

 1

Learning-assisted automated planning:
Looking back, taking stock, going forward

Terry Zimmerman & Subbarao Kambhampati
Department of Computer Science & Engineering

Arizona State University, Tempe AZ 85287
Email: {zim, rao}@asu.edu

This paper reports on an extensive survey and analysis of research work related to machine learning as applied to
automated planning over the past 30 years. Major research contributions are characterized broadly by learning
method and then into descriptive subcategories. Survey results reveal learning techniques that have been
extensively applied and a number that have received scant attention. We extend the survey analysis to suggest
promising avenues for future research in learning based on both previous experience and current needs in the
planning community.

In this article we consider the symbiosis of two of the most broadly recognized hallmarks of

intelligence; planning -problem solving in which one uses beliefs about actions and their consequences to
construct a sequence of actions that achieve one’s goals, and learning -using past experience and precepts
to improve one’s ability to act in the future. Within the A.I. research community, machine learning is
viewed as a potentially powerful means of endowing an agent with greater autonomy and flexibility, often
compensating for the designer’s incomplete knowledge of the world that the agent will face, while
incurring low overhead in terms of human oversight and control. If we view a computer program with
learning capabilities as an agent, then we can say that learning takes place as a result of the interaction of
the agent and the world, and from observation by the agent of its own decision-making processes.
Planning is one such decision-making process that such an agent might undertake, and a corpus of work
spanning some 30 years attests that it is an interesting, broad and fertile field in which learning techniques
can be applied to advantage. We focus here on this learning-in-planning research, and employ both tables
and graphical maps of existing studies to spotlight to the combinations of planning/learning methods that
have received the most attention, as well as those that have scarcely been explored. We do not attempt to
provide, in this limited space, a tutorial of the broad range of planning and learning methodologies,
assuming instead that the interested reader has at least passing familiarity with these fields.

A cursory review of the state of the art in learning-in-planning during the early to mid-90’s reveals that
the primary impetus for learning was to make up for often debilitating weaknesses in the planners
themselves. The general purpose planning systems of even a decade ago struggled to solve simple
problems in the classical benchmark domains; “Blocksworld” problems of 10 blocks lay beyond their
capabilities as did most logistics problems. (See for example, the texts; Machine learning methods for
planning. 1993, Minton, S. and Machine Learning: An artificial intelligence approach. Vol 3, 1990,
Kodtratoff, Y. & Michalski, R.S.) The planners of the period employed only weak guidance in traversing
their search spaces, so it is not surprising that augmenting the systems to learn some such guidance was
often a winning strategy. Relative to the largely naïve base planner, the learning-enhanced systems
demonstrated improvements in both the size of problems that could be addressed and the speed with
which they could be solved (Minton, et. al. 1989, Leckie, Zukerman 1998, Veloso, Carbonell 1993,
Kambhampati, et al. 1996).

With the advent of several new genres of planning systems in the past 5 - 6 years, the entire base
performance level against which any learning-augmented system must compare has shifted dramatically.
It is arguably a more difficult proposition to accelerate a planner in this generation by outfitting it with
some form of online learning, as the overhead cost incurred by the learning system can overwhelm the
gains in search efficiency. This, in part may explain why the planning community appears to have paid
less attention to learning in recent years. From the machine learning community perspective, (Langley
1997) remarked on the swell of research in learning for problem solving and planning that took place in

 2

the 1980’s, as well as to note the subsequent tail-off; “One source is the absence of robust algorithms for
learning in natural language, planning, scheduling, and configuration, but these will come only if basic
researchers regain their interest in these problems.”

Of course, interest in learning within the planning community should not be limited to anticipated
speedup benefits. As automated planning has advanced its reach to the point where it can cross the
threshold from “toy” problems to some interesting real-world applications, a variety of issues comes into
focus. These range from dealing with incomplete and uncertain environments to developing an effective
interface with human users.

Our purpose in this study is to develop, via an extensive survey of published work, a broad perspective
of the diverse research that has been conducted to date in learning-in-planning, and then to conjecture as
to profitable directions for future work in this area. The remainder of the article is organized into three
parts; where learning is likely to be of assistance in automated planning, what roles has learning actually
played in the relevant planning research conducted to date, and where might the research community
gainfully direct its attentions in the near future. In the next section, we describe a set of five dimensions
for classifying learning-in-planning systems with respect to properties of both the underlying planning
engine and the learning component. By mapping the breadth of the surveyed work along these
dimensions we reveal some underlying research trends, patterns, and possibly oversights. This motivates
our speculation in the final section, on some promising directions for such research in the near future,
given our current generation of planning systems.

Where Learning May Assist Planning
In a number of ways, automated planning presents a fertile field for the application of machine

learning. The simple (STRIPS) planning problem itself has been shown to be PSPACE-complete
(Bylander, 1992), so in order for planning systems to handle problems “large” enough to be of interest,
they must greatly reduce the size of the search space they traverse. Indeed, the great preponderance of
planning research, from alternate formulations of the planning problem to the design of effective search
heuristics, can be seen as addressing this problem of pruning the search space. It is therefore not
surprising that the earliest and most widespread application of learning to automated planning has focused
on the aspect of expediting solution search.

As automated planning advanced beyond solving trivial problems, the issue of plan quality received
increased attention. Although there are often many valid plans for a given problem, generating one
judged acceptable by the user or optimizing over several quality metrics can increase the complexity of
the planning task immensely. A learning-augmented planning system that can perceive a user’s
preferences and bias it’s subsequent search accordingly offers a means of reducing this complexity.
Learning seems to have an obvious role in “mixed initiative” planning where it may be imperative to
perceive and accommodate the expertise, preferences, and idiosyncrasies of humans. Finally, expanding
our view to a real-world situation in which a planning system might operate, we are likely to confront
uncertainty as a fact of life, and complete and robust domain theories are rare. As we will show, the
study of machine learning methods in planning approaches that address uncertainty is in its infancy.

Machine learning offers the promise of addressing such issues by endowing the planning system with
the ability to profit from observation of its problem space and its decision-making experience, whether or
not its currently preferred decision leads to success. However, to actually realize this promise within a
given application challenges the planning system designer on many fronts. Success is generally heavily
dependent on complex relationships and interconnections between planning and learning. In Figure 1 we
suggest five dimensions that capture perhaps the most important of these system design issues:

1. Type of planning problem
2. Approach to planning
3. Goal for the learning component
4. Planning/Execution phase in which learning is conducted
5. Type of learning method

 3

PLANNING ASPECTS LEARNING ASPECTS

Problem Type

Planning
approach

Planning-
Learning Goal

Improve
plan

quality

Learn or
improve
domain
theory

Speed
up

planning

Learning Phase

During plan
execution

During planning
process

Before planning
starts

Type of learning

Classical Planning
 9 static world
 9 deterministic
 9 fully observable
 9 instant. actions
 9 propositional

‘Full Scope’ Planning
 9 dynamic world
 9 stochastic
 9 partially observable
 9 durative actions
 9 asynchronous goals
 9 metric/continuous

Plan Space search
[SNLP, TWEAK, UCPOP…]

State Space search

Disjunctive SS
[Graphplan,STAN, IPP..]

Conjunctive SS
[Prodigy, HSPr, FF,..]

Compilation
Approaches

SAT
[SATPLAN, Blackbox..]

CSP
[GP-CSP..]

Integer
Programming

Inductive
 decision tree

 Neural Network

 Bayesian learning

 Inductive Logic
Programming

Reinforcement
Learning

Analytical

analogical

Explanaztion Based
Learning

Static analysis &
Abstractions

Derivational analogy /
Case Based

Multi-strategy

EBL & Inductive Logic
Programming

analytical & induction

 EBL &
 Reinforcement Learning

We hope to show that this set of dimensions is useful in both gaining useful perspective on the work

that has been done in learning-augmented planning and speculating about profitable directions for future
research. Admittedly, these are not independent or orthogonal dimensions, nor do they comprise an
exhaustive list of relevant factors in the design of an effective learning component for a given planner.
Among other candidate dimensions that could have been included are; ‘type of plan’ (e.g. conditional,
conformant, serial or parallel actions), ‘type of knowledge learned’ (domain or search control), ‘learning
impetus’ (data-driven or knowledge-driven), and whether plans are hierarchically organized or flat.
Given the corpus of work to date and the difficulty of visualizing and presenting patterns and
relationships in high-dimensional data, we settled on the five dimensions of Figure 1 as the most
revealing. Before reporting on the literature survey, we briefly discuss each of these dimensions.

Planning problem type
The nature of the environment in which the planner must conduct its reasoning defines where a given
problems lies in the continuum of classes from “classical” to “full scope” planning. Here classical
planning refers to a world model in which fluents are propositional and they don’t change unless the
planning agent acts to change them, all relevant attributes can be observed at any time, the impact of

Figure 1. Five dimensions characterizing automated planning systems augmented with a learning component

 4

executing an action on the environment is known and deterministic, and the effects of taking an action
occur instantly. If we relax all these constraints such that fluents can take on a continuous range of values
(e.g. metric), a fluent might change its value spontaneously or for reasons other than agent actions, the
world has hidden variables, the exact impact of acting cannot be predicted, and actions have durations,
then we are in the class of “full scope” planning problems. In between these extremes lies a wide variety
of interesting and practical planning problem types, such as classical planning with a partially observable
world (e.g. playing poker), and classical planning where actions realistically require significant periods of
time to execute (e.g. logistics domains). The difficulty of even the classical planning problem is such that
it largely occupied the full attention of the research community up until the past few years. The current
extension into various ‘neo-classical’, temporal and metric planning modes has been spurred in part by
impressive advances in automated planning technology over the past six years or so.

