
RealPlan: Decoupling Causal and Resource Reasoning in Planning

Biplav Srivastava
Email: biplav@asu.edu

Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287-5406.

Abstract

Recent work has demonstrated that treating resource rea-
soning separately from causal reasoning can lead to im-
proved planning performance and rational resource manage-
ment where increase in resources does not degrade planning
performance. However, the resources were scheduled proce-
durally and limited to cases that could be solved backtrack-
free. Terming the decoupled framework as RealPlan, in this
work, I extend it with a general approach to convert the re-
source allocation problem as a declaratively specified dy-
namic constraint satisfaction problem (DCSP), compile it into
CSP and solve it with a CSP solver. By doing so, the re-
source scheduling problem can be handled in its full com-
plexity and can provide a computational characterization of
the different scheduling classes. The CSP formulation also
facilitates planner-scheduler interaction by helping the sched-
uler interpret the resource allocation policies proposed by the
planner in terms of constraints on values of scheduling vari-
ables. Moreover, if the extraction of causal plan is also for-
mulated as a CSP problem, the two CSPs can enable depen-
dency directed backtracking between them. I have imple-
mented declarative scheduling on top of Graphplan and GP-
CSP planners (which poses the backward search of Graph-
plan as a CSP problem), and the resulting planners reiterate
the benefits of decoupling planning and scheduling while pro-
viding elegant CSP models (RealPlan-MS, RealPlan-PP) for
investigating planner-scheduler communication.

Introduction
AI Planning can handle small plans compared to what hu-
mans already handle in the real world. In real-world prob-
lems, planning and scheduling phases are usually loosely
coupled. Humans come up with the Work Breakdown Struc-
ture (WBS)(Moder & Phillips 1964) to identify the different
tasks at some granularity and estimate time and resources
for each task. From this information, the critical bottle-
neck in the project is identified and the sequence of non-
critical tasks is re-aligned to optimize on resource usage and
meet deadlines. Project management tools like Microsoft
Project(Microsoft 1998) help in sequencing the task network
using Critical Path Method (CPM) or Program Evaluation
and Review Technique (PERT) analysis.

Copyright c
 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In contrast, most AI planners do not distinguish between
causal and resource reasoning and handle them within the
same planning algorithm. Experimental results (Srivastava
& Kambhampati 1999) show that this strategy severely cur-
tails the scale-up potential of existing planners, including
such recent ones as Graphplan(Blum & Furst 1995) and
Blackbox (Kautz & Selman 1998). In particular, these plan-
ners exhibit the seemingly irrational behavior of worsening
in performance with increased resources. The key observa-
tion is that the integration of resources explodes the search
space of the planner beyond the action sets that are minimal
with respect to the logical goals. Actions may be added to
achieve the resource goals but may not be necessary for the
logical goals. Most planners suffer performance drop due to
the expanded flaw resolution.

In our recent work (Srivastava & Kambhampati 1999;
Srivastava 2000), we demonstrated that treating resources
separately from causal reasoning can lead to improved AI
planning performance and rational resource management
(for example, planning performance does not worsen with
increased resources). However, the resources were sched-
uled procedurally and only those cases were handled that
could be solved backtrack-free. Terming the decoupled
framework as RealPlan, in this work, I extend it with a
general approach to convert the resource allocation problem
into a declaratively specified dynamic constraint satisfaction
problem (DCSP(Mittal & Falkenhainer 1990)), compile it
into CSP and solve it with a standard CSP solver. By do-
ing so, the full resource scheduling problem can be handled
with all its complexity. I provide a computational charac-
terization of the scheduling classes presented in (Srivastava
& Kambhampati 1999) in terms of specification of this CSP.
The CSP formulation also helps the scheduler to interpret
the resource allocation policies proposed by the planner in
terms of constraints on values of scheduling variables.

Figures 1 and 2 provide a general overview of the
RealPlan approach. The unified framework accepts a
domain description along with optional annotations for
resources1, finds a plan modulo the choice of resource ab-
straction, and then allocates resources to produce a sound
final plan (if the plan requires resources). After planning is

1The primary focus here is on reusable discrete resources which
may be sharable or non-sharable.

NO

YES

Planning Done

 PLANNER

Set Alloc Policy

 SCHEDULER

Schedule Done

YES

Post-process

YES

Executable Plan

NO

NO

YES

Alloc needed

START

FAIL

SUCCESS

NO

Abstraction Switch

Figure 1: RealPlan: Unified planning-scheduling frame-
work

1. Identify resources.

2. If no resource information is available or resources are so low (usually one) that post-
poning their reasoning is counter-productive, perform conventional planning (i.e. in
this case, interactions involving similar resources are addressed during planning).

