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Abstract

Recently, casting planning as propositional satisfiability
has been shown to be a very promising technique for
plan synthesis. Although encodings based both on state-
space planning and on plan-space (causal) planning have
been proposed, most implementations and trade-off eval-
uations primarily use state-based encodings. This is sur-
prising given both the prominence of plan-space planners
in traditional planning, as well as the recent claim that
lifted versions of causal encodings provide the smallest
encodings. In this paper we attempt a systematic analyt-
ical and empirical comparison of plan-space (causal) en-
codings and state-space encodings. We start by pointing
out the connection between the different ways of prov-
ing the correctness of a plan, and the spectrum of possi-
ble SAT encodings. We then characterize the dimensions
along which causal proofs, and consequently, plan-space
encodings, can vary. We provide two encodings that
are much smaller than those previously proposed. We
then show that the smallest causal encodings cannot be
smaller in size than the smallest state-based encodings.
We shall show that the “lifting” transformation does not
affect this relation. Finally, we will present some em-
pirical results that demonstrate that the relative encoding
sizes are indeed correlated with the hardness of solving
them. We end with a discussion on when the primacy of
traditional plan-space planners over state-space planners
might carry over to their respective SAT encodings.

1 Introduction
Impressive results have been obtained by casting planning
problems as propositional satisfiability [Kautz & Selman 96].
The general idea of this paradigm is to construct a disjunctive
structure of sizek that contains all possible action sequences
of lengthk that can potentially solve the problem. The prob-
lem of checking if there exists a sequence that actually solves
the problem is posed as an instance of satisfiability checking.
The encoding contains constraints that must hold for any spe-
cific sequence to be a solution. Informally, the constraints
specify lines of proof that must hold for a sequence to be a
solution to the given planning problem. In classical planning,
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there are two general ways of “proving” that a sequence of ac-
tions solves a planning problem[I;G]: (i) The “state space”
methods that essentially try to progress the initial stateI (or
regress the goal stateG) through the sequence to see if the
goal state (or initial state) is reached. (2) The “plan space” or
“causal” methods that attempt to check if every goal and pre-
condition of every action is effectively established (i.e., there
exists some preceding action that contributes that condition,
and the condition survives up to the needed step).

Although encodings based on both state space proofs and
plan space proofs have been considered in the literature
[Kautz et. al. 96], most implementations and trade-off stud-
ies have concentrated almost exclusively on the state-based
encodings [Ernstet. al. 97; Kautz & Selman 96]. This is in-
deed surprising given that the only published theoretical study
of causal encodings [Kautzet. al. 96] is quite supportive of
the relative utility of causal encodings. That study claimed
that the lifted version of causal encoding is asymptotically the
smallest of all encodings including state-based encodings.

In this paper, we report on a theoretical and empirical study
of the utility of causal (plan space) encodings. We make the
following contributions:

� We show that there are many variations of plan space
encodings that, roughly speaking, differ in the specific
ways they carry out the causal proofs over action se-
quences. These variations are interesting as they can
have significant impact on the size of the encoding.

� We analyze the sizes of our best causal encodings, and
show that they have significantly better asymptotic size
characteristics than the only causal encoding that has
been previously described in the literature [Kautzet. al.
96].

� We compare the sizes of our causal encodings with the
sizes of the best state-based encodings from the liter-
ature, and note that causal encodings are in fact never
strictly smaller than best state-based encodings.

� We provide a theoretical argument as to why no type of
causal encoding can be smaller than the best state-based
encoding.

� We show that the “lifting” transformationdoes not
change this dominance of causal encodings by the state-
based encodings.

� We describe results of empirical studies that show that
the hardness of solving the encodings is in fact corre-
lated with the encoding sizes. Specifically, our studies



show both that our best causal encodings are better than
the causal encoding previously presented in the litera-
ture, and that even our encodings are dominated by the
best state-based encodings.

� We put our results in perspective by considering the rea-
sons why plan space (or causal) approaches were found
to be superior in traditional planning, and explaining
why those reasons do not hold in the planning as satis-
fiability framework. We will also show variations to the
planning as satisfiability framework where causal encod-
ings have utility.

The paper is organized as follows. In section 2, we explain
our notation used for representing the planning constraints
and explain some key constraints from the state-based encod-
ing. In section 3, we report several variants of the causal en-
coding of [Kautzet. al. 96] and show that some of our vari-
ants are smaller. We establish limitations on the reduction
in the size of the causal encodings in section 4. In section
5, we show that the lifting transformation does not change
the relationship between the sizes of the state-based and the
causal encodings. Section 6 presents the results of our empir-
ical studies on various encodings. Section 7 puts our results
in perspective, and Section 8 presents the conclusions.