 Planning approach

Planning as a sub-field of AI has roots in Newell and Simon’s 1960-era problem-solving system, GPS,
and theorem proving. At a high level, planning can be viewed as either a problem solver or theorem
prover. Planning methods can further be seen as either search processes or model checking. Amongst
planners most commonly characterized by search mode, there are two broad categories: search in state
space and search in a space of plans. It is possible to further partition current state space planners into
those that maintain a conjunctive state representation and those that search in a disjunctive representation
of possible states.

Planners most generally characterized as model checkers (though they also conduct search), involve
recompiling the planning problem into a representation that can be tackled by a particular problem
solution engine. These systems can be partitioned into three categories: satisfiability (SAT), constraint
satisfaction problems (CSP), and integer linear programming (IP). Figure 1 lists these four different
methods along with representative planning systems for each. These categories are not entirely disjoint
for purposes of classifying planners as some systems employ a hybrid approach or can be viewed as
examples of more than one method. Graphplan (Blum and Furst, 1997), for example, can be seen as
either dynamic CSP, or as conducting “disjunctive state space search” (Kambhampati 2000). Blackbox
(Kautz and Selman, 1999) uses Graphplan’s disjunctive representation of states and iteratively converts
the search into a SAT problem.

Goal of planner’s learning component
There is a wide variety of targets that the learning component of a planning system might aim at, such

as learning search control rules, learning to avoid dead-end or unpromising states, or improving an
incomplete domain theory. As indicated in Figure 1, they can be categorized broadly into one of three
groups; learning conducted to speed up planning, learning to elicit or improve the planning domain
theory, or learning to improve the quality of the plans produced (where “quality” may have a wide range
of definitions).

Learning / improving domain theory: Automated planning implies the presence of a domain theory –
the descriptions of the actions available to the planner. When an exact model of how an agent’s actions
affect its world is unavailable (a non-classical planning problem), there are obvious advantages to a
planner that can evolve its domain theory via learning. Few interesting environments are simple and
certain enough to admit a complete model of their physics, so it’s likely that even ‘the best laid plans’
based on a static domain theory will occasionally (i.e. too often) go astray. Each such instance,
appropriately fed back to the planner, provides a learning opportunity for evolving the domain theory
towards a version more consistent with the actual environment in which its plans must succeed.

Even in classical planning, the designer of a problem domain generally has many valid alternative ways
of specifying the actions, and it is well known that the exact form of the action descriptions can have a
large impact on the efficiency of a given planner on a given problem. Even if the human designer can
identify some of the complex manner in which the actions in a domain description will interact, she will

 5

likely be faced with tradeoffs between efficiency and factors such as compactness, comprehensibility, and
expressiveness. .

Planning speedup: In all but the most trivial of problems, a planner will have to conduct considerable
search to construct a solution, in the course of which it will be forced to backtrack numerous times. The
primary goals of speedup learning are to avoid unpromising portions of the search space and/or to bias the
search in directions most likely to lead to high quality plans.

Improving plan quality: This category ranges from learning to bias the planner towards plans with a
specified attribute or metric value to learning a user’s preferences in plans and variations of mixed-
initiative planning.

Planning phase in which learning is conducted
At least three opportunities for learning present themselves over the course of a planning and execution
cycle:

Learning before planning starts: Before the solution search even begins, the specification of the
planning problem itself presents learning opportunities. This phase is closely connected to the aspect of
learning and improving the domain theory, but encompasses only preprocessing of a given domain theory.
It is done ‘offline’ and produces a modified domain that is useful for all future domain problems.

Learning during the process of finding a valid plan: Planners capable of learning in this mode have
been augmented with some means of observing their own decision-making process. They then take
advantage of their experience during planning to expedite the further planning or to improve the quality of
plans generated. The learning process itself may be either on or offline.

Learning during execution of a plan: A planner has yet another opportunity to improve its performance
when it is an embedded component of a system that can execute a plan and provide sensory feedback. A
system that seeks to improve an incomplete domain theory would conduct learning in this phase, as might
a planner seeking to improve plan quality based on actual execution experience. The learning process
itself may be either on or offline.

Type of learning
The machine learning techniques themselves can be classified in a variety of ways, irrespective of the

learning goal or the planning phase they might be used in. Two of the broadest traditional class
distinctions that can be drawn are between so-called inductive (or empirical) methods and deductive or
analytical methods. In Figure 1, we have broadly partitioned the machine learning techniques dimension
into these two categories along with a multi-strategy approach. We then consider additional properties
that can be used to characterize a given method. The inductive/deductive classification is drawn based on
the following formulations of the learning problem:
• Inductive learning: the learner is confronted with a hypothesis space H and a set of training examples

D. The desired output is a hypothesis h from H that is consistent with these training examples.
• Analytical learning: the learner is confronted with the same hypothesis space and training examples

as for inductive learning. However, the learner has an additional input: a domain theory B composed
of background knowledge that can be used to help explain observed training examples. The desired
output is a hypothesis h from H that is consistent with both the training examples D and the domain
theory B.

Understanding the advantages/disadvantages of applying a given machine learning technique to a given
planning system may help to make sense of any research bias that becomes apparent in the survey tables.
The primary types of analytical learning systems developed to date along with their relative strengths and
weaknesses and an indication of their inductive biases are listed in Table 1. The major types of pure
inductive learning systems are similarly described in Table 2. Admittedly, the various subcategories
within these tables are not disjoint, nor do they nicely partition the entire class (inductive or analytical).

 6

Analytical Technique Models Strengths Weaknesses

‘Nogood’ learning
(memoization, caching)

Inconsistent states
and sets of fluents

Simple, fast learning.
Generally low computational
overhead
Practical, widely used

‘Low strength’ learning -each
nogood typically prunes small
sections of search space.
Difficult to generalize across
problems.
Memory requirements can be
high.

Explanation Based
Learning (EBL)

Search control rules.
Domain refinement

Uses a domain theory –the available
background knowledge. Can learn
from a single training example.
If-Then rules are generally intuitive
(readable).
Widely used

Requires a domain theory –
incorrect domain theory can
lead to incorrect deductions.

Rule utility problem

Static analysis &
 abstractions learning

Existing problem/
domain invariants or
structure.

Performed “offline”, benefits
generally available for all subsequent
problems in domain.

Benefits vary greatly depending
on domain and problem

Derivational analogy /
Case-Based Reasoning

(CBR)

Similarity between
current state and
previously cataloged
states

Holds potential for shortcutting much
planning effort where ‘similar’
problem states arise frequently.
Extendable to full analogy?

Large space required as case
library builds.
Case-matching overhead.
Revising old plan may be costly

 Table 1 Characterization of the most common analytical learning techniques

Inductive
Technique

Models Strengths Weaknesses

Decision Tree
learning

Discrete-valued
functions, classification
problems.

Robust to noisy data, missing values.
Learns disjunctive clauses.
If-then rules are easily understandable.
Practical, widely used.

Approximating real-valued or
vector-valued, functions.
(essentially propositional)
Incapable of learning relational
predicates.

artificial
 Neural Networks

Discrete, real, &
vector-valued functions

Robust to noisy & complex data, errors
in data

Long training times are common.
Learned target function is largely
inscrutable

Inductive
 Logic
 Programming

1st order logic, theories
as logic programs

Robust to noisy data, missing values.
More expressive than propositional
based learners. Able to generate new
predicates.
If-then rules (Horn clauses) are easily
understandable.

Large training sample size may be
needed to acquire effective set of
predicates.
Rule utility problem

Bayesian learning

Probabilistic inference.
Hypotheses that make
probabilistic predictions

Readily combine prior knowledge with
observed data.
 Modifies hypothesis probability
incrementally based on each training
example.

Require large initial probability sets
High computational cost to obtain
Bayes optimal hypothesis

 Reinforcement
 Learning

Control policy to
maximize rewards.
Fits the MDP setting

Domain theory not required.
Handling actions with non-deterministic
outcomes.
Optimal policy from non-optimal
training sets, facilitates life-long learning

Depends on a real-valued reward
signal for each transition.
Difficulty handling large state
spaces. Convergence can be slow,
Space requirements can be huge

Table 2. Characterization of the most common inductive learning techniques

 7

The research literature itself conflicts at times, as to what
constitutes ‘learning’ in a given implementation, so
Tables 1 and 2 reflect the decisions made in this regard
for this study.1

The classification scheme we propose for learning-
augmented planning systems is perhaps most inadequate
when it comes to reinforcement learning. We discuss
this special case, in which planning and learning are
inextricably intertwined, in the sidebar on this page.

Analogical learning is only represented in Table 1 by a
specialized and constrained form known as derivational
analogy, and the closely related case-based reasoning
formulism. More flexible and powerful forms of
analogy can be envisioned (c.f. Hofstadter, Marshall
1993, ‘96), but the lack of active research in this area
within the machine learning community effectively
eliminates more general analogy as a useful category in
our learning-in-planning survey.

The three columns for each technique of Tables 1 & 2
give a sense of the degree to which the method may be
effective when applied to a given learning problem; in
our case, automated planning. Two columns summarize
the relative strengths and weaknesses of each technique.
The column headed ‘Models’ refers to the type of
function or structure that the method was designed to
represent or process. A method chosen to learn a
particular function is not well suited if it is either
incapable of expressing the function or is inherently
much more expressive than required. This choice of
representation involves a crucial tradeoff. A very
expressive representation that allows the target function
to be represented as close as possible will also require
more training data in order to choose among the
alternative hypotheses it can represent.