3. Suppose some of the objects are defined as resources. Planning proceeds as follows:

(a) Assign dummy values to resource variables in the initial state and goal state such
that equivalent resources have the same dummy value.

(b) Do not compute interference relationships (mutexes) between resource equivalent
operators. Operators may still interfere due to other preconditions/ effects.

(c) Complete planning.

4. Once a plan is obtained, allocate resources to the actions in the plan and resolve re-
source conflicts using any scheduling criteria.

5. Return a valid final plan. As long as the algorithm ensures that all facts achieved during
the planning phase are not undone by resource scheduling, the final plan is sound.

Figure 2: Synopsis of RealPlan approach.

complete, a scheduler can decide which resources to actually
allocate based on resource allocation policies proposed by
the planner. The different allocation policies include main-
taining the concurrency of the plan, serializing the plan and
inserting actions to free and reallocate the resources2. If
freeing/ reallocating actions are allowed, the problem is in
fact a dynamic constraint satisfaction problem (DCSP) be-
cause these new actions (variables) control the normal action
variables.

I have implemented the declarative scheduling (here-
after, referred to as only scheduling) on top of the Graph-
plan(Blum & Furst 1995) and the GP-CSP(Do & Kamb-
hampati 1999) planners. Planner-scheduler interaction is
supported as master-slave relationship (called RealPlan-MS,
see Figure 3) in Graphplan and GP-CSP. If the declarative
scheduling method fails to allocate resources in the context
of given resources, time limit and nature of allocation pol-
icy, the partial schedule in a failed iteration is not pursued
further and destroyed. Further, the responsibility transfers
to the planner to change any of the these parameters and try
again. If the resource allocation succeeds and new free/ real-
location actions were added by the scheduler, the scheduled
plan is post-processed for necessary domain translation for

2The policy of inserting freeing/reallocating actions assumes
that actions are reversible in the domain. It could otherwise lead
to incompleteness and should be disabled.

PLANNER

SCHEDULER

PLANNER SCHEDULER

T
R
A
N
S
L
A
T
O
R

POLICY

FAILURE/
SUCCESS

POLICY/
NO-GOOD

NO-GOOD

TRANSLATED
FEEDBACK

TRANSLATED
FEEDBACK

MASTER-SLAVE

PEER-PEER

Figure 3: Communication relationships between the plan-
ner and the scheduler. RealPlan-MS is the main focus here
whereas RealPlan-PP is currently being developed.

executability. If all the allocation policies lead to failure or
inexecutable plans in a domain, this implies that planning
and scheduling were infact, not loosely coupled in this in-
stance. In such a case, the framework retains the ability to
switch off resource abstraction and resort to traditional plan-
ning.

The framework can also support peer-peer relationship
(called RealPlan-PP) between the planner and the scheduler
which is being developed in the GP-CSP context (Srivastava,
Kambhampati & Do 2000). In GP-CSP, the plan graph of
Graphplan is converted into a CSP problem and solved with
a standard solver. Using such a planner, the scheduler can in-
form the planner about the source of infeasibility in terms of
the variables and constraints in the planner’s CSP to handle
even tightly coupled problems. This type of “multi-module
dependency directed backtracking” approach is a variation
on the hybrid planning methodology developed in (Kamb-
hampati et al 1991), and is also akin to the approach used to
link satisfiability and linear programming solvers in (Wolf-
man & Weld 1999).

Here is the outline of the paper. First, the specifica-
tion of the constraints for the resource scheduling problem
as a dynamic constraint satisfaction problem is described.
Next, I discuss planner-scheduler interaction in this context.
Through empirical results, we show the effectiveness of the
decoupled approach vis-a-vis the nature of resources. The
paper concludes with a discussion of related work and com-
ments.