2 Background
As we mentioned earlier, compiling planning into satisfiabil-
ity checking involves constructing a disjunctive structure ofk
steps, and writing down the set of constraints that must hold
for any action sequence belonging to this structure to be a
valid plan for the given problem. The encoding is thus speci-
fied in such a way that it has a model if and only if there ex-
ists a provably correct plan ofk steps. If no model is found,
it means that any plan for the problem must be longer thank
steps. Accordingly, a new encoding is generated by increas-
ing the value ofk. We shall start by describing some com-
mon notation, and then go on to describe the basic ideas of
the state-based encodings.

2.1 Notation
pi denotes a step andoj denotes a ground action.oj(t) de-
notes that the actionoj occurs at timet. k is the number
of plan steps andU is the set of pre-condition and effect
propositionsuj in the domain.uj(t) denotes that the propo-
sition uj is true at timet. O is the set of non-null ground
actions in the domain.(pi = oj) denotes the step!action
mapping. � denotes the null action (no-op) that does not
cause any change to the world state.ai denotes a fluent
from the goal state (partially described)G. G is assumed
to be(a1 ^ a2 ^ a3::: ^ ah). F denotes the goal state step
(goal state can be viewed as a step with preconditions same
as the goals and no effects).I denotes the completely speci-
fied initial state andli denotes a fluent true in the initial state.

j I j denotes the number of fluents true inI. pi
f
! pj de-

notes a causal link wherepi adds (makes true) the condition
f , pj needs it andpi precedespj . Aj , Rj ;Dj denote the
number of add effects, pre-conditions and delete effects of
the actionoj respectively.ajs; rjt; djq denote the individual
add effects, pre-conditions and delete effects of the actionoj
respectively.Adds(pi; uj);Needs(pj ; uj) andDels(pq; uj)
respectively denote that the stepspi; pj ; pq add, need and
deleteuj. pi � pj denotes that the steppi precedes the step

pj . Note that we distinguish total order on steps from con-
tiguous order, e.g. the stepsp1; p2; p3, p1 � p2; p2 � p3 are
totally ordered, but a new stepp4 can occur between them,
e.g. p1 � p4; p4 � p2. If the steps are contiguous, no new
steps can be inserted between them (although, as we shall see
in Section 7, this distinction is immaterial for from-scratch
planning). We denote an encoding of a planning problemP ,
byEi(P ).

We define an encodingEi(P ) to be strictly larger than an
encodingEj(P ) if and only if eitherEi(P ) has higher num-
ber of variables or clauses or literals (sum of the lengths of
the clauses) thanEj(P ), with other parameters (#variables,
#clauses and #literals) being at least as high or higher.

2.2 Basics of a State-based Encoding
State-based encodings are based on the ideas of proving the
correctness of a plan using progression or regression. The
latter involves simulating the regression of the goal state over
the last step of the plan, and regressing the resulting state over
the last but one step etc. Correctness of the plan holds as long
as the final state resulting from this process is subsumed by
the initial state. An important notion in the state-based en-
codings is thus the availability of the world state at each time
step. The clauses in a state-based encoding capture the fol-
lowing constraints: Any of thej O j actions from the do-
main may occur at any of thek time steps from the inter-
val [0; k � 1] and an action that occurs at timet implies the
truth of its pre-conditions att and the truth of its effects at
(t + 1). The initial state is true at time0 and the goal must
be true at timek. Conflicting actions (one action deleting the
pre-condition or effect of another or needing negation of pre-
condition of another) cannot occur at the same time step. In
addition we need frame axioms that capture the persistence
of fluents. This can be done by the “classical frame” axioms
that state that a fluentuj remains unchanged in the interval
[t; t+ 1] if the action occuring att doesn’t haveuj in its add
or delete list. A more efficient alternative is to use “explana-
tory frame axioms” which state that if the truth of a fluent
uj changes over an interval[t; t + 1], some action chang-
ing that truth must occur att. We restrict our attention to
the state-based encoding with explanatory frame axioms, as
this encoding has been shown to have lower size, as well as
faster solvability [Ernstet. al. 97]. Because of the repre-
sentation of all step-action bindings, the use of explanatory
frame axioms, and the fact that an action implies the truth of
its pre-conditions and effects, the state-based encoding con-
tainsO(k � (j O j + j U j)) clauses,O(k � (j O j + j U j))
variables and a total ofO(k� j O j � j U j) literals.