The heart of the learning problem is how to
successfully generalize from examples. Analytical
learning leans on the learner’s background knowledge to
analyze a given training instance so as to discern the
relevant features. In many domains, such as the stock
market, complete and correct background knowledge is not available. In these cases, inductive
techniques that can discern regularities over many examples in the absence of a domain model may prove
useful. One possible motivation for adopting a multi-strategy approach is that analytical learning
methods generate logically justified hypotheses while inductive methods generate statistically justified
hypotheses. The logical justifications fall short when the prior knowledge is flawed while the statistical
justifications are suspect when data is scarce or assumptions about distributions are questionable.

We next consider the learning-in-planning work that has been done in light of the characterization
structure given in Figure 1 and described above.

1 For example, “dependency directed backtracking (backjumping)”, a technique closely related to EBL in CSP
methods is not tracked in this survey.

Reinforcement learning, the special case:
 In the context of the Figure 1 dimensions
for a learning-in-planning system,
reinforcement learning (RL) must be seen as
a special case . Unlike the other learning
types, this widely studied machine learning
field is not readily characterized as a
learning technique for augmenting a
planning system. Essentially, it’s a toss-up
whether to view RL as a learning system
that contains a planning subsystem or a
planning system with a learning component.
Reinforcement learning is defined more
clearly by characterizing a learning problem
instead of a learning technique.
 A general RL problem may be seen as
comprised of just three elements; goals an
agent must achieve, an observable
environment, and actions an agent can take
to affect the environment (Sutton, Barto
1998). Through trial-and-error online
visitation of states in its environment, such
an RL system seeks to find an optimal policy
for achieving the problem goals. When
reinforcement learning is applied to a
planning problem a fourth element, the
presence of a domain theory comes into
play. The explicit model of the valid
operators is used to direct the exploration of
the state space and this exploration is used
(together with the reward associated with
each state), in turn, to refine the domain
theory. Since, in principle, the “exact
domain theory” is never acquired,
reinforcement learning has been termed a
“lifelong learning” process. This stands in
sharp contrast to the assumption in classical
planning that the planner is provided a
complete and perfect domain theory.
 Due to the tightly integrated nature of the
planning and learning aspects of RL, the 5-
dimensional view of Figure 1 is not as useful
for characterizing implemented RL-planning
systems as it is for other learning-augmented
planners. Nonetheless, when we analyze the
survey results in the next section we will
map planning-oriented RL work onto this
dimensional structure for purposes of
comparison with the other nine learning
techniques that have been (or could be) used
to augment planning systems.

 8

What Role has Learning Played in Planning?
 We report here the results of an extensive survey of AI research literature2 focused on applications of

machine learning techniques to planning. Research in the area of machine learning goes back at least as
far as 1959, with Arthur Samuel’s checkers playing program that improved its performance through
learning (Samuel, 1959). It is noteworthy that perhaps the first work in what was to become the AI field
of planning (“STRIPS” Fikes and Nilsson, 1971) was quickly followed by a learning-augmented version
that could improve its performance by analyzing its search experience (Fikes et.al., 1972). Space
considerations preclude an all-inclusive survey for this 30-year span, of course, but we sought to list
either seminal studies in each category or a typical representative study if the category has many.

It is difficult to present the survey results in 2-dimensional format in a manner such that the five
dimensions represented in Figure 1 are usefully reflected. We have employed three different formats,
emphasizing different combinations and orderings of the Figure 1 dimensions;

1. A set of three tables organized around just two dimension; type of learning and type of planning.
2. A set of tables reflecting all five dimensions for each relevant study in the survey.
3. A graphical representation providing a visual mapping of the studies’ demographics along the

five dimensions
 We discuss each of these representations next.

Survey tables according to Learning Type / Planning Type
Table 3A deals with studies focused primarily on analytical (deductive) learning in its various forms

while Table 3B is concerned with inductive learning. Table 3C addresses studies and multi-strategy
systems that aim at some combination of analytical and inductive techniques. All studies/publications
appearing in these tables are listed in full in the references section.

The table rows feature the major learning types outlined in Tables 1 & 2, occasionally further
subdivided as indicated in the leftmost column. The 2nd column contains a listing of some of the more
important non-planning studies and implementations of the learning technique in the first column. These
‘General Applications’ were deemed particularly relevant to planning, and of course the list is highly
abridged. Comparing the ‘General Applications’ column with the ‘Planning’ columns for each table
provides a sense of which machine learning methods have been applied within the planning community.
The last three columns of each table indicate which techniques have been applied in automated planning –
subdivided into ‘state space’, ‘plan space’, and CSP/SAT/IP planning. Studies dealing with planning
problems beyond classical planning (as defined above) appear in shaded blocks in these tables.

Table 3C, covering multi-strategy learning, reflects the fact that the particular combination of
techniques employed in some studies could not always be easily subcategorized relative to the analytical
and inductive approaches of Tables 3A and 3B. This is often the case, for example, with an inductive
learning implementation that exploits the design of a particular planning system. Examples include
HAMLET (Borrajo, Veloso 1997) which exploits the search tree produced by the PRODIGY 4.0 planning
system to lazily learn search control heuristics and EGBG, PEGG (Zimmerman, Kambhampati 1999,
2002) which exploit Graphplan’s use of the planning graph structure to learn to shortcut the iterative
search episodes. Studies such as these appear in Table 3C under the broader category “analytical and
inductive”.

2 The major sources employed in the search included AAAI proceedings (1980 - 2000), IJCAI proceedings
('89,'91,'93,'95,'97,'99,’01), Artificial Intelligence Planning and Scheduling proceedings (AIPS -1994, '96, '98, '00,
‘02), European Conference on Planning proceedings (ECP 1997, ’99, ‘01), Third International Conference on
Multistrategy Learning, 1996, International Conference of Machine Learning proceedings (ICML -1991, '94, '96 -
'00), Journal of Artificial Intelligence Research (JAIR, 1993 - Jan. 2001), Artificial Intelligence, Elsevier (1987 -
2001), Kluwer journals: AI Review ('96 - '00), Machine Learning ('94 - Mar. 2001), Applied Intelligence ('95 -
Mar. 2001), Artificial Intelligence and Law ('95 - Sep. 2000)

 9

Table 3A. Analytical learning applications and studies
 Studies in diagonal hashed blocks concern planners applied to problems beyond classical planning.
 Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [-]

Planning Applications ANALYTICAL
LEARNING

General
Applications State Space

[Conjunctive / Disjunctive]
Plan Space Compilation

[CSP / SAT / IP]

Static / Domain
analysis

& Abstractions

 Learning abstractions:
 Sacerdoti, ’74 ABSTRIPS
 Knoblock ’90 ALPINE
Static analysis, domain invars:
 Etzioni ’93
 STATIC [-PRODIGY]
 Perez, Etzioni ’92 (w/ EBL)
 DYNAMIC [-PRODIGY]
 Nebel, Koehler, Dimopoulos
 ’97 RIFO
 Gerevini, Schubert ’98
 DISCOPLAN
 Fox, Long ’98, ’99
 STAN/ TIM [-Graphplan]
 Rintanen ‘00

Smith, Peot ’93
 [-SNLP]
Gerevini, Schubert ’96
 [-UCPOP]

Fikes, Nilsson ’72 STRIPS
Minton, et. al. ’89 PRODIGY
Gratch, DeJong ’92
 COMPOSER [-PRODIGY]
Bhatnagar ’94. FAILSAFE
Borrajo, Veloso ’97
 <see Multi-strategy>
Kambhampati ’00
 “Graphplan-EBL”

Explanation
Based
Learning

General problem
solving; ‘chunking’:
 Laird et al. ’87
SOAR
Horn clause rules:
Kedar-Cabelli ’87
 Prolog-EBG
Symbolic integration
 Mitchell, et. al. ‘86
 LEX-2
 <see Multi-strategy>

Permissive real world plans:
 Bennett, DeJong ‘96
 GRASPER

Chien, ‘89
Kambhampati, et al.
 ’96 UCPOP-EBL

Wolfman, Weld ‘99
 LPSAT [-RELSAT]

Nogood learning:
 Selman, Kautz ’99
 BLACKBOX
 (using RELSAT)

 Do, Kambhampati
 ’01 GP-CSP
 [-Graphplan]

Analogical

 Case-Based
 Reasoning

(derivational
&

transformational
analogy)

 Jones, Langley ‘95
 EUREKA
Microdomain analogy
maker:
 Hofstadter, Marshall
 ’93 ’96 COPYCAT
Conceptual design :
 Sycara, et al ’92
 CADET
Legal reasoning by
analogy
 Ashley, Mclaren ’95
 TRUTH-TELLER
 Ashley, Aleven ’97
 CATO
 Kakuta, et al. ‘97

transformational:
 Hammond ’89 CHEF
 Kambhampati, Hendler ’92
 PRIAR
 Hanks, Weld ’95 SPA
 Leake, Kinley, Wilson ‘96
<see Multi-strategy>
derivational:
 Veloso, Carbonell ’93
 PRODIGY / ANALOGY
Learning various abstraction
level cases
 Bergmann, Wilke ’96 PARIS
User assist planning:
 Avesani, et. al. ’00 CHARADE

derivational:
 Ihrig, Kambhampati
 ’96 [-UCPOP]
 with EBL…
 Ihrig, Kambhampati
 ’97 [-UCPOP]

 10

Planning Applications INDUCTIVE
LEARNING

General Applications

State Space

[Conjunctive / Disjunctive]
Plan Space Compilation

[CSP / SAT/ IP]

Learning operators for real
world robotics, clustering:
 Schmill, Oates, Cohen ’00
 [-TBA for inducing decision tree]

Propositional
 Decision Trees

Concept learning:
 Hunt et. al. ’66 CLS
General DT learning:
 Quinlan, ’86 ID3
 Quinlan, ’93 C4.5
 Khardon, ‘99 L2ACT
 Cohen, Singer ’99 SLIPPER