Scheduling as a declarative CSP
For the purpose of illustration, the “shuffle” problem,
which is the multiple robots version of the 6-block
blocks facts shuffle problem in the Graphplan system, is se-
lected. Here, a stack of blocks has to be systematically shuf-
fled to achieve the goal arrangement. An example of the
plan generated for the shuffle problem, by disregarding inter-
resource conflicts during planning, is shown in Figure 4. The
plan consists of 10 time steps (levels) with resource profile
of the number of resources left allocated at each level shown
in the right column (marked “#Robots”). In our experiments,
the problem is generalized to k-block shuffle versions so that

Level Actions by level # Robots

Unstack_R_blkF_blkE 11

5

6

6

7

8

9

Unstack_R_blkE_blkD

Unstack_R_blkD_blkC

Unstack_R_blkB_blkA

Stack_R_blkF_blkC

Pickup_R_blkA

Stack_R_blkB_blkF

Stack_R_blkE_blkB

Stack_R_blkA_blkE

Stack_R_blkD_blkA

5 Putdown_R_blkC

Unstack_R_blkC_blkB4

3

2

10

3

4

5

5

4

3

2

1

2

Figure 4: A resource-abstracted solution for shuffle prob-
lem. Curved lines show resource usage spans (see below).
The number of resources needed at each level (which equals
the number of spans crossing that level) is also shown.

the problems can also be scaled independent of the number
of resources.

A Constraint Satisfaction Problem (CSP(Beck & Fox
1998)) consists of a set of variables, each with a finite range
of values (also called the domain of the variable), and a set
of constraints. The aim is to find a satisfying assignment for
all the variables which is compatible with the constraint set.
In a Dynamic Constraint Satisfaction Problem (DCSP(Mit-
tal & Falkenhainer 1990)), there are two types of variables:
activity variables and normal variables. Initially, only a sub-
set of the variables is active, and the objective is to find as-
signments for all active variables that is consistent with the
constraints among those variables. In addition, the DCSP
specification also contains a set of “activity constraints.” An
activity constraint is of the form: “if variable x takes on
the value vx, then the variables y; z; w::: become active.” A
DCSP problem can be translated into a normal CSP problem
by augmenting the domain of variables with a dummy value
? (NULL) to signify that those variable may be inactive,
and modifying the constraint specification accordingly.

Let us state the resource allocation problem for re-
source R. The abstract plan has a set of action pairs
hAi; Aji j j � iwhere actionAi appears at time step i of the
plan (actually written as Ami if it is the mth action at level
i using resource R but the superscript is omitted for clarity)
and they constitute resource spans (Sij : hAi; Aj ; Ci s) that
we have to allocate resources to. The effect C of action Ai

is produced at level i and consumed at a later level j for the
precondition of action Aj .

Examples of spans in Figure 4
are S1;6: hA1; A

1

6
; holding R blockF i and S2;8: hA2; A8;

holding R blockE i. We note that the nature of problem is
such that every resource allocation choice is a backtrackable
point. Moreover, actions can move to lower or upper levels
if causal dependencies allow them.

Each action Ai using resource R has two variables asso-
ciated with it, RAi for the resource allocated and PAi for
the position or level where the action will appear. Position

Action Vars Possible Values
Ai hRAi; PAii f1..Ng,fi..L-1g
Aj hRAj ; PAji f1..Ng,fj..Lg
Fij hRFij ; PFiji f?,1,..Ng,f?,i+1..L-2g
Uij hRUij ; PUiji f?,1,..Ng,f?,i+2..L-1g
Ni hPNii fi..Lg

Table 1: Constraints on action variables and their values
while scheduling for resource R. Number of resource of type
R are N and the permitted length of the plan is L. ?) Fij ,
Uij are not needed. Ni is R insensitive.

Relationship among Comments
variables
RAi =RFij _ (RFij =? If freeing action is needed,
^RAi =RAj) it uses the same resource as

span starting the action
RAj = RUij _ (RUij =? If realloc action is needed,
^RAi =RAj) it uses the same resource

as span ending the
action

RFij 6=?,RUij 6=? If freeing action occurs,
reallocating action also
occurs and vice-versa

PFij � PUij Position of freeing action
_ PFij = PUij =? is before position of realloc

action or both are NULL
PAi � PFij _ PFij =? Position of freeing

action is after start of
span or is NULL

PAj � PUij _ PUij =? Position of realloc action
is before end of span or
is NULL

RFij =?, PFij =? If freeing action is not need-
ed, its position is NULL
and vice-versa

RUij =?, PUij =? If realloc action is not need-
ed, its position is NULL
and vice-versa

PAi � PAj Position of action starting a
span is before the action
ending it

PNi � PNj , Relative ordering of actions
PNi � PAj , in the plan is maintained
PAi � PNj irrespective of resource usage
Non-sharable If segments of two spans
resource constraints overlap, they cannot share
(see Table 3) resources over that segment

Table 2: Relationship among values of action variables.

of an action is also a variable because one way to allocate
resources, given a resource limit, is by serializing the paral-
lel plan. Actions that do not participate in manipulation of
resources are noted as Ni and their corresponding position
variable is PNi. Given a span Sij :hAi; Aj ; Ci, two addi-
tional actions are associated with it, Fij for freeing the re-
source and Uij to reallocate the resource. The constraints on
variables and legal values are listed respectively in Table 1
and Table 2.

