our application of SMC to approximate conformant plan-

ning graphs, particles represent possible worlds (deterministic planning graphs),
where at any time step the value of a particle denotes a specific joint outcome
of uncertain events (e.g., an initial state and joint action outcomes for each time
step). Our stochastic transition equation resembles the Conformant GraphPlan [30]
construction semantics (i.e., modeling the probability of achieving one proposition
layer from another, given the applicable actions).

We would like to point out that our SMC technique is inspired by, but different from
the standard particle filter. The difference is that we are using SMC for prediction
and not on-line filtering. We do not filter observations to weight our particles for
re-sampling. Particles are assumed to be unit weight throughout simulation.

1 Since our heuristic turns out to be inadmissible, the heuristic weight has no further bear-
ing on admissibility. In practice, using five as a heuristic weight tends to improve search
performance.

5

4 Monte Carlo Planning Graph Construction

We start with an example to give the intuition for Monte Carlo simulation in plan-
ning graph construction. Consider a simple Logistics domain where we wish to load
a specific freight package into a truck and loading works probabilistically (because
rain is making things slippery). There are two possible locations where we could
pick up the package, but we are unsure of which location. There are three propo-
sitions, P = { atP1, atP2, inP }, and our initial belief state bI has two states s0 =
{atP1} and s1 = {atP2} where bI(s0) = bI(s1) = 0.5, and the goal is G ={inP}.
The package is at location 1 (atP1) or location 2 (atP2) with equal probability, and
is definitely not in the truck (inP). Our actions are LoadP1 and LoadP2 to load the
package at locations 1 and 2, respectively. Both actions have an empty enabling
precondition {} (so they are always applicable) and have two outcomes. The first
outcome, with probability 0.8, loads the package if it is at the location, and the
second outcome, with probability 0.2, does nothing. We assume for the purpose of
exposition that driving between locations in not necessary. The descriptions of the
actions are:

LoadP1 = 〈{}, {〈0.8, {atP1→inP}〉, 〈0.2, {}〉}〉

LoadP2 = 〈{}, {〈0.8, {atP2→inP}〉, 〈0.2, {}〉}〉

Each action has two outcomes. The first outcome has a single conditional effect,
and the second has no effects (which we denote by “Noop” in Figure 1, 2, and 3).

Figures 1, 2, and 3 illustrate several approaches to planning graph based reacha-
bility analysis for our simplified Logistics domain. (We assume we are evaluating
the heuristic value h(bI) of reaching G from our initial belief state.) The first is in
the spirit of Conformant GraphPlan, where uncertainty is handled by splitting the
planning graph layers for all outcomes of uncertain events. CGP creates a plan-
ning graph that resembles a tree, where each branch corresponds to a deterministic
planning graph.

CGP: In Figure 1, we see that there are two initial proposition layers (denoted by
propositions in boxes), one for each possible world at time zero. We denote the
uncertainty in the source belief state by X0, which takes on values s0, s1 (for each
state in our belief state). Both load actions are applicable in both possible worlds
because their enabling preconditions are always satisfied. The edges leaving the ac-
tions denote the probabilistic outcomes (each a set of conditional effects). While it
is possible for any outcome of an action to occur, the effects of the outcome may not
have their secondary precondition supported. In world s0, if outcome Φ0(LoadP1)
occurs, then effect ϕ00(LoadP1) (denoted by atP1→inP) is enabled and will occur,
however even if Φ0(LoadP2) occurs ϕ00(LoadP2) is not enabled and will not occur.

6

LoadP1

LoadP2

atP1 inP

Noop

X0=s0

X0=s1

atP1

atP2 inP

Noop

X1=x0

X1=x1

X1=x2

X1=x3

atP1
inP

?

?

LoadP1

LoadP2

atP1 inP

Noop

atP2 inP

Noop

X1=x0

X1=x1

X1=x2

X1=x3

?

?

0.5

0.5

0.8

0.2

0.8

0.2

0.8

0.2

0.8

0.2

0.32

0.08

0.08

0.02

0.32

0.08

0.08

0.02

atP1
inP

atP1

atP1

atP2

atP2
inP

atP2

atP2
inP

atP2

s0x0

s0x1

s0x2

s0x3

s1x0

s1x1

s1x2

s1x3

s0
0.5

s1
0.5

0.64

0.16

0.16

0.04

0.64

0.16

0.16

0.04

Fig. 1. CGP representation.

The set of possible worlds at time one is determined by the cross product of action
outcomes in each world at time zero and the possible worlds at time zero. For in-
stance, possible world s0x0 is formed from world s0 when outcomes Φ0(LoadP1)
and Φ0(LoadP2) co-occur in s0. Likewise, world s1x2 is formed from world s1
when outcomes Φ1(LoadP1) and Φ0(LoadP2) occur in s1. (The edges from out-
comes to possible worlds in Figure 1 denote which outcomes are used to form the
worlds.)

CGP is exactly representing the reachable proposition layers for all possible worlds.
In our example, CGP could determine the exact distribution over possible worlds
at time one Pr(X0, X1). We see that our goal is satisfied in half of the possible
worlds at time 1, with a total probability of 0.8. It is possible to back-chain on this
graph like CGP search to extract a relaxed plan (by ignoring mutexes) that satisfies
the goal with 0.8 probability. However, we note that this is exactly representing all
possible worlds (which can increase exponentially).

7

LoadP1

LoadP2

atP1 inPx00=s0

x20=s1

atP1

atP2

Noop

atP1
inP

LoadP1 atP1 inP

LoadP1

LoadP2

atP1 inPx10=s0

Noop

LoadP2 atP2 inP

atP2
inP

x30=s1 atP2
LoadP1

LoadP2 atP2 inP

Noop

atP1
inP

atP2
inP

atP1

x01=x1

x21=x0

x11=x1

x31=x2

Fig. 2. McCGP representation.

McCGP: Next, we illustrate a Monte Carlo simulation approach we call Monte
Carlo CGP (McCGP), in Figure 2. The idea is to represent a set of N deterministic
planning graphs as particles. In our example, say we sample N = 4 states from
bI , denoted {xn

0}N−1
n=0 ∼ Pr(X0), where Pr(X0) = bI , and create an initial propo-

sition layer for each. To simulate a particle we first insert the applicable actions.
We then insert effects by sampling from the distribution of joint action outcomes
(i.e. xn

k ∼ Pr(Xk|xn
k−1)). (It is possible to sample the outcome of each action

independently because their outcomes are independent.) Finally, we construct the
subsequent proposition layer, given the sampled outcomes. Note that each particle
is a deterministic planning graph.

In our example, the simulation was lucky and the proposition layer for each particle
at time 1 satisfies the goal, so we may think the best one step plan achieves the goal
with certainty. From each of these graphs it is possible to extract a relaxed plan,
which can then be aggregated to give a heuristic as described by Bryce, et. al. [5].

While McCGP improves memory consumption by bounding the number of possible
worlds, it still wastes quite a bit of memory. Many of the proposition layers in the
resulting planning graphs are identical. Symbolic techniques can help us compactly
represent the set of planning graph particles.

8

atP2

LoadP1

LoadP2

atP1

atP2

atP1

atP1 inP

Noop

atP2 inP

Noop
?

?

inP

x20 x30

x10x00

x10x00
x20 x30

x10x00
x20 x30

x11x01

x31x30

x10x00
x20

x21 x31

x11x01

x11x01

x20 x30

x10x00

x21 x31

x11x01
x21 x31

Fig. 3. McLUG representation.

McLUG: Using ideas from Bryce, et. al. [5] , we can represent a single proposi-
tion layer at every time step for all particles in a planning graph called the Monte
Carlo LUG (McLUG), in Figure 3. We associate a label with each proposition,
action, and effect instead of generating multiple copies. The idea is to union the
connectivity of multiple planning graphs into a single planning graph skeleton, and
use labels on the actions and propositions to signify the original, explicit planning
graphs in which an action or proposition belongs. The contribution in the McLUG
is to represent a set of particles symbolically and provide a relaxed plan extraction
procedure that takes advantage of the symbolic representation.