Real Valued
 Neural Network

Hinton, 1989
Symbolic rules from NN:
 Craven, Shavlik ‘93
Reflex/Reactive
 Pomerleau, ‘93 ALVINN

1st-Order Logic
 ILP
 (Inductive Logic
 Programming)

Horn-like clauses:
 Quinlan ’90 FOIL
 Muggleton, Feng ’90 GOLEM
 Lavrac, et al. 1991 LINUS

 Leckie, Zukerman ’98
 GRASSHOPPER [-PRODIGY]
 Zelle, Mooney ‘93
 <see Multi-strategy>
 Reddy, Tadepalli ’99 ExEL

 Estlin, Mooney ‘96
 <see Multi-strategy>

Huang,Selman,Kautz
 ’00
 <see Multi-strategy>

 Bayesian
 Learning

Train Bayesian belief networks,
unobserved variables:
 Dempster, et al. ’77 EM
Text classification:
 Lang ’95 “NewsWeeder”
Predict run time of problem
solvers for decision-theoretic
control Horvitz, et. al. ‘01

 Other Inductive
 Learning

 Action strategies & Rivest’s
decision list learning:
 Khardon ‘99
 Martin, Geffner ‘00
Plan rewriting:
 Ambite, Knoblock, Minton ‘00
 PbR

Reinforcement
Learning (RL)

 Sutton, ’88 TD[lambda]
 Watkins, ’89 “Q learning”
 Barto, Bradtke, Singh ‘95
 “Real-time dynamic
 programming”
Dearden, Friedman, Russel
 ’98 “Bayesian Q learning”

 Dietterich, Flann ’95
 <see Multi-strategy>
Incremental dynamic prog:
 Sutton, ’91 DYNA
Planning w/ learned operators:
 Garcia-Martinez, Borrajo ’00
 LOPE

Table 3B. Inductive learning applications and studies
Implemented system/program names capitalized or in double quotes, Underlying planners & subsystems appear in [-]
Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning.

 11

Table 3C. Multi-strategy learning applications and studies
 EBL: Explanation Based Learning NN: Neural Network ILP: Inductive Logic Programming RL: Reinforcement Learning
 Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [-]
 Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning.

In addition to classifying the studies surveyed along the learning-type / planning-type dimensions, these
tables illustrate several foci of this corpus of work. For example, the preponderance of research in
analytical learning assists to planning as compared to inductive learning styles is apparent, as is the heavy
weighting in the area of state space planning. We return to such issues when discussing implications for
future research in the final section.

Survey tables based on all five dimensions
 The same studies appearing in tables 3A, 3B, and 3C are tabulated in tables 4A and 4B according to all
five dimensions of Figure 1. We have used a block structure within the tables to emphasize shared
attribute values wherever possible, given the left-to-right ordering of the dimensions. Here the two

Planning Applications MULTI-
STRATEGY
LEARNING

General Applications State Space

[Conjunctive/Disjunctive]
Plan Space Compilation

[CSP / SAT/ IP]

Learn / refine operators:
 Carbonell, Gil ’90, Gil ‘94
 EXPO [-PRODIGY]
 Wang ’96a, ‘96b
 OBSERVER [-PRODIGY]

EBL & induction:
 Calistri-Yeh, Segre, Sturgill
 ’96 ALPS

Analytical &
 Inductive

Symbolic integration:
 Mitchell, Keller, Kedar-Cabelli
 ’86 LEX-2
Learn CSP variable ordering:
 Zweban, et.al. ’92 GERRY
Incorp. symbolic knowledge in NNs
 Shavlik, Towell ’89 KBANN
 Fu ’89
Learn Horn clause sets focused by
domain theory:
 Pazzani ’91 FOCL
Refining domain theories using
empirical data:
 Ourston, Mooney ’94 EITHER

NN and fuzzy logic to implement
analogy:
 Hollatz ’99
Genetic, lazy RL,
 k-Nearest Neighbor:
 Sheppard, Salzberg ‘95

CBR and induction:
 Leake, Kinley, Wilson ’96
 DIAL
Borrajo, Veloso ’97
 HAMLET [- PRODIGY]

Zimmerman, Kambhampati
 ’99, ’02 EGBG, PEGG
 [-Graphplan]
Deduct,induct, & genetic:
 Aler, Borrajo, Isasi ’98
 HAMLET-EvoCK
 [-PRODIGY]
 Aler, Borrajo ’02
 HAMLET-EvoCK
 [-PRODIGY]

 EBL & NN

Domain theory cast in neural
network form:

 Mitchell, Thrun ’95 EBNN

 EBL & ILP

Search control for logic programs
 Cohen, ’90 AxA-EBL
 Zelle,Mooney ‘93
 DOLPHIN [-FOIL/PRODIGY]

Zelle,Mooney ‘93
DOLPHIN
 [-PRODIGY/FOIL]

Estlin,Mooney ’96
 SCOPE [-FOIL]

EBL, ILP, &
 some static analysis:
Huang, Selman,Kautz
 ’00 [-BLACKBOX/-FOIL]

 EBL & RL Dietterich, Flann ’97
 EBRL policies

 12

DIMENSIONS
Planning/

Learning Goal
Learning Phase Type of

Learning
Planning
Approach

PLANNING SYSTEMS / STUDIES

Plan Space Smith, Peot ’93 [-SNLP]
Gerevini, Schubert ’96 [-UCPOP]

Analytical

Static analysis .
.

State Space

Etzioni, ’93 STATIC [-PRODIGY]
Nebel, Koehler, Dimopoulos ’97 RIFO
Fox, Long ’98, ’99 STAN / TIM [-Graphplan]
Rintanen ‘00

.

.
Before planning

starts
.
.
.
. Static analysis:

 learn abstractions
.
.

Sacerdoti, ’74 ABSTRIPS
Knoblock ’90 ALPINE [-PRODIGY]

Before & during
planning

Static analysis &
EBL

. Perez, Etzioni, ’92 DYNAMIC [-PRODIGY]

.

.
State Space

.

.

Fikes, Nilsson ’72 STRIPS
Minton ’89 PRODIGY/EBL
Gratch, DeJong ’92 COMPOSER [-PRODIGY]
Bhatnagar ’94. FAILSAFE
Kambhampati ’00 “Graphplan-EBL”

Plan Space Chien, ‘89
Kambhampati, et al. ’96 UCPOP-EBL

(Compilation)
SAT

Nogood learning:
 Kautz, Selman ’99 BLACKBOX

LP & SAT Wolfman, Weld ‘99 LPSAT [-RELSAT]

Analytical
.
.
.

EBL
.
.
.
.
.

CSP Nogood learning:
 Do, Kambhampati ’01 GP-CSP [-Graphplan]

.
.
.

State Space
.
.
.
.
.

Learning various abstraction level cases
 Bergmann, Wilke ’96 PARIS
User assist planning:
 Avesani, et. al. ’00 CHARADE

transformational analogy / adaptation:
 Hammond ’89 CHEF
 Kambhampati, Hendler ’92 PRIAR
 Hanks, Weld ’95 SPA
 Leake,Kinley,Wilson ’96 DIAL

derivational analogy / adaptation:
 Veloso, Carbonell ’93 PRODIGY/ANALOGY

.
.
.
.
.
.
.
.
.
.
.

Speedup
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

During planning
.
.
.
.
.
.
.
.
.
.
.
.

Analytical
 Analogical

Case-based
Reasoning

Plan Space

 Ihrig, Kambhampati ’96 [-UCPOP]
 With EBL…
 Ihrig, Kambhampati ’97 [-UCPOP]

Table 4A. Survey studies mapped across all five dimensions
 Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning.
 Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [-]

 13

DIMENSIONS
Planning/

Learning Goal
Learning

Phase
Type of

Learning
Planning
Approach

PLANNING SYSTEMS / STUDIES

Inductive:
Inductive Logic
Programming

.
State Space

Leckie, Zukerman ‘98
 GRASSHOPPER [-PRODIGY]
 Reddy, Tadepalli ’99 ExEL

Other induction

.

.

.

Action strategies & Rivest’s decision list
learning of policies:
 Khardon ’99 Martin, Geffner ’00

Calistri-Yeh, Segre, Sturgill ’96 ALPS

CBR and induction:
 Leake, Kinley, Wilson ’96 DIAL

.
.
.
.
.
.

During planning

.
.
.

Multi-Strategy

Analytical &
Inductive

.

.
State Space

.

.

Zimmerman, Kambhampati ’99
 EGBG [-Graphplan]

Before & During
Planning

EBL, ILP, &
static analysis

(Compilation)
SAT

 Huang,Selman,Kautz ’00
 [-BLACKBOX/-FOIL]

State Space

 Zelle, Mooney ‘93 DOLPHIN
 [-PRODIGY/FOIL]

.
.
.
.
.
.
.
.
.

Speedup
.
.
.
.
.
.
.
.

.

.

.

.

.
EBL & ILP

.
Plan Space Estlin,Mooney ’96 SCOPE [-FOIL]

EBL &

 Inductive

.

.

.
State Space

.

 Borrajo,Veloso ’97 HAMLET [- PRODIGY]
Deductive-Inductive & Genetic:
 Aler, Borrajo ’98, ’02
 HAMLET-EvoCK [-PRODIGY]
Zimmerman, Kambhampati ’02
 PEGG [-Graphplan]

Speedup
&

Improve Plan
Quality

.

.
.During planning

.

.

.

. Inductive:
(analysis of plan

differences)

.