3 Causal (Plan-space) Encodings
The plan space (causal) encodings are based on the ideas of
proving the correctness of a plan using causal reasoning about
the establishment and preservation of goals and the precon-
ditions of individual actions. The correctness of the plan is
proved by ensuring that (i) every preconditionr of every step
s is made true by some steps0 that precedess (establishment)
and (ii) r remains true, when it is needed immediately be-
fore s (declobbering). There are several variants of “causal
proof,” based on how the two conditions above are guaran-
teed. The popular approach for establishment involves asso-
ciating a “causal link”s0

r
! s, with every preconditionr of

s [McAllester & Rosenblitt, 91]. A problem with this ap-
proach, as we shall see below, is that encodings based on it



will have a quadratic number of variables corresponding to
causal links. An alternative is to dispense with causal links,
and post constraints to ensure that for each precondition that
there is a contributor.

To ensure that the established condition is available at the
needed step, we might either require that it not be deleted by
any possibly intervening step (“interval protection”), or that
for every deleting step, there be a re-establishingstep (“white-
knight protection”) [Kambhampatiet. al., 95]. Finally, the
specific implementations of establishment and declobbering
conditions depend on the ordering between the steps in the
plan. Traditionally, plan-space proofs were associated with
the so-called “partial-order” planners [McAllester & Rosen-
blitt, 91], where the steps in the plan are partially ordered.
Such an ordering was important since those planners incre-
mentally introduced steps anywhere in the plan. As we shall
see below, partial ordering is expensive to encode because of
the need for encoding transitive ordering relations between
the steps. This, coupled with the fact that in setting up SAT
encodings, we are not interested in “inserting” new steps into
an existing plan, suggests that we pursue more restrictive or-
dering schemes, including contiguity ordering (where the rel-
ative positions of each of the steps in the encoding are fixed
a priori). Since all possible step!action mappings are repre-
sented in any encoding, the models of an encoding with con-
tiguous steps are exactly same as the models of an encoding
with partially ordered steps.

Given the choice in the way establishment and declobber-
ing are realized, and the specific ordering scheme used in the
encoding, we have a spectrum of possible encodings. Only
one of these encodings, corresponding to casual link based es-
tablishment, interval protection based declobbering, and par-
tially ordered steps, has been studied previously [Kautzet.
al., 96]. We have studied the rest of the variations, and found
that several of them have better asymptotic sizes than that in
[Kautz et. al., 96]. In the following, we will present and
analyze the variation corresponding to that studied in [Kautz
et. al., 96], as well as two other superior variations in our
spectrum.

Before we proceed however, we shall briefly describe the
set of axiom schemas that are common to all the variations
of causal encodings. Figure 1 lists these schemas formally.
Briefly, the first two axiom schemas state that each step in
the encoding must be mapped to a single domain action or a
no-op. The third schema says that the facts true or false in
the initial state are considered to be the effects of stepI and
the facts specified in the goal state are considered to be the
preconditions of stepF . The fourth schema says that if a step
is mapped to an action, then that step inherits the precondi-
tions and effects of that action. The fifth schema states that
the only way a step can add, delete or require a condition is if
the condition is added, deleted or required (respectively) by
the action that the step is mapped to.

3.1 Causal links, Interval protection & Partial
ordering

The first encoding we consider uses causal links for establish-
ment, interval protection for declobbering and assumes that
the steps are partially ordered. This variation corresponds to
that studied in [Kautzet. al., 96]. The additional axioms
(over and above the common ones already shown in Figure 1)
that are needed for this encoding are shown in Figure 2. Ax-
iom schema 6 states that each precondition must have a causal

6: ^ki=1 ^
jU j
j=1(Needs(pi; uj)) (_kq=1;q 6=i(pq

uj
! pi)

_ (I
uj
�! pi)))

7: ^ki=1 ^
k
j=1;i6=j ^

jU j
q=1 (pi

uq
�! pj )

(Adds(pi; uq) ^Needs(pj ; uq) ^ (pi � pj)))

8: ^ki=1 ^
k
j=1;i6=j ^

k
s=1;s6=i;s6=j ^

jU j
q=1((pi

uq
�! pj

^Dels(ps; uq))) ((ps � pi) _ (pj � ps)))

9: ^ki=1 ^
k
j=1;i6=j ^

k
s=1;s6=i;s6=j (((pi � pj) ^ (pj � ps))

) (pi � ps))

^
k
i=1 ^

k
j=1 :((pi � pj) ^ (pj � pi));^

k
i=1:(pi � pi)

Figure 2: Schemas for the encoding in [Kautzet. al., 96]

link supporting it (with the role of contributor step played by
one of the steps in the encoding). The schemas 7 and 8 en-
sure that the contributor step of a causal link precedes the
consumer step, and that if a step is mapped to an action that
deletes the condition supported by the causal link, then that
step either precedes the contributor or succeeds the consumer.
Finally, we also need to add a set of constraints capturing the
irreflexiveness, asymmetry and the transitivity of the prece-
dence relation (schema 9).