5 Symbolic Planning Graph Representation

Bryce, et. al. [5] describe a planning graph generalization called the Labelled Un-
certainty Graph (LUG), used in non-deterministic conformant planning, that sym-
bolically represents the exponential number of planning graphs used by Confor-
mant GraphPlan [30]. Bryce et. al. [5] construct multiple planning graphs symbol-
ically by propagating “labels” over a single planning graph skeleton. The skele-
ton serves to represent the connectivity between actions and propositions in their
preconditions and effects. The labels on actions and propositions capture non-
determinism by indicating the outcomes of random events that support the actions

9

and propositions. In the problems considered by Bryce et. al. [5] there is only a
single random event X0 captured by labels because the actions are deterministic.
Where CGP would build a planning graph for each possible state, the LUG is able
to use labels to denote which of the explicit planning graphs would contain a given
proposition or action in a level. For instance, if CGP built a planning graph for pos-
sible worlds s1, ..., sn (each a state in a source belief state) and the planning graphs
for s1, ..., sm each had proposition p in level k, then the LUG would have p in level
k labelled with a propositional formula �k(p) whose models are {s1, ..., sm}. In the
worst case, the random event X0 captured by the labels has 2|P | outcomes (i.e., all
states are in the belief state), characterized by a logical formula over log2(2|P |) =
|P | boolean variables.

Bryce et. al. [5] construct the LUG until all goal propositions are labelled with all
states in the source belief state, meaning the goal is strongly reachable in the relaxed
plan space. The authors defined a strong relaxed plan procedure that back-chains on
the LUG to support the goal propositions in all possible worlds. This relaxed plan
proved effective for search in both conformant and conditional non-deterministic
planning.

5.1 Exact Symbolic Representation

Despite the utility of the LUG, it has a major limitation in that it does not reason
with actions that have uncertain effects, an essential feature of probabilistic plan-
ning. We would like to complete the analogy between the LUG and CGP by sym-
bolically representing uncertain effects. However, as we argue, exactly representing
all possible worlds is still too costly even with symbolic techniques.

We previously noted that the LUG symbolically represents Pr(X0) using labels
with |P | boolean variables. When we have uncertain actions, the distribution Pr(X1)
requires additional boolean variables. For example, if the action layer contains |A|
actions, each with m probabilistic outcomes, then we would require an additional
log2(m

|A|) = |A|log2(m) boolean variables (for a total of |P | + |A|log2(m) boolean
variables to exactly represent the distribution Pr(X1)). For the distribution after k
steps, we would need |P | + k|A|log2(m) boolean variables. In a reasonable sized
domain, where |P | = 20, |A| = 30, and m = 2, a LUG with k = 3 steps could
require 20+(3)30log2(2) = 110 boolean variables, and for k = 5 it needs 170. Cur-
rently, a label function with this many boolean variables is feasible to construct, but
is too costly for use in heuristics. We implemented this approach (representing la-
bels as BDDs [31]) and it performed very poorly; in particular it ran out of memory
constructing the first planning graph for the p2-2-2 Logistics problem, described in
our empirical evaluation.

We could potentially compile all action uncertainty into state uncertainty to alle-

10

viate the need for additional label variables. This technique, mentioned in [30],
involves making the uncertain outcome of each action conditional on a unique, ran-
dom, and unknown state variable for each possible time step the action can execute.
While this compilation would allow us to restrict the growth of LUG labels (to a
constant sized, but exponentially larger representation), there is a problem. We are
solving indefinite horizon planning problems, meaning that the number of possible
time points for an action to execute is unbounded. This further means that the size
of the compilation is unbounded. Consequently, we shift our focus to approximat-
ing the distribution using particles.

5.2 Symbolic Particle Representation (McLUG)

We describe how to construct a McLUG, a symbolic version of McCGP that we
use to extract relaxed plan heuristics. There are noticeable similarities to the LUG,
but by using a fixed number of particles we avoid adding boolean variables to the
label function at each level of the planning graph. We implement labels as boolean
formulas, but find it convenient in this context to describe them as sets of parti-
cles (where each particle is in reality a model of a boolean formula). The McLUG
is constructed with respect to a belief state encountered in search which we call
the source belief state. The algorithm to construct the McLUG starts by form-
ing an initial proposition layer L0 and an inductive step to generate a graph level
{Ak, Ek,Lk} consisting of an action, effect, and proposition layer. We describe
each part of this procedure in detail, then follow with a description of relaxed plan
extraction, and how to select the number of particles.

Initial Proposition Layer: The initial proposition layer is constructed with a set
of N particles {xn

0}N−1
n=0 drawn from the source belief state. Each particle xn

0 cor-
responds to a state s ∈ b in the source belief state. (The super-script of a particle
denotes its identity, and the sub-script denotes its time index.)

In the example (assuming N=4), the particles map to the states: x0
0 = s0, x1

0 =
s0, x2

0 = s1, x3
0 = s1.

The initial proposition layer L0 is a set of labelled propositions L0 = {p|�0(p) �=
∅}, where each proposition must be labelled with at least one particle. A proposition
is labelled �0(p) = {xn

0 |p ∈ s, xn
0 = s} to denote particles that correspond to states

where the proposition holds.

In the example, the initial proposition layer is L0 = {atP1, atP2}, and the labels
are:

�0(atP1) = {x0
0, x

1
0}

�0(atP2) = {x2
0, x

3
0}

11

Action Layer: The action layer at time k consists of all actions whose enabling
precondition is enabled, meaning all of the enabling preconditions hold together
in at least one particle. The action layer is defined as all enabled actions Ak =
{a|�k(a) �= ∅}, where the label of each action is the set of particles where it is
enabled �k(a) =

⋂
p∈ρe(a) �k(p). When the enabling precondition is empty the label

contains all particles.

In the example, the zeroth action layer is A0 = {LoadP1, LoadP2}, and the labels
are:

�0(LoadP1) = �0(LoadP2) = {x0
0, x

1
0, x

2
0, x

3
0}

Both actions are enabled for all particles because their enabling preconditions are
empty, thus always enabled.

Effect Layer: The effect layer contains all effects that are labelled with a parti-
cle Ek = {ϕij(a)| �k(ϕij(a)) �= ∅}. Determining which effects get labelled re-
quires simulating the path of each particle. The path of a particle is simulated
by sampling from the distribution over the joint outcomes of all enabled actions,
xn

k+1 ∼ P (Xk+1|xn
k). We sample by first identifying the actions that are applicable

for a particle xn
k . An action is applicable for particle xn

k if xn
k ∈ �k(a). For each ap-

plicable action we sample from the distribution of its outcomes. The set of sampled
outcomes identifies the path of xn

k to xn
k+1. We record the path by adding xn

k+1 to the
labels �k(ϕij(a)) of applicable effects of sampled outcomes. Note that even though
an outcome is sampled for a particle, some of its effects may not be applicable be-
cause their antecedents are not supported by the particle (i.e., xn

k �∈ ⋂
p∈ρij(a) �k(p)).

In the example, we first simulate x0
0 by sampling the outcomes of all actions ap-

plicable in x0
0, which is both Load actions. Suppose we get outcome 0 for LoadP1

and outcome 1 for LoadP2, which are then labelled with x0
1. Particle x1

0 happens
to sample the same outcomes as x0

0, and we treat it similarly. Particle x2
0 samples

outcome 0 of both actions. Note that we do not label the effect of outcome 0 for
LoadP1 with x2

1 because the effect is not enabled in x2
0. Finally, for particle x3

0 we
sample outcome 1 of LoadP1 and outcome 0 of LoadP2. Thus, the effect layer is
E0 = {ϕ00(LoadP1), ϕ10(LoadP1), ϕ00(LoadP2), ϕ10(LoadP2)}, labelled as:

�0(ϕ00(LoadP1)) = {x0
1, x

1
1}

�0(ϕ10(LoadP1)) = {x3
1}

�0(ϕ00(LoadP2)) = {x2
1, x

3
1}

�0(ϕ10(LoadP2)) = {x0
1, x

1
1}

Proposition Layer: Proposition layer Lk contains all propositions that are given
by an effect in Ek−1. Each proposition is labelled by the particles of every effect

12

that give it support. The proposition layer is defined as Lk = {p|�k(p) �= ∅}, where
the label of a proposition is �k(p) =

⋃
ϕij(a)∈Ek−1:p∈εij(a) �k−1(ϕij(a)).