.
Plan rewriting:
 Ambite, Knoblock, Minton ’00 PbR

Before planning

starts

(Propositional)
Decision Trees

.
State Space

Learning operators for real world robotics,
clustering: Schmill, Oates, Cohen ’00
 [-TBA for inducing decision tree]

Analytical:
 EBL

.

.
Permissive real world plans:
 Bennett, DeJong ’96 GRASPER

Learn or improve
domain theory

During plan
execution

Multi-Strategy:

analytical &
inductive

.

.

.

Learning / refining operators:
 Wang ’96a, ‘96b OBSERVER [-PRODIGY]
 Carbonell, Gil ’90, Gil ‘94
 EXPO [-PRODIGY]

EBL & RL “State Space” Dietterich, Flann ’97 EBRL Learn or improve
domain theory

&
Improve Plan

Quality

.

.
During planning

.

.

Inductive:
Reinforcement

Learning

.

.

.

Incremental dynamic prog:
 Sutton, ’91 DYNA
Planning with learned operators:
 Garcia-Martinez, Borrajo ’00 LOPE

Table 4B. Survey studies mapped across all five dimensions
 Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning.
 Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [-]

 14

dimensions not represented in the previous set of tables, ‘planning/learning goal’ and ‘learning phase’, are
ordered first so this block structure reveals the most about the distribution of work across attributes in
these dimensions. It’s apparent that the major focus of learning-in-planning work has been on speedup,
with much less attention to the aspects of learning to improve plan quality or building/improving the
domain theory. Also obvious is the extent to which research has focused on learning prior to or during
planning, with scant attention paid to learning during plan execution.

Graphical analysis of survey

There are obvious limitations to what can be readily gleaned from any tabular presentation of a data set
across more than 2-3 dimensions. In order to more easily visualize patterns and relationships in learning-
in-planning work, we have devised a graphical method of depicting the corpus of work in this survey with
respect to the five dimensions of Figure 1. Figure 2 illustrates this method of depiction by mapping two
studies from the survey onto a version of Figure 1.

PLANNING ASPECTS LEARNING ASPECTS

Multi-Strategy

Inductive

Problem Type Planning
approach

Planning-
Learning Goal

Learning
Phase

Type of learning

Classical Planning
 9 static world
 9 deterministic
 9 fully observable
 9 instant. actions
 9 propositional

State Space search
Conjunctive / Disjunctive

Plan Space search

Speed
up

planning

Improve
plan

quality

Before planning
starts

During planning
process

Analytical

analogical

E B L

Static analysis &
Abstractions

Derivational analogy /
Case Based

EBL & Inductive Logic
Programming

analytical & induction

Compilation
Approaches

Learn or
improve
domain
theory

Figure 2. Example graphical mapping of two learning-in-planning systems
The layout of the five dimensions of Figure 1 and their range of values can be used to map the research work covered in
the survey tables. By way of example, the PRODIGY-EBL system (Minton, et.al.,1989) is represented by the top
connected series of cross-hatched lines; it’s a classical planning system that conducts state-space search, and it aims to
speed up planning via explanation based learning during the planning process. Tracing the subgraph from the left, the
edge picks up the cross-hatch at the ‘State Space’ node, and the gray shade of the ‘Speed up planning’ node. The
SCOPE system (Estlin, Mooney 1996) is then represented as the branched series of wavy patterned lines; it’s a classical
planning system that conducts plan space search, and the goal of it’s learning subsystem is to both speedup planning and
improve plan quality. Thus, the ‘Plan Space’ node branches to both of these ‘Planning-Learning Goal’ nodes. All of
SCOPE’s learning occurs during the planning process, employing both EBL and inductive logic programming. As such,
the edges converge at the ‘During planning process’ node, but both edges persist to connect with the EBL & ILP node.

 15

In this manner every study or project covered in the survey has been mapped onto at least one 5-node,
directed subgraph of either Figure 3 (classical planning systems) or Figure 4 (systems designed to handle
problems beyond the classical paradigm)3. The edges express which combinations of the Figure 1
dimensional attributes were actually realized in a system covered by the survey.

Besides providing a visual characterization of the corpus of research in learning-in-planning, this
graphical presentation mode permits quick identification of all planner-learning system configurations
that embody any of the aspects of the five dimensions (nodes). For example, since the survey tables don’t
show all possible values in each dimension’s range, aspects of learning-in-planning that have received
scant attention are not obvious until one glances at the graphs. This entails simply observing the edges
incident on any given node. Admittedly, a disadvantage of this presentation mode is that the specific
planning system associated with a given subgraph cannot be extracted from the graphical figure alone.
However, the tables above can assist with in this regard.

 Learning within the classical planning framework:
Figure 3 indicates via dashed lines and fading, those aspects (nodes) of the five dimensions of learning-

in-planning that are not relevant to classical planning. Specifically, ‘learning / improving the domain
theory’ is inconsistent with the classical planning assumption of a complete and correct domain theory.
Similarly, the strength of reinforcement learning lies in its ability to handle stochastic environments in
which the domain theory is either unknown or incomplete. (Dynamic programming, a close cousin to
reinforcement learning methods, requires a complete and perfect domain theory, but due to efficiency
considerations it has remained primarily of theoretical interest with respect to classical planning.)

Broadly, the figure indicates that some form of learning has been implemented with all planning
approaches. If we consider the ‘learning phase’ dimension of Figure 3, it is obvious that the vast majority
of the work to date has focused on learning conducted during the planning process. Work in automatic
extraction of domain-specific knowledge through analysis of the domain theory (see Fox, Long 1998, ’99,
Gerevini, Schubert 1998) constitutes the learning conducted before planning. Not surprisingly learning in
the third phase, during plan execution, is not a focus for classical planning scenarios as this mode has
clear affinity with improving a faulty domain theory –a non-classical problem.

It is apparent, based on the Figure 3 graph in combination with the survey tables, that EBL has been
extensively studied and applied to every planning approach and both relevant planning-learning goals.
This is perhaps not surprising, given the presence of the sort of domain theory that EBL can readily
exploit. Perhaps more notable is the scant attention paid to inductive learning techniques for classical
planners. Although inductive logic programming (ILP) has been extensively applied as a learning tool for
planners, other inductive techniques such as decision tree learning, neural networks, and bayesian
learning, have seen few planning applications.

Learning within a non-classical planning framework:
Figure 4 covers planning systems designed to learn in the wide range of problem classes beyond the

classical formulation (shown in shaded blocks in tables 3A-C, 4A, and 4B). There are, as yet, far fewer
learning-augmented systems, although this a growing area of planning community interest. Those that
exist extend the classical planning problem in a variety of different ways, but due to space considerations,
we have not reflected this with separate versions of Figure 4 for each combination. This is the natural
domain of reinforcement learning systems, and as discussed above, this popular machine learning field
does not so readily fit our 5-dimensional learning-in-planning perspective. Figure 4 therefore represents
RL in a different manner than the other approaches; a single shade, brick cross-hatch set of edges is used
to span the five dimensions. The great majority of RL systems to date adopt a state space perspective so
there is an edge skirting this node. With respect to the planning-learning goal dimension, RL can be
viewed as both ‘improving plan quality’ (the process moves toward the optimal policy) and ‘learning the

3 For this survey the classical/non-classical partition of a system is drawn based on the applications made by it’s
designers in the survey reference, regardless of what class of problems it might conceivably handle.

 16

 PLANNING ASPECTS LEARNING ASPECTS

 Learning Phase

Problem Type

Type of Learning

Planning-
Learning Goal

Planning Approach

Figure 3: Mapping of the survey planning-learning systems for classical planning problems onto the Figure 1 characterization structure.

Learn or
improve
domain
theory

 bayesian learning

Compilation
Approaches

Plan Space search

State Space search
[Conjunctive / Disjunctive]

CSP

L P

SAT
During plan execution

Before planning starts

During planning process

Inductive
 decision tree

 Neural Network

 ‘other’ induction

Reinforcement Learning

 Inductive Logic Programming

Analytical

EBL

Static analysis/
Abstractions

Case Based Reasoning
(derivational / transformational

analogy)

Multi-strategy

EBL &
Inductive Logic
Programming

analytical & induction

EBL &
Reinforcement Learning

 Classical Planning
 9 static world
 9 deterministic
 9 fully observable
 9 instantaneous

actions

‘Full Scope’
Planning

 9 dynamic world
 9 stochastic
 9 partially observable
 9 durative actions
 9 asynchronous goals
 9 metric/continuous

Speed up
planning

Improve
plan

quality

 17

 PLANNING ASPECTS LEARNING ASPECTS

Figure 4: Mapping of the survey planning-learning systems for beyond-classical planning problems onto the Figure 1 characterization structure.

 decision tree

 Neural Network

 Bayesian learning

 Inductive Logic Programming

 Reinforcement Learning

Multi-strategy

Inductive

Analytical

EBL

 Case Based Reasoning

Static analysis/
Abstractions

 EBL & ILP

 analytical & induction

EBL &
Reinforcement Learning

 Classical Planning
 9 static world
 9 deterministic
 9 fully observ…

‘Full Scope’
Planning

 9 dynamic world
 9 stochastic
 9 partially observable
 9 durative actions
 9 asynchronous goals
 9 metric/continuous

‘beyond-classical’
Planning

 9 dynamic world
 9 stochastic
 9 …
 9 …

Compilation
Approaches

SAT

CSP

L P

State Space search
[Conjunctive /
Disjunctive]

Plan Space search

 Learning Phase

Problem Type

Type of Learning

Planning-
Learning Goal Planning Approach

During plan execution

Before planning starts

During planning process
Improve

plan
quality

Speed
up

planning

Learn or
improve
domain
theory

 18

domain theory’ (it requires none to determine the best action to take from each state). This view is
reflected in Figure 4 as the vertical RL edge spanning these nodes under the planning-learning goal
dimension. Finally, since RL learning is both rooted in interacting with its environment, and takes place
during the process of building the plan, there is a vertical edge spanning these nodes under the learning
phase dimension.