As an example, for span S1;6, the domain of RA1 = RA6

= f1..7gwhen 7 is the number of robots in the problem. The
domain of position variables are PA1 = f1..12g and PA6 =
f6..12g if the allocation policy permits movement of actions
in the plan until level 12. If free/ reallocation actions are not
allowed, RF1;6 = RU1;6 = PF1;6 = PU1;6 = ?. Such an
allocation policy in fact allows the scheduler to serialize the
planner till level 12 (beyond the abstract plan length of 10 in
Figure 4) without adding any new action.

Condition Constraint on values
PF1

ij
= PU1

ij
INTERACT(PA1

i
, PA1

j
, PA2

i
, PA2

j
)

= PF2

ij
= PU2

ij
=?)RA1

i
6= RA2

i

PF1

ij
= PU1

ij
=?; INTERACT(PA1

i
, PA1

j
, PA2

i
, PF2

ij
)

PF2

ij
; PU2

ij
6=?)RA1

i
6= RA2

i

INTERACT(PA1
i

, PA1

j
, PU2

ij
, PA2

j
)

)RA1

i
6= RA2

j

PF1

ij
; PU1

ij
6=?; INTERACT(PA2

i
, PA2

j
, PA1

i
, PF1

ij
)

PF2

ij
= PU2

ij
=?)RA2

i
6= RA1

i

INTERACT(PA2
i

, PA2

j
, PU1

ij
, PA1

j
)

)RA2

i
6= RA1

j

PF1

ij
; PU1

ij
; INTERACT(PA1

i
, PF1

ij
, PA2

i
, PF2

ij
)

PF2

ij
; PU2

ij
6=?)RA1

i
6= RA2

i

INTERACT(PA1
i

, PF1

ij
, PU2

ij
, PA2

j
)

)RA1

i
6= RA2

j

INTERACT(PU1

ij
, PA1

j
, PA2

i
, PF2

ij
)

)RA1

j
6= RA2

i

INTERACT(PU1

ij
, PA1

j
, PU2

ij
, PA2

j
)

)RA1

j
6= RA2

j

Table 3: INTERACT(a,b,c,d) = (a � d ^ c � b). When two
sections of resource spans interact, the interacting sections
cannot share the same resource. The superscript refers to
the spans S1 or S2 for which the actions (and variables) are
applicable.

The constraints on resource values enforce that the re-
source used by Ai is the same as Aj unless the freeing and
reallocating actions are present. If they are present, Ai and
Fij have the same resource as do Uij and Aj . The con-
straints on position variables enforce the relative order be-
tween the actions. The position of Ai has to be before Aj ,
while the freeing action, if present, has to be after Ai and the
reallocating action, which follows a freeing action, has to be
before Aj . The partial ordering of the actions in the abstract
plan is also maintained irrespective of resource usage. The
exact constraints on the values of variables are summarized
in Table 2.

Moreover, if a resource is non-sharable (meaning single
capacity), additional constraints have to be specified as sum-
marized in Table 3. The gist of the constraints is that if
any segment of a span interacts with that of another, the two
spans cannot share a resource. For example, spans S1;6 and
S2;8 interact between levels 2 and 6. Therefore, they cannot
share a robot (resource) in this interval unless their allocated
robots are freed. Freeing (and reallocating) actions will re-
sult in sub-intervals over which a robot cannot be shared.

Finally, in addition to the constraints in Tables 2 and 3,
we have the top-level constraints:

� The number of resource allocations at a level must not
exceed the available resources.

� To optimize the plan, we can set the objective function as
minimizing the total number of actions in the plan and/or
amount of resources used. Minimizing resources is usu-
ally neglected in AI planning because the number of re-
sources in a problem is part of the initial specification and
there is no incentive for saving them.