In the example, the level one proposition layer is L1 = L0∪{inP}. The propositions
are labelled as:

�1(atP1) = {x0
1, x

1
1}

�1(atP2) = {x2
1, x

3
1}

�1(inP) = {x0
1, x

1
1, x

2
1, x

3
1}

The propositions from the previous proposition layer L0 persist through implicit
noop actions, allowing them to be labelled as in the previous level – in addition to
particles from any new supporters. The inP proposition is supported by two effects,
and the union of their particles define the label.

Termination: McLUG construction continues until a proposition layer supports
the goal with probability no less than τ . We assess the probability of the goal at
level k by finding the set of particles where the goal is supported and taking the
ratio of its size with N. Formally,

Pr(G|Xk) ≈ |
⋂

p∈G
�k(p)|

N

We also define level off for the McLUG as the condition when every proposition in
a proposition layer is labelled with the same number of particles as in the previous
level. If level off is reached without Pr(G|Xk) ≥ τ , then we set the heuristic value
of the source belief state to ∞.

We note that whether we use the estimated probability of goal satisfaction or level
off to terminate McLUG expansion, it is possible for the McLUG to continue
changing (if we were to further expand). It should be clear that goal satisfaction will
increase monotonically as the number of levels grows. It is less obvious that level
off is not a sufficient fix point criterion. Since we are sampling action outcomes, it is
possible to reach level off without sampling an outcome that will add new particles
that label the goal. However, it is possible that expansion after level off will sample
the outcome and change the particles that label the goal.

Another issue that affects our relaxed plan heuristic (described next) is the choice
of the level to support the goals and/or terminate expansion. We obviously want
to support the goals no earlier than the level where the achievement probability is
greater or equal to τ . It is not clear which of the later levels to use. In each extra level
it is presumably more costly to support the goal, but with a potentially higher prob-
ability. This issue reveals the multi-objective (decision-theoretic) nature of CPP.
Since the CPP problem itself is not defined as multi-objective, we make the follow-
ing assumption about desirable plans. We wish to minimize the cost of a plan that
achieves the goal with probability no less than τ . As such, we terminate McLUG

13

expansion at the first proposition layer that satisfies the goal with probability no
less than τ . It should be straight forward to adapt the McLUG to the more general
multi-objective setting, however we do not do so here.

5.3 Heuristics

We just defined how to terminate construction of the McLUG at level k, and we
can use k as a measure of the number of steps needed to achieve the goal with
probability no less than τ . This heuristic is similar to the level heuristic defined
for the LUG [5]. As has been shown in non-deterministic and classical planning,
relaxed plan heuristics are often much more effective, despite being inadmissible.
Since we are already approximating the possible world distribution of the planning
graph and losing admissibility, we decide to use relaxed plans as our heuristic.

The intuition behind a conformant relaxed plan is to measure both the positive inter-
action and independence between particles as they co-achieve the goals [5]. Rather
than finding a relaxed plan for each particle and taking the maximum or summa-
tion of their respective numbers of actions, we attempt to align the relaxed plans
to maximize overlap. We count the actions used in common between particles only
once to account for positive interaction. Actions not used in common contribute
to measuring independence between particles. The total number of actions in the
aligned relaxed plan becomes the heuristic. Extraction from the McLUG is very
fast because the symbolic representation lets us obtain this conformant relaxed plan
for all particles at once, rather than each individually and merging them. Since we
know which particles support the goals and which paths the particles took through
the McLUG, we can pick actions labelled with these particles to support the goal.
Picking actions that support in many particles at once helps maximize positive in-
teraction between particles (which is equivalent to selecting actions that will work
in high probability plans).

In our example, the goal inP is labelled with four particles {x0
1, x

1
1, x

2
1, x

3
1}. Par-

ticles x0
1, x

1
1 are supported by ϕ00(LoadP1), and particles x2

1, x
3
1 are supported by

ϕ00(LoadP2), so we include both LoadP1 and LoadP2 in the relaxed plan. For each
action we subgoal on the antecedent of the chosen conditional effect as well as its
enabling precondition. By including LoadP1 in the relaxed plan to support particles
x0

0, x
1
0, we have to support atP1 for the particles. We similarly subgoal for the parti-

cles supported by LoadP2. Fortunately, we have already reached level 0 and do not
need to support the subgoals further. The value of the relaxed plan is two because
we use two actions.

Often there are many choices for supporting a subgoal in a set of particles. Con-
sider a subgoal g that must be supported in a set of particles {x1

k, x
2
k, x

3
k} and is

supported by effect ϕ in particles x1
k and x2

k, ϕ′ in particles x2
k and x3

k, and ϕ′′ in

14

x2
k. Choosing support in the wrong order may lead us to include more actions than

needed, especially if the effects are of different actions. This problem is actually
a set cover, which we solve greedily. For example, until the set of particles for g
is covered, we select supporting effects based on the number of new particles they
cover (except for proposition persistence actions, which we prefer over all others).
The number of particles an effect can support is proportional to the probability with
which the effect supports the proposition. Say we first pick ϕ because it covers two
new particles, then ϕ′ can cover one new particle, and ϕ′′ covers no new particles.
We finish the cover by selecting ϕ′ for particle x3

k. Notice that even though ϕ′ can
support two particles we use it to support one. When we subgoal to support ϕ′ we
only support it in particle x3

k to avoid “bloating” the relaxed plan.

5.4 Selecting the number of particles N

Up to this point, we have avoided the issue of selecting N , the number of particles
to use in each McLUG. As we will demonstrate in the empirical evaluation, good
choices for N are distinct to each problem. In this section we investigate an auto-
mated (domain-independent) method to find a good N . Our objective is to find a
value for N that is large enough to provide informed heuristics, but small enough
to keep heuristic computation cost low.

In order to pick a good N , we must understand how it affects the approximations
made by the McLUG, as well as how the cost of building the McLUG interplays
with search. There are three factors that we will use to determine N : the number
of state samples needed to approximate representative belief states, the estimated
search depth, and the estimated search branching factor. In the following, we ex-
amine the role of each factor and end by describing a principled way of combining
these features to estimate N .

5.4.1 Sample-Based Belief State Approximation

It is well known that classical planning graphs approximate state transition graphs.
Similarly, the McLUG approximates the belief state transition graph. The types of
belief states we intend to approximate with the McLUG play a role in selecting
N . A natural characterization of these belief states (in our setting) is the number of
state samples needed for their approximation. This raises two concerns:

• How do we approximate a belief state?
• Which belief states do we approximate?

The answer to the first concern readily exists in the particle filtering literature. For
the second, we use a random walk in the belief state space to find reachable belief
states.

15

Approximating a Belief State: Fox [10] addresses the quality of sample-based
approximation for the purpose of dynamically adjusting the number of particles
used in a particle filter. Fox presents an algorithm for determining the number of
particles required to approximate a multinomial distribution, such as a finite state
belief state. The algorithm guarantees with probability 1− δ that the error between
the approximation b̂ and the true belief state b is less than ε. By measuring error
with KL-distance [7], it is possible to derive a value for N as

N(b, ε) =
1

2ε
χ2

kb−1,1−δ,

where χ2
kb−1,1−δ is the upper 1−δ quantile of the chi-squared distribution with kb−1

degrees of freedom. The value of kb is the number of unique states represented in
the approximation b̂. The term for the number of samples can be approximated by
the Wilson-Hilferty transformation [17] to obtain

N(b, ε) =
1

2ε
χ2

kb−1,1−δ ≈
kb − 1

2ε

{
1 − 2

9(kb − 1)
+

√
2

9(k − 1)
z1−δ

}3

,

where z1−δ is the upper 1− δ quantile of the normal distribution. Since we have not
approximated the belief state yet, we do not know kb and hence we do not know
N(b, ε). Thus, we must iteratively compute N(b, ε) by drawing state samples from
the belief state, computing kb (by counting the number of unique sampled states),
and then computing N(b, ε). Once we have sampled the same number of states as
our current value of N(b, ε), then we have an N(b, ε) that with probability 1 − δ
will approximate the belief state with error less than ε.