Beyond reinforcement learning systems, Figure 4 suggests at least three aspects to the learning-in-
planning work done to date for non-classical planning problems; all fielded systems plan via state space
search, most systems conduct learning during the plan execution phase, and EBL is again the learning
method of choice. It is also notable that the only decision tree learning conducted in any planner is based
in a non-classical planning system.

With this overview of where we have been with learning-in-planning, we next turn our attention to
open issues and research directions that beckon.

Where to for learning in Automated Planning?
We organize this discussion of promising directions for future work in this field along two broad

partitions: 1) apparent ‘gaps’ in the corpus of learning-in-planning research as suggested by the survey
tables and figures of this report, and 2) recent advances in planning that suggest a role for learning
notably beyond the modes investigated by existing studies.

Research gaps suggested by the survey
There are significant biases apparent in the focus and distribution of the survey studies relative to the five
dimensions we have defined. This is to be expected, since some configurations of planning/learning
methods are intrinsically infeasible or poorly matched (e.g. the learning of domain theory in a classical
planning context, or combining reinforcement learning with SAT -which does not capture the concept of a
‘state’). In assessing the survey tables here, however, we seek learning-in-planning configurations that are
feasible, have been largely ignored, and appear to hold promise.

Non-analytical learning techniques: The survey tables suggest a considerable bias towards analytical
learning in planning. This deserves to be questioned. Why is this so favored? In a sense, a planner
employing EBL is learning ‘guaranteed knowledge’, control information that is provably correct. But it is
well known within the machine learning community that ‘approximately correct knowledge’ can be at
least as useful, particularly if we’re careful not to sacrifice completeness. Given the presence of a high-
level domain theory, it is reasonable to exploit it to learn. However, large constraints are placed on just
what can be learned if the planner doesn’t also take advantage of the full planning search experience. The
tables and figures of this study indicate the extent to which inductive logic programming has been
employed in this spirit together with EBL. This is a logical marriage of two mature methodologies; ILP
in particular has powerful engines for inducing logical expressions, such as FOIL (Quinlan 1990), that
can be readily employed. It is curious to note, however, decision tree learning has been used in only one
study in this entire survey. And yet this inductive technique is at least as mature and features its own very
effective engines such as ID3 and C4.5 (Quinlan 1986, ‘93) There is no obvious reason why the approach
of learning decision trees to, for example, select the best action to apply in a given state has not been
investigated within the planning community.

Learning across problems: A learning aspect that has largely fallen out of favor in recent years is the
compilation and retention of search guidance that can be used across different problems and perhaps even
different domains. One of the earliest implementations of this took the form of learning search control
rules (e.g. via EBL). There may be two culprits that led to disenchantment with learning this inter-
problem search control:

• The ‘utility problem’ that can surface when too many, or relatively ineffective rules are learned.
• The ‘propositionalization’ of the planning problem, wherein lifted representations of the domain

theory were forsaken for the faster processing of ‘grounded’ versions involving only propositions.

 19

The cost of rule checking and matching in more recent systems that use grounded operators is much
lower than for planning systems that handle uninstantiated variables.

Not conceding these to be insurmountable hurdles, we suggest the following research approaches:
One tradeoff associated with a move to planning with grounded operators is the loss of generality in the

basic precepts that are most readily learned. For example, Graphplan may learn a great number of
nogoods during search on a given problem, but in their basic form, they are only relevant to the given
problem. Graphplan retains no inter-problem memory. It is worth considering what might constitute
effective inter-problem learning for such a system.

The rule utility issue faced by analytical learning systems (and possibly all systems that learn search
control rules) can be viewed as the problem of incurring the cost of a large set of sound, exact and
probably over-specific rules. Learning systems that can reasonably relax the ‘soundness’ criterion for
learned rules may move broadly towards a problem goal using ‘generally correct’ search control. Some
of the multi-strategy studies reflected in Table 3C, are relevant to this view to the extent that they attempt
to leverage the strengths of both analytical and inductive learning techniques to acquire more “useful”
rules. Initial work with an approach that does not directly depend on a large set of training examples was
reported in (Kambhampati, 1999). Here a system is described that seeks to learn approximately correct
rules by relaxing the constraint of the UCPOP-EBL system that requires regressed failure explanations
from all branches of a search subtree before a search control rule is constructed.

Perhaps the most ambitious approach to learning across problems would be to extend some of the work
being done in analogical reasoning elsewhere in AI to the planning field. The goal is to exploit any
similarity between problems to speedup solution finding. Current ‘case-based reasoning’
implementations in planning are capable of recognizing a narrow range of similarities between an
archived partial plan and the current state the planner is working from. Such systems cannot apply
knowledge learned in one logistics domain, for example, to another –even though a human would find it
natural to use what she has learned in solving a AIPS planning competition ‘driverlog’ problem to a
‘depot’ problem. We note that this has been approached from a somewhat different direction in (Fox,
Long 1999) via a process of identifying abstract types during domain preprocessing.

Extending Learning to Non-Classical Planning Problems: The preponderance of planning research has
been based in classical planning, as is born out by the survey tables and figures. Historically this was
largely motivated by the need to study a less daunting problem than full scope planning, and much of the
progress realized in classical planning has indeed provided the foundation for advances now being made
in non-classical formulations. It is a reasonable expectation that the body of work in learning methods
adapted to classical planning will similarly be modified and extended to non-classical planning systems.
With the notable exception of reinforcement learning, the surface has scarcely been scratched in this
regard.

If, as we suggest in the introduction, the recent striking advances in speed for state of the art planning
systems lies behind the relative paucity of current research in speed-up learning, the focus may soon shift
back in that direction. These systems, impressive though they are, demonstrated their speedup abilities in
classical planning domains. As the research attention shifts to problems beyond the classical paradigm,
the greatly increased difficulty of the problems themselves seems likely to renew planning community
interest in speed-up learning approaches.

New avenues for learning-in-planning motivated by recent developments in planning
Off-line learning of domain-knowledge: We have previously noted the high overhead cost of conducting
learning ‘online’ during the course of solving a single problem, relative to often short solution times for
the current generation of fast and efficient planners. This may help explain more recent interest in offline
learning, such as domain analysis, which can be reused to advantage over a series of problems within a
given domain. The survey results and Figure 3 also suggest an area of investigation that has so far been
neglected in studies focused on non-classical planning; static analysis –the learning of domain invariants

 20

before planning starts. This has been shown to be an effective speedup approach for many classical
planning domains and there is no reason to believe it cannot similarly boost non-classical planning.

On another front, there has been much enthusiasm in parts of the planning community for applying
domain-specific knowledge to speed up a given planner (for example, ‘TL Plan’; Bacchus, Kabanza 2000,
‘Blackbox’; Kautz, Selman 1998). This advantage has also been realized in hierarchical task network
(HTN) planning systems, by supplying domain-specific task reduction schemas to the planner (‘SHOP’;
Nau, et.al. 1999). Such leveraging of user-supplied domain knowledge has been shown to greatly
decrease planning time for a variety of domains and problems. One drawback of this approach is the
burden it places on the user to hand-code the domain knowledge ahead of time correctly and in a form
usable by the particular planner. Offline learning techniques might be exploited here. If the user provides
very high-level domain knowledge in a format readily understandable by humans, the system could learn
in supervised fashion, to operationalize this to the particular formal representation usable by a given target
planning system. If the user is not to be burdened with learning the planner’s low-level language for
knowledge representation, this might entail solving sample problems iteratively with combinations of
these domain rules to determine both correctness and efficacy.

An interesting related issue is the question of which types of knowledge are easiest/hardest to learn.
This has a direct impact on which might actually be worth learning. The closely related machine learning
aspect of “sample complexity” addresses the number and type of examples that are needed to induce a
given concept or target function. To date this has received little attention with respect to the domain-
specific knowledge employed by some planners. What are the differences in terms of the sample
complexity of learning different types of domain specific control knowledge? For example, it would be
worth categorizing the TL Plan control rules vs. SHOP/HTN style schemas in terms of their sample
complexity.

Learning to improve heuristics: The credit for both the revival of plan space planning and the impressive
performance of most state space planners in recent years goes largely to the development of heuristics that
guide the planner at key decision points in its search. As such, considerable research effort is focusing on
finding both more effective domain-independent heuristics and tuning heuristics to particular problems
and domains. The role that learning might play in acquiring or refining such heuristics has been largely
unexplored. In particular learning such heuristics inductively during the planning process would seem to
hold promise. Generally, the heuristic values are calculated by a linear combination of weighted terms
where the designer chooses both the terms and their weights in hopes of obtaining an equation that will be
robust across a variety of problems and domains. The search trace (states visited) resulting from a
problem-solving episode could provide the negative and positive examples needed to train a neural
network or learn a decision tree. Possible target functions for inductively learning or improving heuristics
include:
� term weights that are most likely to lead to a higher quality solutions for a given domain
� term weights that will be most robust across many domains
� attributes that are most useful for classifying states
� exceptions to an existing heuristic such as employed in LRTA* (Korf 1990)
� a meta-level function that selects or modifies a search heuristics based on the problem / domain
Multi-strategy learning might also play a role in that the user might provide background knowledge in

the form of the base heuristic.