The resource allocation problem can now be solved by
any systematic method. We solve the CSP encodings with
GAC-CBJ, a CSP solver in CPLAN(van Beek & Chen 1999)

Classes of Resource Allocation Scheduling

INH-UNSOLV[5..10] INFRES FINRES

EASY

HARD

[3..4] FIX

[2] SAMELEN

[1] INCRLEN

UNSOLV

Figure 5: A classification of resource allocation instances
(with resource quantities that put 6-shuffle problem in each
of the classes). INH-UNSOLV refers to causally infeasi-
ble plan for which no scheduling is needed, while UNSOLV
refers to an unschedulable plan.

that performs generalized arc-consistency and conflict di-
rected backjumping.

Policies for Planner-Scheduler Interaction
The communication between planner and scheduler can be
seen as policies by the planner about scheduling variables,
their domains and constraints. The relationship is master-
slave as the scheduler responds by flagging success or fail-
ure with the suggested parameters. If scheduling method
fails to allocate resources in the context of given resources,
time limit and nature of allocation policy, the responsibility
transfers to the planner to change any of the permissible pa-
rameters and try again. The planner also has the option to
take up non-abstracted planning at any stage. If resource al-
location succeeds, the schedule and the allocation policy are
used to derive an executable plan.

In (Srivastava & Kambhampati 1999), the resource alloca-
tion problem was classified into a variety of classes (see Fig-
ure 5). The complexity of resource scheduling instance in-
creases from left to right and from top to bottom. It was pro-
posed that rather than using one general scheduling method
for all classes, one could cycle through the scheduling meth-
ods tailored to each of the specific classes. However, the
implementation avoided Class INCRLEN and backtracking
cases in other classes, and reverted to normal planning.

The CSP formulation allows the different classes to be
fully supported in the form of resource allocation policies.
The different policies include maintaining the concurrency
of the plan, serializing the plan and inserting actions to free
and reallocate the resources. Table 4 summarizes the differ-
ent policies and what they imply in terms of legal values of
variables. Maintaining concurrency of the plan corresponds
to all actions Ai in the plan being immovable while no free-
ing/ reallocating actions are permitted. The domain of RAi

is the range of available resources. Serializing the plan im-
plies that the action of the plan can move subject to an up-
per plan length, LMAX , provided by the planner. Again,
no freeing/ reallocating actions are permitted to be inserted.
An example of LMAX is the number of actions in the plan,
which allows the plan to be completely serialized.

Allocation Policy Constraint on values
Maintain concurrency PAi = i, PAj = j,
(Class INFRES) RAi =RAj = f1,..Ng

PFij = PUij =
RFij = RUij =?

Serialize plan PAi = fi,..LMAX -1g,
PAj = fj,..LMAXg,
RAi =RAj = f1,..Ng
PFij = PUij =
RFij = RUij =?

Introduce Free/
Reallocate action (Class FINRES)

Class FIX PAi = i, PAj = j,
RAi =RAj = f1,..Ng
PFij = f?,i+1g,
PUij = f?,j-1g,
RFij = RUij = f?, 1,..Ng

Class SAMELEN PAi = fi,..L-1g,
PAj = fj,..Lg,
RAi =RAj = f1,..Ng
PFij = f?,i+1,..L-2g,
PUij = f?,j-1,..L-1g,
RFij = RUij = f?, 1,..Ng

Class INCRLEN PAi = fi,..LMAX -1g,
PAj = fj,..LMAXg,
RAi =RAj = f1,..Ng
PFij = f?,i+1,..LMAX -2g,
PUij = f?,j-1,..LMAX -1g,
RFij = RUij = f?, 1,..Ng

Table 4: Allocation policy and restrictions on values of vari-
ables. LMAX is some maximum length (LMAX � L) upto
which the steps of the plan can be increased.

In introducing resource freeing/reallocating actions, three
sub-cases are identified . If actions are considered immov-
able, this corresponds to Class FIX. Here, the freeing action
(Fij) can be introduced immediately after Ai while the real-
locating action (Uij) can come immediately before Aj . The
second sub-case is when the actions are allowed to move
upto the length of the abstract plan, and this corresponds
to Class SAMELEN. Finally, the actions are allowed to
move till any upper limit LMAX (LMAX � L) in Class
INCRLEN.

The advantage of multiple allocation policies is that it
helps the planner in communicating the plan preference of
the user to the scheduler. For example, the end user may
prefer plans with lower number of actions in the plan at the
cost of increased plan length. Policies also make sense com-
putationally. The complexity of the CSP problem increases
with the domain size of its variables since it is O(kn) where
there are n variables with average domain size of k. The idea
of having multiple allocation policies is useful in guiding the
scheduler towards easier resource allocation problems first.