Finding Belief States to Approximate: With a method to determine the number
of particles to approximate a given belief state, we must determine which belief
states to approximate. Many problems start with a belief state containing a single
state, which could serve as poor indicator of stochastic belief states reached after a
few steps. It seems reasonable to consider several belief states and perhaps use the
maximum number of particles needed for approximation.

Since the McLUG is approximating all reachable belief states, we need not focus
solely on finding belief states reached by a feasible plan. Ideally we would like to
characterize the belief states which are going to affect search decisions. However,
finding these belief states is difficult without a heuristic to guide the search (the very
same heuristic for which we are determining an N). Instead we use a random walk
(sampling action choices) in belief space to identify reachable belief states. We
determine the length of the random walk by computing a heuristic value h(bI) of
the initial belief state (using a small number of particles). With a set of belief states
B (expanded in our random walk), we can compute the number of state samples

16

N(b, ε) needed to approximate each b ∈ B with error less than ε. In summary,
N should be proportional to the max of the number of samples per belief state,
N ∝ max

b∈B
N(b, ε).

5.4.2 Search Depth

The search depth, which can be estimated by h(bI) (as in the random walk above),
indicates how many times search will compute the McLUG heuristic. The number
of particles should be inversely proportional to the estimated search depth for two
reasons. As stated, a deeper search means more heuristic computation, meaning the
heuristic should be less expensive. A more subtle point in favor of fewer particles is
that the heuristic re-affirms as search deepens. If particles do a poor job of estimat-
ing the merit of a search node (e.g., by using too few), then evaluating each child of
the node provides more particles that serve witness to the merit of the parent node.
Thus, a deeper search may require fewer particles to offset the cost of the search
and search may not be harmed. In summary, N ∝ 1/depth ∝ 1/h(bI).

5.4.3 Branching Factor

The search branching factor indicates the potential for making a bad search choice.
When faced with more decisions, search should spend more effort during node
evaluation. As branching factor increases more particles provide a more informed
heuristic for node evaluation, meaning the number of particles is proportional to
branching factor. The random walk (above) can easily estimate the average branch-
ing factor. In summary, N ∝ breadth.

5.4.4 Estimating the Number of Particles

We compute the number of particles N by combining the previously mentioned fea-
tures: the number of samples to approximate belief states, estimated search depth,
and the estimated average branching factor. The belief state approximation fac-
tor max

b∈B
N(b, ε) is generally too large for estimating N . The approximation factor

estimates the number of particles needed for a probability distribution over states,
whereas the McLUG describes probabilities for propositions. Since the set of states
is exponential in the set of propositions, we assume that their approximation factors
are related by an exponential factor. Thus we use the logarithm of the approxima-
tion factor to determine N for the McLUG. We take the product of this with the
estimated average branching factor (breadth). Finally, we divide this product by
the estimated search depth (h(bI)). This term is then multiplied a scaling factor of
ten to get the resulting number of particles used for each McLUG:

17

N =

⎡
⎢⎢⎢10

⎛
⎝ log(max

b∈B
N(b, ε))(breadth)

h(bI)

⎞
⎠

⎤
⎥⎥⎥

A final consideration for selecting N is the error ε we are willing to accept in our
approximations. In our empirical evaluation we will identify a good value for ε.
While we are trading one free parameter (N) for another (ε), our intent is to find a
domain-independent parameter setting.

6 Empirical Analysis: Setup

In this section we describe the setup of the empirical analysis by describing the
planners, domains, and testing environment. We externally evaluate our planner
POND and its heuristic based on the McLUG by comparing with the leading
approach to CPP, CPplan [15,16]. We also internally evaluate our approach by ad-
justing (both manually and automatically) the number of particles N that we use in
each McLUG. We refrain from comparing with POMDP solvers (such as POMDP-
solve [6]), as did Hyafil and Bacchus [16], because they were shown to be effective
only on problems with very small state spaces (e.g., Slippery Gripper and Sand
Castle-67) and we care about problems with large state spaces. Our approach does
only slightly better than CPplan on the small state space problems and we doubt
we are superior to the POMDP solvers on these problems. Recent work in approx-
imate POMDP solving [28] may make a better comparison, but there are many
implementation-level details preventing a thorough comparison at this time.

6.1 Planners

In the following we describe the implementation of our planner POND and the
basic principles of the CPplan planner, as well as the way we compare the planners.
We choose CPplan for comparison because existing planners that directly solve our
problem do not scale nearly as well.

POND: Our planner is implemented in C++ and uses several existing technologies.
It employs the PPDDL parser [32] for input, the IPP planning graph construction
code [20] for the McLUG, and the CUDD BDD package [31] for representing
belief states, actions, and labels. Figure 4 depicts our planner architecture. The
two inputs to the planner are the problem specification, and the method to select
particle size. The problem is grounded, pre-processed, and compiled into ADDs. If
we choose to automatically determine particle size, then we determine the length
of our random walk, take the random walk, analyze the random walk, and finally

18

Search Engine

PPDDL
Domain &
Problem

Grounding &
Pre-processing

<P, A, bI, G, >

CUDD ADD
Representation

Belief
Space

A* Search
Engine

Heuristics

IPP Planning
Graph

McLUG

Relaxed
Plan

Extraction

Auto/Manual
Particle Size

Particle
Size

Particle Selection

Collect Belief States
On Random Walk

Approximate Belief
States with Particles

Auto

Manual

Plan

Compute N

Compute h(bI) for
Random Walk Length

Fig. 4. POND Architecture.

compute N . The search commences by expanding search nodes and computing
heuristics. Each heuristic computation involves constructing a McLUG with the
chosen number of particles until the goal is reached with enough probability. From
the McLUG, we extract a relaxed plan whose number of actions is used for the
h-value of a search node. Upon finding a plan, search ends and returns the plan.

CPplan: CPplan is an optimal bounded length planner that uses a CSP solver for
CPP. Part of the reason CPplan works so well is its efficient caching scheme that
re-uses optimal plan suffixes to prune possible solutions. In comparison, our work
computes a relaxation of plan suffixes to heuristically rank partial solutions. CPplan
finds the optimal probability of goal satisfaction for a given plan length (an NPPP-
complete problem, [23]), but POND, like Buridan [21], finds plans that satisfy the
goal with probability no less than τ (an undecidable problem, [24]). CPplan could
be used to find an optimal length plan that exceeds τ by iterating over increasing
plan lengths (similar to BlackBox, [19]).

19

6.2 Domains

In the following we describe four domains used in the empirical evaluation. Within
each domain we describe several problems instances and domain variations. The
first two domains are considerably more difficult than the last two domains, but all
exhibit a difference in scalability between POND and CPplan.

Logistics: The Logistics domain has the standard Logistics actions of un/loading,
driving, and flying, but adds uncertainty. Hyafil and Bacchus [16] enriched the do-
main developed by Hoffmann and Brafman [12] to not only include initial state
uncertainty, but also effect uncertainty. In each problem there are some number of
packages whose probability of initial location is uniformly distributed over some
locations and un/loading is only probabilistically successful. Plans require several
loads and unloads for a single package at several locations, making a relatively sim-
ple deterministic problem a very difficult stochastic problem. We compare on three
problems p2-2-2, p4-2-2, and p2-2-4, where each problem is indexed by the num-
ber of possible initial locations for a package, the number of cities, and the number
of packages. See [16] for more details.

Grid: The Grid domain, as described by Hyafil and Bacchus [16], is a 10x10 grid
where a robot can move one of four directions to adjacent grid points. The robot
has imperfect effectors and moves in the intended direction with high probability
(0.8), and in one of the two perpendicular directions with a low probability (0.1).
As the robot moves, its belief state grows and it becomes difficult to localize itself.
However since the grid borders provide a barrier, moves that would put the robot
through the barrier leave the robot in its original position. Thus, by bumping the
barrier, it is possible for the robot to localize. The goal is to reach the upper corner
of the grid. The initial belief state is a single state where the robot is at a known
grid point. We test on the most difficult instance where the robot starts in the lower
opposite corner. We also discuss instances of the domain where the grid is differ-
ent sizes (5x5 or 15x15) or the transitions are more stochastic (the probability of
intended moves becomes 0.5 instead of 0.8).