Since there areO(k2� j U j) causal links each of which
may be threatened byO(k) steps, there areO(k2� j U j)
variables andO(k3� j U j) clauses in the causal encoding of
[Kautzet. al.96] (for threat resolution).

3.2 Causal Links, Interval Protection &
Contiguous steps

We now consider the variant that uses causal links for es-
tablishment, interval protection for declobbering but assumes
that the steps are contiguous. Figure 3 shows the distinguish-
ing schemas of this variant. Since the ordering is contiguous,
we can represent it by numbering steps in the encoding suc-
cessively1 � � � k. There is no need to represent precedence
relations, or describe their properties (including the costly
transitivity relation). Schema 6 states the requirement that
each precondition of each step is supported by a step whose
position is before that of the consumer step. The interval pro-
tection of causal links (Schema 7) involves ensuring that no
step in the positions between those of the contributor and con-
sumer steps is mapped to an action that deletes the supported
condition.

For resolving the threats to causal linkspi1
f
! pi2 , we need

k�(k+4)�(k�1)
6

� j U j clauses. Since the encoding in [Kautz
et. al., 96] uses partial ordering instead of contiguity order-
ing, it needsk�(k�1)�(k�2)� j U j threat resolving clauses.
Although both are asymptotically of the same order (O(k3)),
the contiguity relation allows us to achieve a percentage re-
duction in the number of clauses of[1 � (k+4)

6�(k�2) ] � 100. As
k ! 1, this reduction tends to 83.33%, which is quite sig-
nificant.

3.3 No Causal Links, White-knight protection &
Contiguous Steps

We now consider a further departure from the encoding in
[Kautz et. al., 96] by dispensing with causal links for estab-



1: ^ki=1 (_
jOj
j=1(pi = oj) _ (pi = �))

2: ^ki=1 ^
jOj
j1=1

^
jOj
j2=1;j2 6=j1

:((pi = oj1) ^ (pi = oj2))

^ki=1 ^
jOj
j=1 :((pi = oj) ^ (pi = �))

3: ^
jIj
s=1 Adds(I; ls);^

jU�Ij
s=1 :Adds(I; ajs);^

h
i=1Needs(F; ai)

4: ^ki=1 ^
jOj
j=1((pi = oj)) ((^

Aj

s=1Adds(pi; ajs)) ^ (^
Rj

t=1Needs(pi; rjt))) ^ (^
Dj

q=1Dels(pi; djq)))

5: ^ki=1 ^
jU j
j=1(Adds(pi; uj)) (_xq=1(pi = omq

))); Adds(omq
; uj)

^ki=1 ^
jU j
j=1 (Dels(pi; uj)) (_xq=1(pi = omq

)));Dels(omq
; uj)

^ki=1 ^
jU j
j=1 (Needs(pi; uj)) (_xq=1(pi = omq

)));Needs(omq
; uj)

Figure 1: The schemas common to all causal encodings.

6.

^
k
i=1^

jU j
j=1(Needs(pi; uj)) (_i�1q=1(pq

uj
! pi)_(I

uj
! pi)))

7.

^
k�1
i1=1 ^

k
i2=i1+1 ^

jU j
j=1((pi1

uj
! pi2)) ((Needs(pi2 ; uj)

^Adds(pi1 ; uj) ^ (^
i2�1
q=i1+1

:Dels(pq; uj)))))

Figure 3: Schemas for the encoding based on causal link pro-
tection with contiguous steps

lishment, and using white-knight protection for declobbering.
We will continue to assume that the steps in the encoding are
contiguous (as in Section 3.2). This variant turns out to be the
smallest (has the fewest number of clauses, variables and lit-
erals) of all the causal encodings in the spectrum of encodings
we have considered.