 21

The ever-growing cadre of planning
approaches and learning tools, each with
their own strengths and weaknesses,
suggests another inviting direction for
speedup learning. Learning a rule set or
heuristic that will direct the application of
the most effective approach (or multiple
approaches) for a given problem could
lead to a meta-planning system with
capabilities well beyond any individual
planner. Interesting steps in this direction
have been taken by (Horvitz, et. al. 2001)
via the construction and use of Bayesian
models to predict the run time of various
problem solvers.

Learning to improve plan quality:

The survey tables and figures suggest that
the issue of improving ‘plan quality’ via learning, has received much less attention in the planning
community than speedup learning. Yet, as planning systems are ported into real-world applications, this
is likely to be a primary concern. Many planning systems that successfully advance into the marketplace
will need to interact frequently with human users in ways that have received scant attention in the lab.
Such users are likely to have individual biases with respect to plan quality that they may be hard-pressed
to quantify. These planning systems could be charted in a two-dimensional space with the axes:

1. Degree of coverage of the issues confronted in a real-world problem. That is, the capability of the
system to, deal with all aspects of a problem without abstracting them away.

2. Degree of automation. That is, the extent to which the system automatically reasons about the
various problem aspects and makes decisions without guidance by the human user.

Figure 5 shows such a chart for present day planning systems. The ideal planner plotted on this chart
would obviously lie in the top-right corner. It is interesting to note that most users –aware that they can’t
have it all- prefer a system that can, in some sense, handle most aspects of the real-world problem at the
expense of full automation. And yet, most current-day planning systems abstract away large portions of
the real-world problem in favor of fully automating what the planner can actually accomplish. In large
practical planning environments, fully automated plan generation is neither feasible nor desirable because
users wish to observe and control plan generation.

Some planning systems such as HICAP [Aha, et. al 1999] and ALPS [Calistri-Yeh, Segre 1996] have
made inroads towards building an effective interface with their human users. No significant role for
learning has been established yet for such systems, but possibilities include learning user preferences with
respect to plan actions, intermediate states, and pathways. Given the human inclination to ‘have it their
way’ it may be that the best way to tailor an interactive planner will be after the manner of the
“programming by demonstration” systems that have recently received attention in the machine learning
community [Lau, Domingos, Weld 2000]. Such a system implemented on top of a planner might entail
having the user create plans for several problems that the learning system would then parse to learn plan
aspects peculiar to the particular user.

Summary and Conclusion
We have presented the results of a extensive survey of research conducted and published since the first

application of learning to automated planning was implemented some 30 years ago. In addition to
compiling categorized tables of the corpus of work, we have presented a five-dimensional
characterization of learning-in-planning and mapped the studies onto it. This has clarified the foci of the

Degree of

A
u
t
o
m
a
t
i
o
n

 Coverage of real-world aspects

Figure 5. The coverage vs. automation tradeoff in
planning systems

User’s
priority

IDEAL Most current
planning
systems

 22

work in this area and suggested a number of avenues along which the community might reasonably
proceed in the future. It is apparent that automated planning and machine learning are well-matched
methodologies in a variety of configurations, and we suggest there are a number of these that merit more
research attention than they have received to date. We have expanded on several of these possibilities and
offered our conjectures as to where the more interesting work might lie.

References
Aler, R. Borrajo, D., Isasi, P. 1998. Genetic Programming and Deductive-inductive Learning: a Multistrategy

Approach. Proceedings of the Fifteenth International Conference on Machine Learning, ICML ’98, pages 10-18.
Aler, R. Borrajo, D., 2002. On Control Knowledge Acquisition by Exploiting Human-Computer Interaction.

Proceedings of the Sixth International Conference on Artificial Intelligence Planning and Scheduling. Toulouse,
France, April, 2002.

Almuallim, H., Dietterich, T. G. 1991. Learning with many irrelevant features. Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91) (pp. 547-552). Anaheim, CA: AAAI Press

Almuallim, H., Dietterich, T. G. 1994. Learning Boolean concepts in the presence of many irrelevant features.
Artificial Intelligence, 69(1-2): 279-306.

Ambite, J.L., Knoblock, C.A., Minton, S. 2000. Learning Plan Rewriting Rules. Proceedings The Fifth International
Conference on Artificial Intelligence Planning and Scheduling. Breckinridge, CO., April, 2000.

Ashley, K. D., McLaren, B. 1995. Reasoning with reasons in case-based comparisons. Proceedings of the First
International Conference on Cased-Based Reasoning (ICCBR-95) (pp. 133-144). Berlin: Springer.

Ashley, K., Aleven, V. 1997. Reasoning symbolically about partially matched cases. Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, IJCAI-97 (pp.335- 341).

Avesani, P., Perini, A., Ricci, F. 2000. Interactive Case-Based Planning for Forest Fire Management. Applied
Intelligence 13 (1):41-57, July 2000.

Barto, A., Bradtke, S., and Singh, S. 1995. Learning to act using real-time dynamic programming. Artificial
Intelligence 72:81-138.

Bacchus, F., Kabanza, F. 2000. Using temporal logics to express search control knowledge for planning. Artificial
Intelligence, 116.

Bennett, S.W., DeJong, G.F., 1996. Real-World Robotics: Learning to Plan for Robust Execution. Machine
Learning 23 (2/3):121-161, May 1996.

Bergmann, R., Wilke,W. 1996. On the Role of Abstractions in Case-Based Reasoning. In EWCBR-96 European
Conference on Case-Based Reasoning. Springer.

Bhatnagar, N., Mostow, J. 1994. On-line learning from search failures. Machine Learning 15(1):69-117, April,
1994.

Blum, A., Furst, M.L. 1997. Fast planning through planning graph analysis. Artificial Intelligence. 90(1-2).
Borrajo D., Veloso, M. 1997. Lazy incremental learning of control knowledge for efficiently obtaining quality plans.

Artificial Intelligence Review, 11(1/5): 371-405, February 1997.
Bylander, T. 1992. Complexity results for serial decomposability. Proceedings of the 10th National Conference on

Artificial Intelligence (AAAI-92).
Calistri-Yeh, R., Segre, A., Sturgill, D. 1996. The Peaks and Valleys of ALPS: An Adaptive Learning and Planning

System for Transportation Scheduling. Proceedings of Third Int'l Conference on Artificial Intelligence Planning
Systems (AIPS-96).

Carbonell, Y.G, Gil, Y. 1990. Learning by experimentation: The operator refinement method. In Y. Kodtratoff &
R.S. Michalski (Eds.) Machine Learning: An artificial intelligence approach. (Vol 3). :Morgan Kaufmann.

Chien, S.A. 1989. Using and Refining Simplifications: Explanation-Based Learning of Plans in Intractable Domains.
In Proceedings of IJCAI 1989: 590-595 , Detroit, Mi.

Cohen, W.W. 1990. Learning approximate control rules of high utility. In Proceedings of the Seventh International
Conference on Machine Learning, Austin, Texas, Morgan Kaufmann.

Cohen, W.W., Singer, Y. 1999. A simple, fast, and effective rule learner. Proceedings of the Sixteenth National
Conference on Artificial Intelligence, Orlando, Florida, 1999.

Craven, M., Shavlik, J. 1993. Learning Symbolic Rules Using Artificial Neural Networks. Proceedings of the
Tenth International Conference on Machine Learning, pp. 73-80, Amherst, MA. Morgran Kaufmann.

Dearden, R., Friedman, N., Russell, S. 1998. Bayesian Q-Learning. Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98).

Dempster, A. P., Laird, N.M., & Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38.

 23

Dietterich, T. G., Flann, N. S. 1997. Explanation-based Learning and Reinforcement Learning: A Unified View.
Machine Learning, 28, 169-210.

Do, B., Kambhampati, S. 2001. Planning as Constraint Satisfaction: Solving Planning Graph by Compiling it into a
CSP. To appear in AI Journal, 2001.

Estlin, T.A., Mooney, R.J. 1996. Multi-strategy learning of search control for partial-order planning. Proceedings
of the Thirteenth National Conference on Artificial Intelligence (pp. 843-848). Portland, OR. AAAI Press.

Etzioni, O. 1993. Acquiring search-control knowledge via static analysis. Artificial Intelligence, 62(2):265-301.
Fikes, R.E., Nilsson, N.J. 1971. STRIPS: a new approach to the application of theorem proving to problem solving.

Artificial Intelligence,2(3-4): 189-208.
Fikes, R.E., Hart, P., Nilsson, N.J. 1972. Learning and executing generalized robot plans. Artificial Intelligence 3,

4 (1972).
Fox, M., Long, D. 1998. The automatic inference of state invariants in TIM. JAIR 9.
Fox, M., Long, D. 1999. The detection and exploitation of symmetry in planning problems. In Proceedings of the

International Joint Conference on Artificial Intelligence, 1999.
Fu, Li-Min. 1989. Integration of neural heuristics into knowledge-based inference. Connection Science, 1(3), 1989.
García-Martínez , R., Borrajo, D. 2000. An Integrated Approach of Learning, Planning, and Execution. Journal of

Intelligent and Robotic Systems, 29 (1):47-78, September 2000.
Gerevini , A., Schubert, L. 1996. Accelerating Partial Order Planners: Some techniques for effective search control

and pruning. JAIR 5:95-137.
Gerevini , A., Schubert, L. 1998. Inferring state constraints for domain-independent planning. In Proceedings of the

Fifteenth National Conference on Artificial Intelligence, pp905-912, Madison, WI, July 1998. AAAI Press.
Gil, Y. 1994. Learning by experimentation: Incremental refinement of incomplete planning domains. Proceedings

of the Eleventh International Conference on Machine Learning, 1994, Rutgers, NJ.
Gratch, J., Dejong, G., 1992 COMPOSER: a probabilistic solution to the utility problem in speed-up learning,

Proceedings of the Tenth National Conference on Artificial Intelligence, 1992.
Hammond, K. 1989. Case-Based Planning: Viewing planning as a memory task. San Diego: Academic Press.
Hanks, S., Weld, D. 1995. A domain-independent algorithm for plan adaptation. Journal of Artificial Intelligence

Research (JAIR). pp 319-360, 1995.
Hinton, G.E. 1989. Connectionist learning procedures. Artificial Intelligence, 40, 185-234.
Hofstadter, D. R., Marshall, J. B. D. 1993. A Self-Watching Cognitive Architecture of High-Level Perception and

Analogy-Making. TR100, Indiana University Center for Research on Concepts and Cognition, 1993.
Hofstadter, D. R., Marshall, J. B. D., 1996. Beyond copycat: Incorporating self-watching into a computer model of

high-level perception and analogy-making, In M.Gasser (ed.), Online Proceedings of the 1996 Midwest Artificial
Intelligence and Cognitive Science Conference.