Slippery Gripper: Slippery Gripper is a well known problem that was originally
presented by Kushmerick, et. al. [21]. There are four probabilistic actions that clean
and dry a gripper and paint and pick-up a block. The goal is to paint the block and
hold it with a clean gripper. Many of the lower values of τ require very short plans
and take very little run time, so we focus on the higher values of τ where we see
interesting scaling behavior.

Sand Castle-67: Sand Castle-67 is another well known probabilistic planning prob-
lem, presented by Majercik and Littman [25]. The task is to build a sand castle with

20

high probability by using two actions: erect-castle and dig-moat. Having a moat
improves the probability of successfully erecting a castle, but erecting a castle may
destroy the moat. Again, scaling behavior is interesting when τ is high.

6.3 Environment

In our test setup, we used a 2.66 GHz P4 Linux machine with 1GB of memory, with
a timeout of 20 minutes for each problem. To compare with CPplan, we run CPplan
on a problem for each plan length until it exceeds our time or memory limit. We
record the probability that CPplan satisfies the goal for each plan length. We then
give POND a series of problems with increasing values for τ (which match the
values found by CPplan). If POND can solve the problem for all values of τ solved
by CPplan, then we increase τ by fixed increments thereafter. We ran POND five
times on each problem and present the average run time and plan length.

Comparing the planners in this fashion allows us to measure the plan lengths found
by POND to the optimal plan lengths found by CPplan for the same value of τ .
Our planner often finds plans that exceed τ (sometimes quite a bit) and includes
more actions, whereas CPplan meets τ with the optimal number of actions. Nev-
ertheless, we feel the comparison is fair and illustrates the pros/cons of an optimal
planner with respect to a heuristic planner.

7 Empirical Analysis: External Evaluation & Particle Set Size

In this section we evaluate our approach by first externally comparing with CPplan,
then internally adjusting the number of particles used in each McLUG. The internal
study uses both manual and automatic particle sizes. With manual particle selection
we seek to identify useful ranges of particles sizes for each problem to evaluate the
automated particle sizes. Within the automated approach we characterize the effect
of adjusting our approximation error ε in order to find good values of N .

7.1 Comparison with CPplan

We compare with CPlan on each of the domains mentioned in the previous section
using a version of POND where N = 16. As we will see later, 16 is not necessarily
the best value for N across all problems, but it does allow us to show the differ-
ence in scalability between CPplan and POND. We note that CPplan performs
marginally worse than previously reported because our machine has one third the
memory of the machine Hyafil and Bacchus [16] used for their experiments. The
major limitation on CPplan scalability is memory consumption.

21

0.1

1

10

100

1000

.9.8.7.6.5.4.3.2

(16)
(CPplan)

1

10

100

.9.8.7.6.5.4.3.2

(16)
(CPplan)

Fig. 5. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p2-2-2

0.1

1

10

100

1000

.7.6.5.4.3.2.1

(16)
(CPplan)

1

10

100

.7.6.5.4.3.2.1

(16)
(CPplan)

Fig. 6. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p4-2-2

1

10

100

1000

10000

0.030.02

(16)
(CPplan)

10

100

0.030.02

(16)
(CPplan)

Fig. 7. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p2-2-4

Logistics: The plots in Figures 5, 6, and 7 compare the total run time in seconds
(left) and the plan lengths (right) of POND with 16 particles in the McLUG versus
CPplan. In this domain we also use helpful actions from the relaxed plan [13]. We
notice that CPplan is able to at best find solutions where τ ≤ 0.26 in p2-2-2,
τ ≤ 0.09 in p4-2-2, and τ ≤ 0.03 in p2-2-4. In most cases POND is able to
find plans much faster than CPplan for the problems they both solve. It is more
interesting that POND is able to solve problems for much larger values of τ . With
16 particles in each McLUG, POND finds solutions where τ ≤ 0.95 in p2-2-2,
τ ≤ 0.75 in p4-2-2, and τ ≤ 0.035 in p2-2-4, which is respectively 3.7, 8.3, 1.2
times the maximum values of τ solved by CPplan. As we will see later, we can
solve for much larger values of τ by using different numbers of particles. In terms

22

10

100

1000

.8.7.6.5.4.3.2.1

(16)
(CPplan)

10

100

.8.7.6.5.4.3.2.1

(16)
(CPplan)

Fig. 8. Run times (s) and Plan lengths vs. τ for Grid-0.8

0.01

0.1

1

10

1.999.995.99

(16)
(CPplan)

1

10

100

1.999.995.99

(16)
(CPplan)

Fig. 9. Run times (s), and Plan lengths vs. τ for Slippery Gripper.

of plan quality, the average increase in plan length for the problems we both solved
was 5.83 actions in p2-2-2 (43% longer), 5.83 actions in p4-2-2 (46% longer), and
7.5 actions in p2-2-4 (42% longer). The plot of plan lengths gives some intuition
for why CPplan has trouble finding plans for greater values of τ . The plan lengths
for the larger values of τ approach 40-50 actions and CPplan is limited to plans of
around 10-15 actions.

Grid: Figure 8 shows total run times and plan lengths for the 10x10 Grid problem.
We notice that CPplan can solve the problem for only the smallest value of τ ,
whereas POND scales much better. For the single problem we both solve, we
found solution with 6 more actions (26% longer).

Slippery Gripper: Figure 9 shows the total time and plan length results for Slip-
pery Gripper. For short plans, CPplan is faster because the McLUG has some addi-
tional overhead, but as τ increases and plans have to be longer the McLUG proves
useful. Using 16 particles, we are able to find solutions faster than CPplan in the
problems where τ > .995. In terms of plan quality, our solutions include on average
1.6 more actions (20% longer).

23

0.01

0.1

1

10

.995.99.98.97.96.95.94.93

(16)
(CPplan)

1

10

100

.995.99.98.97.96.95.94.93

(16)
(CPplan)

Fig. 10. Run times (s), and Plan lengths vs. τ for Sand Castle-67.

Sand Castle-67: The plots for run time and plan length in Figure 10 show that
the run time for CPplan has an exponential growth with τ , whereas our method
scales roughly linearly. As τ increases, we are eventually able to outperform CP-
plan. In terms of plan quality, our plans included an average of 0.88 more actions
(7% longer).

Discussion: In comparison with CPplan, the major difference with our heuristic
approach is the way that plan suffixes are evaluated. CPplan must exactly com-
pute plan suffixes to prune solutions, whereas we estimate plan suffixes. As plans
become longer, it is more difficult for CPplan to exactly evaluate plan suffixes be-
cause there are so many and they are large.

Overall, our method is very effective in the CPP problems we evaluated, with the
only drawback being longer plans in some cases. To compensate, we believe it
should be reasonably straight-forward to post-process our plans to cut cost by re-
moving actions. Nevertheless, it is a valuable lesson to see the size of problems that
we can solve (in very little time) by relaxing our grip on finding optimal plans.

7.2 Particle Set Size

In this section we further analyze the effect of N on planner performance. We
present results for both the manual and automatic selection of N . In the manual
approach, we pick values of N between 4 and 512 (increasing exponentially). In the
automated approach, we use 0.1, 0.01, 0.005 for ε (the KL-distance approximation
error). The heuristic that determines the length of the random walk uses N = 4 in
the McLUG. The probability of approximation error δ fixed at 0.01.

We show plots of the time to find solutions with varying values of τ and N in
every domain. The height of each point (denoted by a vertical line) indicates the
total time for the test. The planar orientation of the point indicates the values of
τ and N . Each plot shows the results for manual particle selection as black points

24

connected by lines, where each point is the average of 5 runs for the same value of
τ and N . The automated particle selection results are shown as colored points that
are not connected by lines (depicted in the legends by the value of ε). Each instance
solved by the automated method can use a different number of particles, so we do
not average over the automated runs. We show both automated and manual particle
selection results in one plot to identify the base-line performance expected for fixed
values of N and how the automated selection performs by picking varying values
of N . We discuss results for each problem in detail and conclude with an analysis
of the best value for ε compared with the best manual value of N for each problem.

tau

particles

0
100
200
300
400
500
600
700
800

Logistics p2-2-2

0.1
0.01

0.005

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

16
32

64
128

256
512

Fig. 11. Run times (s) vs. τ vs. N for Logistics p2-2-2

Logistics: Figures 11, 12, and 13 show the time to solve instances in the Logistics
domain. In p2-2-2, we are able to scale well with any number of particles, but see
that planning time increases when we use too few or too many particles. Without
the right number of particles the heuristic is either too weak or too costly.