The key schemas of this encoding are shown in Figure 4.
The establishment schema 6 eliminates the causal links by
only requiring only that each pre-condition of each steppi
must be added by some step whose position precedespi. The
declobbering schema 7 says that any deleted pre-condition
must be re-established. Notice that there is no reference to
any particular causal link intervals. Since we are considering
steps in a contiguous ordering, this schema generates only
O(k2� j U j) clauses, as opposed toO(k3� j U j) in the
previous two encodings. Traditional planners that use white-
knight protection strategy, such as TWEAK [Chapman, 87]
have been found to be inferior to the causal link-based plan-
ners because they may establish a condition multiple times
[Minton et. al. 91]. It is thus interesting to note that the
combination of white-knight protection, causal-link-less es-
tablishment and contiguous ordering leads to a very compact
causal encoding (see also Section 7)!

4 Comparison with State-based Encodings
As mentioned earlier, state-based encodings with explana-
tory frame axioms have been shown to be smallest among
state-based encodings. A comparison of the smallest vari-

6.
^
k
i=2 ^

jU j
j=1 (Needs(pi; uj))

(_i�1q=1Adds(pq; uj) _Adds(I; uj)))
7.
^
k
i=3 ^

i�2
j=1 ^

jU j
m=1((Needs(pi; um) ^Dels(pj ; um)))

(_i�1q=j+1Adds(pq; um)))

^
k�1
j=1 ^

h
m=1 ((Needs(F; am) ^Dels(pj ; am)))

(_kq=j+1Adds(pq; am)))

Figure 4: Schemas for the causal-link less encoding based
white-knight protection and contiguity ordering

ant (from section 3.3) of the causal encodings with the state-
based encoding with explanatory frame axioms shows that
the asymptotic number of variables in both encodings are the
same (O(k � (j O j + j U j))). However, the state-based
encoding with explanatory frame axioms has fewer ( that is
O(k � (j U j + j O j))) clauses. Hence the state-based en-
coding with explanatory frame axioms remains smaller than
the smallest causal encoding. Indeed, we can view the white
knight strategy as aninefficient version of the explanatory
frame axioms. The regular explanatory frame axioms explain
the change of truth of a world state fluent over just the unit
time intervals[t; t + 1] (the number of these time intervals
is O(k)), however the white-knight strategy can be seen as
explaining this change over all time intervals (the number of
these time intervals isO(k2)).

One natural question is whether the dominance of state-
based encodings holds irrespective of the specific variant of
causal encodings considered. As the result below shows, the
relative dominance holds irrespective of the variant of the
causal encodings used. The proof is based on the observation
that the causal encodings have to consider the truth of condi-
tions over many more time intervals than state-based encod-
ings do.

The important property of a causal proof is its ability to
consider the truth of each precondition in isolation from other
preconditions. This is achieved by considering all possible
establishing actions and all possible ways of protecting (de-
clobbering) those establishments. Since the precondition of



an action occurring at timet could have been made true at
any timej 2 [0; t] any causal encoding will have to refer to a
quadratic number of time intervals, their lengths varying from
1 to (k + 1) and resolve threats posed by steps occurring in
these longer time intervals. This holds irrespective of whether
the ordering between actions is partial, total or contiguous.

In contrast, in the state-based encodings, the world state
at t serves as the contributor for every pre-condition of every
action that occurs att. Hence a state-based encoding need to
refer to only a linear number of time intervals ((k + 1) for a
k step plan), each of length 1.

The foregoing shows that a causal encoding will always
have more clauses than a state-based encoding. It is possi-
ble to show that this dominance holds also for the number of
variables and the number of literals (sum of clause lengths).
Hence we have the theorem:

Theorem 1. Causal encodings are strictly larger than the
smallest state-based encoding.

5 The effect of “lifting”
[Kautz et. al. 96] have argued that the smallest encoding is
the “lifted” version of their causal encoding. Lifting is moti-
vated by the fact that number of ground actions is generally
combinatorially large. Lifted encodings use only the unin-
stantiated action schemas and leave it to the solver to decide
the instantiations of arguments of the actions, by stating that
each argument can be mapped to any of the elements from its
domain and some other constraints. The idea is to replace the
complexity of solving a larger ground encoding with the com-
plexity of solving a smaller lifted encoding and doing unifi-
cations using the ground initial and goal state. To our knowl-
edge, this speculation is not yet validated due to the lack of
effective lifted solvers. Nevertheless, in this section, we ar-
gue that any potential size improvements from lifting will also
apply to the state-based encodings. Specifically, lifted state-
based encodings can be proved to be smaller than the lifted
causal encodings, as shown next.