Experiments
The aim of the experiments is to show that the declarative
scheduling method is not only general but also makes the
overall planning efficient vis-a-vis the nature of resources.
Implicitly, it also tests if the master-slave form of relation-
ship (RealPlan-MS) is effective. We now compare the per-
formance of the approach (as implemented in Graphplan
and GP-CSP) to standard Graphplan, when one varies the
amount of sharable/ non-sharable resources. I consider the
blocks world (robots), the rocket domain (rocket) and the

1 3 5 7 9
robots

0.1

0.8

8.0

80.0

800.0

lo
g

 (
ti

m
e

in
 s

ec
s)

Performance of Graphplan v/s Planning+Scheduling
in the Shuffle Problems in Blocks World

SHUF-4-GP
SHUF-6-GP
SHUF-8-GP
SHUF-10-GP
SHUF-4-PS
SHUF-6-PS
SHUF-8-PS
SHUF-10-PS

Figure 6: Comparative performance of my approach of de-
coupling causal and resource reasoning v/s Graphplan in
shuffle problem of 4, 6, 8 and 10 blocks. (Total: 80 prob-
lems)

shuttle domain (cranes and shuttles) with varying numbers
of resources noted in the parenthesis respectively.

Figure 6 shows the results for the shuffle problems with 4,
6, 8 and 10 blocks as the number of robots are varied from
1 to 10. The plots clearly show that planning followed by
scheduling (SHUF--PS) is significantly better than original
planning in the presence of resources (SHUF--GP). The to-
tal time is relatively flat as the number of resources increase
in contrast to the performance of Graphplan. Let us consider
the 6-block shuffle problem in detail.

In RealPlan, the causal reasoning time is constant and the
resource reasoning time is dependent on the specific allo-
cation policy (in Table 4) that successfully allocated the re-
sources. For fair comparison, since Graphplan only looks
for shorter length of the plan while the serializing allocation
policy prefers both shorter length as well as fewer number
of actions in the plan, this policy is disabled. The allocation
policies are iterated in the following order: class INFRES,
class FIX, class SAMELEN and finally class INCRLEN. In
the 6-shuffle case, problems with 5 to 10 robots are solved
in class INFRES, problems with 3 and 4 robots are solved
in class FIX, and problem with 2 robots is solved in class
SAMELEN.

All k-shuffle problems with 1 robot can only be solved
in class INCRLEN, and are handled straightforwardly, al-
beit with higher effort (it is reflected by the dip in the plot
SHUF--PS after 1 robot case). Note that least commitment
on resources makes sense if there are multiple resources so
that any resource conflict can be potentially overcome dur-
ing scheduling by assigning different resources to the con-
flicting actions. In the case of single resource, resource
postponement is useless in transferring planning complexity
to scheduling and is infact counter-productive, because the
planner is banking on concurrency in the plan while resource
availability suggests a serial executable plan. This patholog-
ical case could have been easily detected and avoided up-
front.
Utility of the scheduling classes: The idea of progressively

Rockets Normal GP GP+Sched GP-CSP+Sched

2 0.13 3.05 0.48
3 0.31 2.97 0.28
4 0.15 2.99 0.31
5 0.23 2.99 0.28
6 0.40 2.96 0.30
7 0.40 2.99 0.29
8 0.55 2.98 0.31

Table 5: Runtime results from experiments in the rocket do-
main (in cpu sec). GP refers to Graphplan, GP+Sched refers
to Graphplan for abstract planning followed by declarative
scheduling. In GP-CSP+Sched, the planner is changed to
GP-CSP. (Total: 21 problems)

2 3 4 5 6 7 8
2

7
1

10

100

1000

log (time)

#shuttle

#crane

Performance of Graphplan in Shuttle

2-3

1-2

0-1

Figure 7: Comparative performance of Graphplan in shuttle
problems of 2..8 cranes and 2..8 shuttles. (Total: 49 prob-
lems)

increasing the domain sizes of variables is very useful in
practice. For example, the 10-shuffle problem with 4 robots
was solved in 4 sec in class FIX while following the above
order, but it took 81 minutes when class INCRLEN was
specified upfront.