In p4-2-2 we need more particles than p2-2-2 to perform well (16 particles does
not scale). This is due to starting with a more stochastic initial belief state (there
are more packages we are uncertain about). It is interesting to notice that manual
particle selection can only find plans for large τ when N is large, yet the automatic
particle selection finds plans when N is much smaller. This is an artifact of using
a stochastic heuristic, rather than finding a special number of particles that works
well. We see the opposite behavior in other problems, where the same number of
particles may or may not solve the same instances.

In p2-2-4, we again see that too few or too many particles harms performance.
Compared with the p2-2-2 and p4-2-2, using more particles here is also helpful.
Even though p4-2-2 and p2-2-4 have the same number of possible initial states, p2-

25

tau

particles

0
200
400
600
800

1000
1200

Logistics p4-2-2

0.1
0.01

0.005

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

16
32

64
128

256
512

Fig. 12. Run times (s) vs. τ vs. N for Logistics p4-2-2

tau

particles

0
100
200
300
400
500
600
700
800

Logistics p2-2-4

0.1
0.01

0.005

0
0.02

0.04
0.06

0.08
0.1

0.12
0.14

0.16

16
32

64
128

256
512

Fig. 13. Run times (s) vs. τ vs. N for Logistics p2-2-4

2-4 has more actions (which are stochastic) and requires longer plans for the same
values of τ .

Table 1 summarizes the average time in seconds (T) and number of solutions (S)
results for manual particle selection in the Logistics problems, where each problem
had (#) instances. With N = 64, POND solves the most instances in the least
amount of time for all problems. This is much better than the results for N = 16,
which we used to compare with CPplan. The automated particle selection does best
with ε = 0.1 and ε = 0.01. With ε = 0.005, the number of particles grows too large.

26

N = 16 N = 32 N = 64 N = 128

Problem # T S T S T S T S

Logistics p2-2-2 65 96.36 59 82.73 60 20.16 61 35.26 36

Logistics p4-2-2 80 78.04 35 31.91 42 44.82 49 51.60 47

Logistics p2-2-4 40 98.55 24 107.74 27 136.31 31 92.26 29
Table 1
Summary of results for manual N in Logistics domains, where # is the total number of

instances, T is the average solution time (s) and S is the number of solved instances.

The automated selection typically selects values for N between 64 and 256. As we
will see later, the automated particle selection is able to outperform the manual
selection in some problems, despite using more than 64 particles. We will discuss
the automated particle selection results summary (in Table 4) in more detail later.

tau

particles

0
100
200
300
400
500
600

Grid 10x10 (0.8)

0.1
0.01

0.005

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

16
32

64
128

8
4

Fig. 14. Run times (s) vs. τ vs. N for Grid 10x10 with 0.8 correct transitions.

Grid: We use four versions of the Grid domain in this analysis to characterize
how differences in the length of plans and uncertainty in action effects changes
performance with the number of particles. We use the 10x10 Grid problem from
our previous analysis as the base domain and extend it in two orthogonal directions.
First, we keep the 10x10 Grid but change the probability of moving in the intended
direction to 0.5 from 0.8 to get belief states that are less peaked. Second, we change
the size of the Grid to 5x5 and 15x15 (while keeping 0.8 for transitions as in the
base domain).

Figure 14 depicts results for the base domain. As the number of particles falls too
low or grows too large total time increases and is variable across values of τ , similar
to Logistics. We note however that we are able to do well with much fewer particles

27

tau

particles

0100200
300400500
600700800
9001000

Grid 10x10 (0.5)

0.1
0.01

0.005

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

16
32

64
128

8
4

Fig. 15. Run times (s) vs. τ vs. N for Grid 10x10 with 0.5 correct transitions.

(around 16-32) than in Logistics (around 64-128). This difference between Grid
and Logistics is due potentially to the difference in branching factor, which is 4 in
Grid and much higher in Logistics. As we will see in the other versions of the Grid
domain, effective particle sizes were not very different when we changed size and
uncertainty.

Figure 15 depicts results for making transitions work with probability 0.5 instead of
0.8. It is much more difficult to reach the goal with high probability in this version.
Every attempt to increase goal probability will also decrease goal probability quite
a bit. In order to transition some probability mass to goal states, the same action will
transition probability mass away from goal states. It is unclear if it is impossible to
reach the goal with high probability, or if the heuristic is poor. Where in the base
domain it was possible to perform well with just about any number of particles,
it is apparent that too few particles is insufficient in this version. This is because
more particles are needed to capture the significantly “flat” belief state distributions
induced by the increased uncertainty. Despite this difference, the automatic particle
selection chooses approximately the same number of particles for this domain and
the base domain. This may be due to an interplay between the number of parti-
cles needed to approximate belief states and the estimated depth of the search tree.
While belief states need more particles for approximation, the plans are typically
longer.

Figure 16 shows results for the 5x5 Grid domain. POND needs very few particles
to do well in this domain because the plans are relatively short. This has two im-
plications, first belief states do not become very flat because they contain relatively
fewer states, and second the automated particle selection is confused. Using only
four particles to estimate the length of the random walk to compute N is likely to

28

tau

particles

0
5

10
15
20
25
30
35
40
45

Grid 5x5 (0.8)

0.1
0.01

0.005

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

16
32

64
128

8
4

Fig. 16. Run times (s) vs. τ vs. N for Grid 5x5 with 0.8 correct transitions.

tau

particles

0
200
400
600
800

1000
1200

Grid 15x15 (0.8)

0.1
0.01

0.005

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

16
32

64
128

8
4

Fig. 17. Run times (s) vs. τ vs. N for Grid 15x15 with 0.8 correct transitions.

underestimate the search depth (and hence overestimate N) because there are less
planning graph levels where low probability outcomes are sampled (making the
relaxed plan smaller).

Figure 17 shows results for the 15x15 Grid domain. Like the domain with 0.5 prob-
ability transitions, using too few particles leads to problems. Due to longer plans
(not more uncertainty) it is possible to have a flat belief state. While the automated
particle selection has the potential to underestimate N due to longer plans, the ran-
dom walk is able to identify very stochastic belief states and compensate through

29

the sample-based approximation factor. It seems it is lucky and able to compensate
just enough because the automated N is in fact much smaller in this version of the
domain than the other versions.

N = 4 N = 8 N = 16 N = 32

Problem # T S T S T S T S

Grid 10x10 (0.8) 50 159.36 50 142.79 50 136.67 50 150.06 49

Grid 10x10 (0.5) 30 144.81 25 152.45 30 106.35 30 151.42 30

Grid 5x5 (0.8) 20 1.07 20 1.03 20 2.31 20 5.95 20

Grid 15x15 (0.8) 20 108.90 10 152.28 12 212.53 18 435.04 20
Table 2
Summary for results for manual N in Grid domains, where # is the total number of in-

stances, T is the average solution time (s) and S is the number of solved instances.

Table 2 summarizes the results for manual particle selection in the four versions
of the Grid domain. The best performer in most versions is 16 particles, with the
only exception of 8 particles in the 5x5 Grid. The reason more particles are needed
in larger grids is that belief states can get potentially very flat over longer plans.
The automated particle selection is able to perform comparably to the best manual
particle selection.

tau

particles

0
50

100
150
200
250
300
350

Slippery Gripper

0.1
0.01

0.005

0.965
0.97

0.975
0.98

0.985
0.99

0.995
1

16
32

64
128

8
4

Fig. 18. Run times (s) vs. τ vs. N for Slippery Gripper.