In Figure 5, we show the schemas that are required to gen-
erate a lifted version of ground state-based planning. The set
of lifted actions is denoted byO0. A lifted action is denoted
by o0i, and its lifted add, delete and precondition fluents are
denoted bya0ij; d

0
ij ; n

0
ij. U

0 is the set of lifted pre-conditions
and effects andu0j denotes a lifted fluent fromU 0. The ini-
tial and goal states are ground. Schema 3 that states the ex-
planatory frame axioms, says that if the truth of a proposition
changes, some lifted action whose ground version can cause
the change must have occurred. Schema 6 states that each
action argument variablexi can take any valuecij from its
domainDomi andV denotes the set of these arguments.

It can be seen that even the lifted version of the state-based
encoding with explanatory frame axioms is smaller than the
lifted version of the smallest causal encoding, because the
lifted state-based encoding will haveO(k � (j O0 j + j U 0 j))
variables and clauses, but the smallest lifted causal encoding
will haveO(k2� j U 0 j) clauses andO(k � (j O0 j + j U 0 j))
variables.

To complete the lifting transformation, we need to give
the schemas for the reduction of lifted SAT to SAT. The 5
schemas in Figure 6 are same as those in [Kautzet. al. 96].
Here t; u;w; f(t1; t2; t3; :::; tk); f(u1; u2; :::; uk) denote the
terms from the lifted version.

1. ^k�1i=0 ^
jO0j
j=1 (o

0
j(i)) (^

Rj

s=1n
0
js(i)))

2. ^k�1i=0 ^
jO0j
j=1 (o

0
j(i))

((^
Aj

j1=1
a0jj1(i+ 1)) ^ (^

Dj

j2=1
:d0jj2(i+ 1))))

3. ^k�1i=0 ^
jU 0j
j=1 ((u

0
j(i) ^ :u

0
j(i+ 1)))

(_
jO0 j

s=1;Can Del(o0

s;u
0

j
)
o0s(i)))

^
k�1
i=0 ^

jU 0j
j=1 ((:u

0
j(i) ^ u0j(i+ 1)))

(_
jO0 j

s=1;Can Add(o0

s;u
0

j
)
o0s(i)))

4. ^hi=1ai(k)

5. (^jIji=1li(0)) ^ (^
jU j
j=1;uj 62I

:uj(0))

6. ^jV j
i=1(_

jDomij
j=1 (xi = cij))

Figure 5: Lifted version of ground state-based planning

1. t = t
2. (t = u)) (u = t)
3. ((t = u) ^ (u = w))) (t = w)
4. (f(t1; t2; :::; tk) = f(u1; u2; :::; uk)),

((t1 = u1)^(t2 = u2)^::^(tk = uk))
5. :(t = u), t; u clash.

Figure 6: Additional clauses for reduction from lifted SAT to
SAT

Since the lifted version of the ground state-based encod-
ing with explanatory frame axioms is strictly smaller than the
lifted version of the smallest causal encoding and since the
reduction from lifted SAT to SAT in the causal encoding can-
not be smaller than the corresponding size for the state-based
encoding, we have the theorem:
Theorem 2. The lifted state-based encoding with explana-
tory frame axioms is strictly smaller than any lifted causal
encoding.

6 Empirical Evaluation
Until now, we have shown the dominance of various types
of encodings in terms of the asymptotic sizes (in terms of
number of variables and clauses). Ultimately of course, we
are more interested in how the encodings behave in practice.
There are two possible reasons why the practice may devi-
ate from the theory. First, the asymptotic analyses miss the
constant factors, and actual encodings may in fact be larger
because of the relative sizes of these ignored constants. Sec-
ond, and perhaps more important, the correlation between the
size of a SAT encoding and the hardness of solving it is by no
means perfect. Indeed, it is known that adding certain types of
constraints (including mutual exclusion constraints, domain
specific constraints etc.) while increasing the encoding size,
wind up facilitating simplification (through techniques such
as unit propagation), making the encodings much easier to
solve.