More results are available in (Srivastava 2000). Let
us now investigate the relationship between the nature
of resources (sharable v/s non-sharable) and declarative
scheduling time. Consider the rocket domain where the
sharable rocket can be used to transport items between
location. Table 5 shows the result of experiments in
the rocket facts obj10 problem in Graphplan distribution
where 10 objects have to be moved from one location to an-
other. We see that planning with Graphplan is completed in
a fraction of second and it does not change much with the
number of sharable resources. On the other hand, the plan-
ning time with the new approach is much higher. It turns
out that the causal reasoning in the space of abstracted plans
takes an average of 2.38 sec (note that causal reasoning is
constant for the decoupled approach) while average schedul-
ing time is mere 0.03 sec.

The third column in Table 5 shows the result of using
GP-CSP for solving the abstracted planning problem and
performing scheduling thereafter. We see that the over-
all performance is in line with Graphplan confirming that
the specific abstracted planning problem is being solved by
GP-CSP more efficiently than Graphplan.

The scenario is highlighted if there are non-sharable re-
sources in addition to sharable resources. To study the

2 3 4 5 6 7 8
2

6
0

2

4

6

8

10

time

#shuttle

#crane

Performance of my approach in Shuttle

8-10

6-8

4-6

2-4

0-2

Figure 8: Comparative performance of my approach in shut-
tle problems of 2..8 cranes and 2..8 shuttles (Total: 49 prob-
lems).

inter-play between these types of resources, I created a do-
main called the shuttle domain. In this domain, there are
sharable shuttles and non-sharable cranes to move boxes be-
tween inter-stellar bodies (e.g. Earth and Moon). Problems
where the number of both of these resources are varied in-
dependently are considered. In Figure 7, we see the perfor-
mance of Graphplan which degrades sharply with the num-
ber of non-sharable cranes and lesser so with the number
of sharable shuttles. In Figure 8, the performance of the
new approach is shown. We note that run-time is fairly con-
stant and much lesser than Graphplan with varying number
of non-sharable cranes and sharable shuttles.

Discussion and related work
Scheduling has been studied widely in Operations Research
(OR)(Pinedo 1995) and Artificial Intelligence (AI). In AI,
the resource allocation approaches are constraint-based as
in systems like OPIS, ISIS and MICRO-BOSS (each sum-
marized in (Zweben & Fox (ed.) 1994)) with very limited
action selection choices, if any.

The work on O-Plan (Currie & Tate 1991, pp. 73), has
identified the inefficiency of combining resource schedul-
ing with planning (although, to my knowledge, no specific
steps were taken to address that inefficiency in the O-Plan
work). Among planners that have considered resources, in
SIPE(Wilkins 1988), domain-specific operator ordering can
be provided by defining what are resource objects in the
domain. In IxTeT (Laborie & Ghallab 1995) and HSTS
(Muscettola 1994), planning and resource constraints are
converted to set of common data-structures and search ap-
plied to get a plan. In these systems, planning has been ex-
tended to include specification about physical resource us-
age and this increases expressivity but does not defer flaw
resolution. We conjecture that performance degradation
with increasing resources will also be seen in these systems.

Work more closer to RealPlan are parcPlan (El-Kholy &
Richards 1996) and TRP(Cesta & Cristiano 1996) where
temporal and resource reasoning is performed after a plan is
obtained. In (Liatsos & Richards 1999), planning has been
separated into action selection and action sequencing activi-
ties, and the latter is expanded to scheduling. In contrast, we

consider causal reasoning as planning and resource reason-
ing as scheduling. Specifically, the causal plan has selected
actions along with sequencing information that is indepen-
dent of resource considerations whereas resource reasoning
adds additional sequencing constraints.
Restricted table blocks world from parcPlan3: Exper-
iments done in some problems from the restricted table
blocks world domain of (Liatsos & Richards 1999) (“arm”
is a resource) showed that causal and resource reasoning in-
teract closely here. For smaller problems, e.g. with 4 blocks,
4 table position and 2 arms (b4x4x2), RealPlan-MS per-
forms comparable to Graphplan (in a fraction of seconds).
For medium problems, e.g. b6x6x3 and b8x8x4, the perfor-
mance could suffer if the initial plan is quite parallel because
the scheduling cost increases with fewer resources.

These problems are being experimented with
RealPlan-PP being studied in (Srivastava, Kambhampati &
Do 2000) where the scheduler attempts only cheaper alloca-
tion policies and on failure, passes the “failure” explanation
back to the planner for re-planning. Initial results show that
this approach can solve the medium problems (b6x6x3 and
b8x8x4) in drastically less time.