Slippery Gripper: Figure 18 shows results for the slippery gripper problem. The
results indicate few particles are needed, and extra particles just increases planning
time. Using only four particles may be perhaps too few because time does start
to increase only slightly for high values of τ . The automated particle selection
performs reasonably well on average, with a few instances where it selects larger

30

tau

particles

0
1
2
3
4
5
6
7

Sand Castle-67

0.1
0.01

0.005

0.8
0.82

0.84
0.86

0.88
0.9

0.92
0.94

0.96
0.98

1

16
32

64
128

8
4

Fig. 19. Run times (s) vs. τ vs. N for Sand Castle-67.

values of N when ε ≤ 0.01. This may be due to similar reasons described in the 5x5
Grid domain. With very few particles estimating the length of the random walk, it
is possible to select a very short random walk and not see enough stochastic belief
states to offset the value of N . Table 3 lists a summary of results for the manual
particle selection that show using 16 particles does best overall.

N = 4 N = 8 N = 16 N = 32

Problem # T S T S T S T S

Slippery Gripper 50 1.21 50 0.31 50 0.18 50 0.70 50

Sand Castle-67 85 0.13 85 0.08 85 0.06 85 0.11 85
Table 3
Summary for results for manual N in the Slippery Gripper and Sand Castle-67 domains,

where # is the total number of instances, T is the average solution time (s) and S is the
number of solved instances.

Sand Castle-67: Figure 19 shows results for the Sand Castle-67 problem. Again,
choosing the right number of particles is important, using 4-8 or 64-128 is insuf-
ficient. The automated particle selection is able to find good values for N in this
domain. There are relatively few states and plans are short, so the play between the
sample-based approximation and estimated search depth is less sensitive. Table 3
shows a summary of results for manual particle selection that identifies 16 particles
as the best choice for this domain.

Discussion: Selecting the right number of particles for a domain is not easy. Several
factors such as uncertainty, search depth, and search branching factor affect the
number of particles needed. While uncertainty and search depth are important, it

31

ε = 0.1 ε = 0.01 ε = 0.005 Best N

Problem # T S T S T S T S N

Logistics p2-2-2 65 19.79 59 18.97 60 32.95 62 20.16 61 64

Logistics p4-2-2 80 59.14 67 79.56 72 78.54 65 44.82 49 64

Logistics p2-2-4 40 96.48 29 137.69 29 125.56 28 136.31 31 64

Grid 10x10 (0.8) 50 29.49 50 48.41 50 52.98 50 136.67 50 16

Grid 10x10 (0.5) 30 63.70 27 89.09 25 110.16 25 106.35 30 16

Grid 5x5 (0.8) 20 3.79 20 8.25 20 9.49 20 1.03 20 8

Grid 15x15 (0.8) 20 162.27 17 225.16 18 272.15 16 212.53 18 16

Slippery Gripper 50 6.57 50 21.82 50 21.38 50 0.18 50 16

Sand Castle-67 85 0.55 85 0.74 85 0.72 85 0.06 85 16

Totals 450 441.78 404 629.68 409 703.94 401 658.11 394

Table 4
Summary of results for ε compared with best manual N , where # is the total number of

instances, T is the average solution time (s) and S is the number of solved instances.

seems that the branching factor affects which number of particles works best. The
Logistics domain, with the highest branching factor, required the most particles.
The other domains, with relatively low branching factors, sufficed with much fewer
particles. Within each domain, variations on uncertainty and search depth affected
which number of particles is needed.

While automatically estimating and combining these factors is not easy, our auto-
mated particle selection technique did well across all problems. Table 4 shows a
summary of the results for the automated particle selection with different values of
ε along with the best manual N for each problem. Of the three values of ε that were
tried, 0.1 performed best, solving the most problems in the least time. By inspecting
the individual problems, there were instances where the automated selection per-
formed better than the best manual selection (e.g., Logistics p4-2-2 and Grid 10x10
(0.8)). The automated particle selection never performs much worse than the best
manual particle selection. As a result, the automated selection solves 404 of 450
instances, where the best manual selection solves 394. The total average time for
the automated selection is 441.78 seconds, compared to 658.11 seconds for the best
manual selection.

Table 5 shows the average number of particles chosen by the best automated method
(ε = 0.1) compared with the manual method. In most cases, the number of selected
particles is very close.

32

Problem ε = 0.1 Best N

Logistics p2-2-2 50.83 64

Logistics p4-2-2 89.73 64

Logistics p2-2-4 104.93 64

Grid 10x10 (0.8) 15.92 16

Grid 10x10 (0.5) 16.44 16

Grid 5x5 (0.8) 24.30 8

Grid 15x15 (0.8) 11.65 16

Slippery Gripper 35.66 16

Sand Castle-67 11.45 16
Table 5
Summary of the average automated N found by ε = 0.1 and the best manual N .

8 Related Work

Buridan [21] was one of the first planners to solve CPP. Buridan is a partial order
casual link (POCL) planner that allows multiple supporters for an open condition,
much like our relaxed plans in the McLUG. Unfortunately, Buridan does not scale
very well because it lacks effective heuristics. Probapop [27], which is built on top
of Vhpop [33], extends Buridan by using heuristics. Probapop uses the classical
planning graph heuristics implemented by Vhpop by translating every outcome of
probabilistic actions to a deterministic action. In theory, POCL planners are a nice
framework for probabilistic planning because it is easy to add actions to support
a low probability condition without backtracking (as may be necessary in state
based search). In practice, POCL planners can be hard to work with because it is
often difficult to assess the probability of a partially ordered plan. At the time of
publication we have not made extensive comparisons with Probapop, except on the
Grid problem where it cannot find a solution.

Recently, two approaches [8,14] to CPP have also improved scalability consider-
ably. Similar to our approach, Domshlak and Hoffmann [8] use a planning graph
heuristic approach to CPP that computes relaxed plans in Probabilistic FF (PFF).
PFF computes relaxed plans through a Bayesian network that resembles a planning
graph. While current implementation prevents comparison on domains with prob-
abilistic effects, the theory allows for random variables in the planning graph to
denote the outcomes of probabilistic effects. This is very similar to our approach
that extends the LUG to directly handle probabilistic effects through extended la-
bels (which did not scale). It is unclear whether the alternative relaxations (e.g.,
ignoring all but one effect condition of every action) will offset the cost of consid-
ering all outcomes of uncertain actions.

33

Huang [14] improves approaches to optimal bounded length CPP problems in the
Complan planner. Similar to our approach, Complan computes a heuristic estimate
of the plan suffix, but unlike us, the heuristic gives an admissible over-estimate of
the probability of goal satisfaction for a finite number of actions. Complan improves
upon CPplan by removing the heavy memory requirements due to storing plan
suffixes. While we do not provide extensive empirical comparisons with Complan,
the results presented in [14] show that Complan takes on the order of hours to find
solutions for larger instances of the 10x10 Grid problem, where we take minutes.
We expect similar behavior on other domains.

Partially observable Markov decision process (POMDP) algorithms, such as [6] to
name one, are also able to solve CPP. The work on CPplan [15,16] makes exten-
sive comparisons with the mentioned POMDP algorithm and shows it is inferior
for solving CPP problems with large state spaces (like Logistics and Grid). This
disparity may be partly due to the fact that the POMDP algorithms solve a slightly
different problem by finding plans for all possible initial belief states. CPplan also
compares with MaxPlan [25], showing that it too is inferior for several problems.
MaxPlan is similar to CPplan, in that it encodes CPP as a bounded length planning
problem using a variant of satisfiability. The main difference is in the way they
cache optimal plan suffixes used for pruning.

The Prottle planner [22] uses a variation of temporal planning graphs for fully-
observable probabilistic temporal planning. In their planning graph they explicitly
reason about actions with probabilistic actions by adding an outcome layer and
defining a cost propagation procedure. The authors do not extract relaxed plans,
nor reason about possible worlds.

PGraphPlan [3] and CGP [30] are two planners that use generalizations of Graph-
Plan [2] for planning under uncertainty. PGraphPlan and is used for fully-observable
probabilistic planning (similar to Markov decision processes). The key idea in
PGraphPlan is to forward chain in the planning graph, using dynamic program-
ming, to find an optimal probabilistic plan for a given finite horizon. Alternatively,
TGraphPlan greedily back-chains in the planning graph to find a solution that sat-
isfies the goal, without guaranteeing optimality. CGP solves non-observable (con-
formant) non-deterministic planning problems.