To verify if the size-based dominances that we have dis-
cussed in this paper are correlated with the hardness of
solving the encodings, we conducted empirical comparisons
among the causal encoding developed by [Kautzet. al. 96]



Domain State-based Our best Causal encoding (Sec. 3.3) Kautz et. al.’s Causal encoding
(Steps) #Vars #Clauses Time # Vars #Clauses Time #Vars #Clauses Time
Ferry (15) 390 1519 0.23 855 4144 1.01 4714 58444 81.29
Ferry (19) 588 2436 4.17 1291 7224 125.16 8535 138172 -
Ferry (23) 826 3615 48.54 1815 11504 - 13988 280328 -
Tsp (8) 217 553 0.02 497 1661 0.07 1809 10825 2.11
Tsp(14) 631 1640 0.06 1457 6770 0.88 7785 88873 2.42
Tsp(20) 1199 3138 0.17 2779 16308 6.58 19618 335818 -
Log(19) 921 2639 0.13 2004 12120 - 13051 211696 -
Log(12) 378 1068 0.04 822 3636 0.63 3803 36611 165.97

Figure 7: Empirical results on the performance of selected encodings. Times are in CPU seconds. A “-” indicates that the
encoding was not solved within 5 minutes of CPU time on a Sun Ultra with 128M RAM.

(see Section 3.1), the causal encoding that we found to be the
smallest based on our analysis of the spectrum of encodings
(see Section 3.3), as well as the best state-based encoding
(those with explanatory frame axioms; see Section 2.2). Our
experiments involved encoding a specific planning problem
in each of these encodings. Following the practice of [Kautz
& Selman, 96], the number of steps we used in the encodings
were greater than or equal to the minimal length solution for
the problem (thus eliminating the need for solving encodings
of various lengths). Each of the encodings were solved with
the SATZ solver1, a state-of-the-art systematic SAT solver.

The results of our empirical study are shown in Figure 7.
The descriptions of the benchmark domains we used are
available atwww.cs.yale.edu/HTML/YALE/CSin the direc-
tory HyPlans/mcdermott.html. “Tsp” denotes the traveling
sales person domain, while “ferry” denotes the ferry domain
involving transportation of objects. “Log” denotes the logis-
tics domain. The number of steps in the encodings were same
as the number of actions in the plans. Though many of the ir-
relevant actions were eliminated from consideration before
generating the encodings, the same actions were used in all
encodings of each problem.

The results show that our improved causal encoding (from
section 3.3) could be solved significantly faster than the
causal encoding of [Kautzet. al.96]. They also show that the
state-based encoding with explanatory frame axioms was still
the fastest to solve. The encoding sizes, in terms of number of
variables and clauses, are in accordance with the asymptotic
relations. We also repeated the experiments where the encod-
ings were first processed with traditional simplifiers (e.g. unit
propagation), before being solved. The simplification did not
have any appreciable effect on the relative performances of
the three encodings.

7 Related Work & Discussion
As we noted, plan-space encodings are based on the ideas of
proving the correctness of a plan in terms of establishment
and declobbering of all goals and action preconditions in a
plan. Historically, these ideas were associated with partial
order planning [McAllester & Rosenblitt, 91; Penberthy &
Weld, 92]. Partial order planning is known to be a more flexi-
ble and efficient form of plan synthesis [Barrett & Weld, 94],

1available from aida.intellektik.informatik.th-darmstadt.dein
˜ hoos/SATLIB

and this was to some extent the motivation for the initial in-
terest in the causal encodings. Given this background, the
results of this paper seem paradoxical, in as much as they
show that causal (plan-space) encodings are dominated by the
state-based encodings.

Upon closer examination however, this apparent paradox
turns out to be an artifact of a misunderstanding of the rela-
tion between traditional planning algorithms, and the SAT en-
codings inspired by those algorithms. The primary difference
between state-space and plan-space (partial-order) planners is
the specific way a partial plan is extended – state space plan-
ners extend the suffix or the prefix of the plan, while partial
order planners have the flexibility to insert steps anywhere in
the partial plan. The specific strategies used to check if the
plan under consideration constitutes a solution are in fact in-
terchangeable [Kambhampati 97].

In contrast, as we have seen throughout this paper, the var-
ious causal encodings are distinguished by the various ways
of proving the correctness of a plan. The issues of (partial)
plan extension are irrelevant for SAT encodings, since SAT-
based planning in essence starts with a fixed length disjunc-
tive structure, and checks to see if some conjunctive substruc-
ture of it corresponds to a valid plan for the problem. It is only
because extension is irrelevant that we were able to consider
replacing partial ordering with contiguous ordering (which
ultimately resulted in a better plan-space encoding).

From the above perspective, there is no reason to expect
that the advantages of partial-order planners over state space
planners, which are based largely on the flexibility of insert-
ing steps anywhere in the partial plan, will transfer over to
plan space (causal) encodings and state-based encodings that
are distinguished by the differences in proof strategies. In
fact, since causal proofs consider establishment and declob-
bering for each precondition of each step separately, they are
an inefficient way of checking the correctness of a given ac-
tion sequence. The reason they are used in partial order plan-
ners is that such planners need to interleave refinement and
correctness checking of partial plans, and since plan-space re-
finements add actions without fixing their absolute position,
causal proof strategies provide the best means of incremental-
izing (finite-differencing) the proof attempts. This flexibility
is clearly irrelevant in solving SAT encodings.