Conclusion
Decoupling of causal and resource reasoning can lead to
a big performance edge in planning. To this end, the
RealPlan framework allows advances to be made in the
two components as well as in planner-scheduler interac-
tion. In this work, I presented a general approach to
convert the resource reasoning problem as a declaratively
specified DCSP and solved it with a standard CSP solver.
The approach is not only more general than previous pro-
cedural scheduling methods but also supports intelligent
planner-scheduler interaction. In Graphplan and GP-CSP,
the master-slave relationship (RealPlan-MS) is implemented
while in GP-CSP, a truly dependency-directed peer-peer
relationship (RealPlan-PP) is envisaged. The runtime of
RealPlan is much less sensitive to the resource quantity
available. Infact, RealPlan-MS admits the paradigm of plan
once and schedule anytime.

Acknowledgements
I thank Subbarao Kambhampati for his guidance and com-
ments, and BinhMinh Do for discussions on GP-CSP and
inter-CSP interactions. I also thank Prof. van Beek for
putting the CPLAN planning system and its CSP solvers in
public domain, and answering some of my questions. Sup-
port for this work comes in part by NSF young investigator
award (NYI) IRI-9457634, ARPA/Rome Laboratory plan-
ning initiative grant F30602-95-C-0247, Army AASERT
grant DAAH04-96-1-0247, AFOSR grant F20602-98-1-
0182 and NSF grant IRI-9801676.

References
Beck, J.C., and Fox, M. 1998. A Generic Framework for
Constraint-directed Search and Scheduling. AI Magazine
19(4).
3At http://www.icparc.ic.ac.uk/parcPlan/ecp99/index.html.

Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. Proc IJCAI-95 1636–1642.
Cesta, A. and Cristiano, S. 1996. A Time and Resource
Problem in Planning Architectures. Proc. ECP-96.
Currie, K. and Tate, A. 1991. O-Plan: the open planning
architecture. AI, Vol 52, 49-86.
Do, B., and Kambhampati, S. 1999. Solving planning
graph by compiling it into CSP To Appear in AIPS 2000.
El-Kholy, A. and Richards, B. 1996. Temporal and
Resource Reasoning in Planning: the parcPlan approach.
Proc. ECAI-96.
S. Kambhampati, M.R. Cutkoksy, J.M. Tenenbaum and S.
Lee. Integrating General Purpose Planners and Special-
ized Reasoners: Case Study of a Hybrid Planning Archi-
tecture. IEEE Trans. on Sys., Man and Cyber., Vol. 23, No.
6, Nov/Dec, 1993.
Kautz, H., and Selman, B. 1998. BLACKBOX: A New
Approach to the Application of Theorem Proving to Prob-
lem Solving. Workshop Planning as Combinatorial Search,
AIPS-98, Pittsburgh, PA, 1998.
Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. Proc. IJCAI-95.
Liatsos, V. and Richards, B. 1999. Scaleability in Planning.
Proc. ECP-99.
Microsoft. 1998. Microsoft Project Version 4.0 User
Guide. Microsoft Press.
Moder, J. J., and Phillips, C. R. 1964. Project Management
with CPM and PERT. Reinhold Publ., Chapman & Hall
Ltd., London.
Mittal, S., and Falkenhainer, B. 1990. Dynamic Constraint
Satisfaction Problems. Proc. AAAI-90.
Muscettola, N. 1994. Toward real-world science mission
planning. Proc. AAAI Fall Symposium.
Pinedo, M. 1995. Scheduling Theory, Algorithms and Sys-
tems. Prentice Hall.
Srivastava, B. March 2000. Efficient Planning by Effective
Resource Reasoning. Ph.D. Dissertation. Arizona State
Univ., USA.
Srivastava, B., and Kambhampati, S. 1999. Scaling up
Planning by teasing out Resource Scheduling Proc. ECP-
99.
Srivastava, B, Kambhampati, S. and Do, B. 2000. Plan-
ning the Project Management Way: Efficient Planning by
Effective Integration of Causal and Resource Reasoning.
Technical Report. Arizona State Univ., USA.
van Beek, P., and Chen, X. 1999 CPlan: A constraint
programming approach to planning Proc. AAAI-99.
Wolfman, S., and Weld, D. 1999. The LPSAT Engine and
its Application to Resource Planning. Proc. IJCAI-99.
Wilkins, D. E. 1988. Practical planning: Extending the
classical AI planning paradigm. Morgan Kaufmann Pub.,
San Mateo, CA.
Zweben, M., and Fox, M. (ed.). 1994. Intelligent Schedul-
ing. Morgan Kaufmann Publ., San Mateo, CA.