RTDP [1] is a popular search algorithm, used in many recent works (e.g., Mausam
and Weld [26]), that also uses Monte Carlo. RTDP samples a single plan suffix to
evaluate, whereas we estimate the plan suffix with a relaxed plan. Because we are
reasoning about non-observable problems we sample several suffixes and aggregate
them to reflect that we are planning in belief space.

34

9 Conclusion & Future Work

We have presented an approach called McLUG to integrate Monte Carlo simu-
lation into heuristic computation on planning graphs. The McLUG enables us to
quickly compute effective heuristics for conformant probabilistic planning. By us-
ing the heuristics, our planner is able to far out-scale the current best approach to
conformant probabilistic planning. At a broader level, our work shows one fruitful
way of exploiting the recent success in deterministic planning to scale stochastic
planners.

The McLUG suggests a general technique for handling uncertain actions in plan-
ning graphs. A potential application of the McLUG is in planning with uncertainty
about continuous quantities (e.g., the resource usage of an action). In such cases,
actions can have an infinite number of outcomes. Explicitly keeping track of pos-
sible worlds is out of the question, but sampling could be useful in reachability
heuristics.

We have also presented a domain-independent technique for automatically deter-
mining the number of particles to use in the McLUG. The technique demonstrates
a successful integration of existing methods in particle filtering with planning. In
the future, we hope to incorporate additional such approximation techniques to fur-
ther scale planning in stochastic environments. We intend to understand how we
can more fully integrate MC into heuristic computation, as there are numerous
possibilities for relaxation through randomization. One possibility is to sample the
actions to place in the planning graph to simulate splitting the planning graph [34].
More importantly, we would like to use knowledge gained through search to refine
our sampling distributions for importance sampling. For instance, we may be able
to bias sampling of mutexes by learning the actions that are critical to the planning
task. Overall, randomization has played an important role in search [1,11], and we
have presented only a glimpse of its benefit in heuristic computation.

Acknowledgements: This work was supported by the NSF grant IIS-0308139, the
ONR Grant N000140610058, the ARCS foundation, Honeywell Labs, and an IBM
Faculty Award. We would like to thank the members of the Yochan planning group,
William Cushing, and David Musliner for helpful suggestions.

References

[1] A. G. Barto, S. Bradtke, S. Singh, Learning to act using real-time dynamic
programming, Artificial Intelligence 72 (1995) 81–138.

[2] A. Blum, M. Furst, Fast planning through planning graph analysis, in: Proceedings of
IJCAI’95, 1995, pp. 1636–1642.

35

[3] A. Blum, J. Langford, Probabilistic planning in the graphplan framework, in:
Proceedings of ECP’99, 1999, pp. 319–322.

[4] D. Bryce, S. Kambhampati, How to skin a planning graph for fun and profit (a tutorial
on planning graph based reachability heuristics), Tech. rep., ASU CSE TR-06-007
(2006).

[5] D. Bryce, S. Kambhampati, D. Smith, Planning graph heuristics for belief space
search, Journal of AI Research 26 (2006) 35–99.

[6] A. Cassandra, M. Littman, N. Zhang, Incremental pruning: A simple, fast, exact
method for partially observable markov decision processes, in: Proceedings of
UAI’97, 1997, pp. 54–61.

[7] T. Cover, J. Thomas, Elements of information theory, Wiley-Interscience, New York,
NY, USA, 1991.

[8] C. Domshlak, J. Hoffmann, Fast probabilistic planning through weighted model
counting, in: Proceedings of ICAPS’06, 2006, pp. 243–251.

[9] A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo Methods in Practice,
Springer, New York, New York, 2001.

[10] D. Fox, Adapting the sample size in particle filters through kld-sampling, International
Journal of Robotics Research 22.

[11] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search and temporal
action graphs in lpg, Journal of Artificial Intelligence Research 20 (2003) 239–290.

[12] J. Hoffmann, R. Brafman, Conformant planning via heuristic forward search: A new
approach, in: Proceedings of ICAPS’04, 2004, pp. 355–364.

[13] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation through heuristic
search, Journal of Artificial Intelligence Research 14 (2001) 253–302.

[14] J. Huang, Combining knowledge compilation and search for efficient conformant
probabilistic planning, in: Proceedings of ICAPS’06, 2006, pp. 253–262.

[15] N. Hyafil, F. Bacchus, Conformant probabilistic planning via CSPs, in: Proceedings
of ICAPS’ 03, 2003, pp. 205–214.

[16] N. Hyafil, F. Bacchus, Utilizing structured representations and CSPs in conformant
probabilistic planning, in: Proceedings of ECAI’04, 2004, pp. 1033–1034.

[17] N. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, John
Wiley and Sons, New York, 1994.

[18] S. Kambhampati, L. Ihrig, B. Srivastava, A candidate set based analysis of subgoal
interactions in conjunctive goal planning, in: Proceedings of AIPS’96, 1996, pp. 123–
133.

[19] H. Kautz, D. McAllester, B. Selman, Encoding plans in propositional logic, in:
Proceedings of KR’96, 1996, pp. 374–384.

36

[20] J. Koehler, B. Nebel, J. Hoffmann, Y. Dimopoulos, Extending planning graphs to an
adl subset, in: Proceedings of ECP’97, 1997, pp. 273–285.

[21] N. Kushmerick, S. Hanks, D. Weld, An algorithm for probabilistic least-commitment
planning, in: Proceedings of AAAI’94, 1994, pp. 1073–1078.

[22] I. Little, D. Aberdeen, S. Theibaux, Prottle: A probabilistic temporal planner, in:
Proceedings of AAAI’05, 2005, pp. 1181–1186.

[23] M. Littman, J. Goldsmith, M. Mundhenk, The computational complexity of
probabilistic planning, Journal of Artificial Intelligence Research 9 (1998) 1–36.

[24] O. Madani, S. Hanks, A. Condon, On the undecidability of probabilistic planning and
infinite-horizon partially observable Markov decision problems, in: Proceedings of
AAAI’99, 1999, pp. 541–548.

[25] S. Majercik, M. Littman, MAXPLAN: A new approach to probabilistic planning, in:
Proceedings of AIPS’98, 1998, pp. 86–93.

[26] Mausam, D. Weld, Concurrent probabilistic temporal planning, in: Proceedings of
ICAPS’05, 2005, pp. 120–129.

[27] N. Onder, G. Whelan, L. Li, Engineering a conformant probabilistic planner, Journal
of Artificial Intelligence Research 25 (2006) 1–15.

[28] P. Poupart, C. Boutilier, VDCBPI: an approximate scalable algorithm for large scale
pomdps, in: Proceedings of NIPS’04, 2004.

[29] J. Rintanen, Expressive equivalence of formalisms for planning with sensing, in:
Proceedings of ICAPS’03, 2003, pp. 185–194.

[30] D. Smith, D. Weld, Conformant graphplan, in: Proceedings of AAAI’98, 1998, pp.
889–896.

[31] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.3.0, University of
Colorado at Boulder (1998).

[32] H. Younes, M. Littman, PPDDL1.0: An extension to PDDL for expressing planning
domains with probabilistic effects, Tech. rep., CMU-CS-04-167, Carnegie Mellon
University (2004).

[33] H. Younes, R. Simmons, Vhpop: Versatile heuristic partial order planner, Journal of
Artificial Intelligence Research 20 (2003) 405–430.

[34] Y. Zemali, P. Fabiani, Search space splitting in order to compute admissible heuristics
in planning, in: Workshop on Planen, Scheduling und Konfigurieren, Entwerfen, 2003.

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BlackItalic
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Batang
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BroadwayBT-Regular
 /BrushScrD
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSerif
 /MSReferenceSpecialty
 /MVBoli
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguItal
 /NimbusSanT-Bold
 /NimbusSanT-BoldCond
 /NimbusSanT-BoldItal
 /NimbusSanT-Regu
 /NimbusSanT-ReguCond
 /NimbusSanT-ReguItal
 /NimbusScript-Regular
 /OCRAExtended
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SimSun
 /Sshlinedraw
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