7.1 Two uses for Causal encodings
Although causal encodings do not have any advantages in
the standard STRIPS-planning tasks, we now show that they



could be advantageous in incremental planning scenarios as
well as in exploiting causal domain knowledge.
Incremental planning: SAT-based planning has hither-to
concentrated on “from-scratch” planning scenarios–where
the planner is presented with just the specification of the plan-
ning problem. An equally important problem, that has been
considered in the traditional planning scenarios, is that of “in-
cremental planning” that arises in the context of replanning
and plan-reuse. In this case, in addition to a problem spec-
ification, one is given a partial plan, with the requirement
that as much of that plan as possible be reused in solving the
new problem. Solving such problems could potentially bene-
fit from the ability to insert steps flexibly into the given plan
[Ihrig & Kambhampati, 94]. For example, consider a scenario
where we are reusing a 2 step plan[o2o1] to solve a new prob-
lem, and suppose there is a solution to the new problem that
involves inserting a new actiono3 at an arbitrary place in the
current plan. If we solved the original problem using a causal
encoding (with partial ordering), then it would be feasible to
solve the new problem by incrementally extending the origi-
nal encoding and re-solving it. If we want to keep the origi-
nal steps as part of the new plan, we need only change their
step-action mapping axiom appropriately, e.g.(p1 = o1) (or
((p1 = o1) _ (p1 = �)) if we want to allow removal of old
actions.)

In contrast, if the original problem is to be solved with a
state-based encoding, one has to either (i) represent a disjunc-
tion of all possible ways of respecting the the constraints from
the old plan, e.g.((o2(0)^o1(1))_(o2(0)^o1(2))_(o2(1)^
o1(2))) or (ii) make multiple copies of the old plan (only if
the actions from the old plan may need to be reordered or re-
moved), and reserve multiple places for the inclusion of new
actions, e.g.((o3(0)_�(0))^o2(1)^(o3(2)_�(2))^o1(3)^
(o3(4) _ �(4))). In addition to increasing the size of the en-
codings, this approach unfortunately also opens up the possi-
bility of having redundant occurrences ofo3 in the final plan.
Indeed in the case of plan merging and reuse, it was found
that the causal encodings of some problems were smaller and
faster to solve than the state-based encodings [Mali 99(b)].
Using causal domain knowledge:Another scenario where
the causal encodings were found to be smaller and faster
to solve than the state-based encodings is the hierarchical
task network planning problem cast as satisfiability [Mali
99(a)]. The causal encodings naturally capture the prece-
dence constraints and causal links specified in the task reduc-
tion schemas. On the other hand, in the state-based encod-
ings, these constraints need to be represented as the disjunc-
tion of all total orders on the steps that are consistent with the
partial order in the constraints from the reduction schemas.

For example, in ak step encoding, the linko2
f
�! o3 needs to

be represented as_k�1
i=0 _

k
j=i+1(o2(i)^o3(j)^(^

j
q=i+1f(q))).

This approach significantly increases the encoding size [Mali
99(a)].

8 Conclusion
In this paper we provided a systematic analytical and empir-
ical comparison of plan-space (causal) encodings and state-
based encodings. We pointed out that the two types of en-
codings differ mainly in the way they attempt to prove the
correctness of a plan. We then showed that there can be a
large variety of causal encodings corresponding to different
ways of carrying out causal proofs. The critical dimensions

are the specific ways in which establishment and declobber-
ing of pre-conditions is ensured, and the type of ordering as-
sumed between the steps of the encoding. We showed that
the causal encoding that was previously studied in the litera-
ture corresponds to one specific variation, and presented two
other variations that are significantly smaller. We went on
to show that even our smallest causal encodings cannot be
smaller in size than the smallest state-based encodings. We
also showed that the “lifting” transformation does not affect
this relation. We bolstered our claims by presenting empirical
results that demonstrate that the relative encoding sizes are
indeed correlated with the hardness of solving them. Finally,
we discussed why it should not be surprising that the primacy
of traditional plan-space planners over state-space planners
does not carry over to their respective SAT encodings, and
showed that causal encodings might have advantages in solv-
ing incremental planning problems.
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