Hollatz, J. 1999. Analogy making in legal reasoning with neural networks and fuzzy logic. Artificial Intelligence
and Law, 7 (2/3):289-301, September 1999.

Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., Chickering, D.M. 2001. A Bayesian approach to tackling
hard computational problems. Proc. of 17th Conference on Uncertainty in Artificial Intelligence, August 2001.

Huang, Y., Kautz, H., Selman, B. 2000. Learning declarative control rules for constraint-based planning. In
Proceedings of Seventeenth ICML, 2000.

Hunt, E.B., Marin, J., & Stone, P.J. 1966. Experiments in Induction. New York: Academic Press.
Ihrig, L., Kambhampati, S. 1996. Design and Implementation of a Replay Framework based on a Partial order

Planner. Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96).
Ihrig, L., Kambhampati, S. 1997. Storing and Indexing plan derivations through explanation-based analysis of

retrieval failures. Journal of Artificial Intelligence, Vol 7, pp. 161-198. 1997.
Jones, R., Langley, P. 1995. Retrieval and learning in analogical problem solving. Proceedings of the Seventeenth

Conference of the Cognitive Science Society (pp. 466-471). Pittsburgh: Lawrence Erlbaum.
Kakuta, T., Haraguchi, M., Midori-ku, N., Okubo, Y. 1997. A Goal-Dependent Abstraction for Legal Reasoning by

Analogy. Artificial Intelligence and Law, 5 (1/2):97-118, March 1997.
Kambhampati, S., & Hendler, J. 1992. A validation structure based theory of plan modification and reuse.

Artificial Intelligence, 55, 193-258.
Kambhampati, S., Katukam, Y. Qu. 1996. Failure Driven Dynamic Search Control for Partial Order Planners: An

explanation-based approach. Artificial Intelligence 88 (1996) 253-315.
Kambhampati, S. 1999. On the relations between intelligent backtracking and explanation based learning in

Planning and CSP. ASU CSE TR 97-018. Artificial Intelligence, Spring 1999
Kambhampati, S. 2000. Planning Graph as (dynamic) CSP: Exploiting EBL, DDB and other CSP Techniques in

Graphplan. Journal of Artificial Intelligence research (JAIR). 2000.

 24

Kautz, H., Selman, B. 1998. The Role of Domain-Specific Knowledge in the Planning as Satisfiability Framework.
Proceedings of Fifth International Conference on Planning and Scheduling (AIPS-98), Pittsburgh, PA, June 1998.

Kautz, H., Selman, B. 1999. Blackbox: Unifying sat-based and graph-based planning. Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, IJCAI-99.

Kedar-Cabelli, S., McCarty, T. 1987. Explanation-based generalization as resolution theorem proving. Proceedings
of the Fourth International Workshop on Machine Learning (pp. 383-389). San Francisco.

Khardon, R. 1999. Learning Action Strategies for Planning Domains. Artificial Intelligence, 113, 125-148.
Knoblock, C. 1990. Learning abstraction hierarchies for problem solving. Proceedings of Eighth National

Conference on Artificial Intelligence, pages 923-928, Bosston, MA, 1990.
Kodtratoff, Y. & Michalski, R.S. editors. 1990. Machine Learning: An artificial intelligence approach. (Vol 3)

:Morgan Kaufmann.
Korf, R. 1990. Real-time heuristic search. Artificial Intelligence, 42:189-211, 1990.
Laird, J., Newell, A., Rosenbloom, P. 1987 SOAR: An Architecture for General Intelligence. Artificial Intelligence,

33, 1987.
Langley, P. 1997. Challenges for the application of machine learning. Proceedings of the ICML ‘97 Workshop on

Machine Learning Application in the Real World: Methodological Aspects and Implications. 15-18.
Lang, K. 1995. NewsWeeder: Learning to filter netnews. In Prieditis and Russell (Eds.), Proceedings of the 12th

International Conference on Machine Learning (pp. 331-339), San Francisco: Morgan Kaufmann Publishers.
Lau, T., Domingos, P., Weld, D. 2000 "Version Space Algebra and its Application to Programming by

Demonstration” ICML-2000.
Lavrac, N., Dzeroski, S., Grobelnik, M. 1991. Learning nonrecursive definitions of relations with LINUS. In Proc.

Fifth European Working Session on Learning, pp 265-281. Springer, Berlin.
Leake, D., Kinley, A., Wilson, D. 1996. Acquiring case adaptation knowledge: a hybrid approach. Proceedings of

Thirteenth National Conference on Artificial Intelligence. Portland, Ore, 1996.
Leckie, C., Zuckerman, I. 1998. Inductive learning of search control rules for planning. Artificial Intelligence, Vol.

101 (1-2) (1998) pp. 63-98
Martin, M., Geffner, H. 2000. Learning generalized policies in planning using concept languages. Proceedings of 7th

International Conference on Knowledge Representation and Reasoning (KR 2000). Colorado, Morgan Kaufmann
Minton, S., editor. 1993. Machine Learning Methods for Planning. San Francisco: Morgan Kaufmann.
Minton S., Carbonell, J., Knoblock, C., Kuokka, D.R., Etzioni, O. and Gil, Y. 1989, Explanation-Based Learning: A

Problem-Solving Perspective. Artificial Intelligence, Vol. 40, Sept. 1989.
Mitchell, T., Keller, R., & Kedar-Cabelli, S. 1986. Explanation-based generalization: a unifying view. Machine

Learning, 1 (1), 47--80.
Mitchell, T.M., Thrun, S.B. 1995. Learning Analytically and Inductively. In Mind Matters: A Tribute to Allen

Newell, Steier and Mitchell (eds.), Erlbaum.
Muggleton, S., Feng, C. 1990. Efficient inductin of logic programs. Proceedings of the 1st conference on

algorithmic learning theory, pp 368-381. Ohmsma, Tokyo, Japan. 1990.
Munoz-Avila, H., Aha, D.W., Breslow, L. & Nau, D. 1999. HICAP: An interactive case-based planning

architecture and its application to noncombatant evacuation operations. Proceedings of the Ninth Conference on
Innovative Applications of Artificial Intelligence (pp. 879 - 885). Orlando, FL: AAAI Press.

Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H. 1999. SHOP: Simple Hierarchical Order Planner. Proceedings of
16th International Joint Conference on Artificial Intelligence. 1999.

Nebel, B. Dimopoulos, Y. Koehler, J. 1997. Ignoring Irrelevant Facts and Operators in Plan Generation, European
Conference on Planning (ECP-97), pages 338-350

Nguyen, X., Kambhampati, S. 2001. Reviving Partial Order Planning. In Proceedings IJCAI-2001, Seattle, Wa.
Ourston, D., Mooney, R. 1994. Theory refinement combining analytical and empirical methods. Artificial

Intelligence, 66:311-344, 1994.
Pazzani, M.J., Brunk, C.A., Silverstein, G. 1991. A knowledge-intensive approach to learning relational concepts.

In Proceedings of the Eighth International Workshop on Machine Learning, pp 432-436, Evanston, IL, 1991.
Perez, M., Etzioni, O. 1992. DYNAMIC: a new role for training problems in EBL. In Proceedings of the 9th

International Conference on Machine Learning. Morgan Kaufmann, July 1992.
Pomerleau, D. A. 1993. Knowledge-based training of artificial neural networks for autonomous robot driving. In J.

Connell & S. Mahadevan (Eds.), Robot Learning (pp. 19-43). Boston: Kluwer Academic Publishers.
Quinlan, J.R. 1986. Induction of decision trees. Machine Learning, 1(1), 81-106.
Quinlan, J.R. 1990. Learning logical definitions from relations. Machine Learning, 5, 239-266.
Quinlan, J.R. 1993. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
Reddy, C., Tadepalli, P. 1999. Learning Horn Definitions: Theory and an Application to Planning. New Generation

Computing vol 17, 77--98, 1999.

 25

Rintanen, J. 2000. An iterative algorithm for synthesizing invariants, Proceedings of the 17th National Conference
on Artificial Intelligence / 12th Innovative Applications of AI Conference, pages 806-811, AAAI Press, 2000.

Sacerdoti, E. 1974. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5(2):115-135, 1974.
Samuel, A.L. 1959. Some studies in machine learning using the game of checkers. IBM Journal of Research and

Development, 3 (3):210-229.
Schmill, M., Oates, T., Cohen, P. 2000. Learning Planning Operators in Real-World, Partially Observable

Environments. Proceedings of Int'l Conference on Artificial Intelligence Planning Systems (AIPS-2000),
Shavlik, J.W., Towell, G.G. 1989. An approach to combining explanation-based and neural learning algorithms.

Connection Science, 1(3):231-253, 1989.
Sheppard, J., Salzberg, S. 1995. Combining genetic algorithms with memory based reasoning. Proceedings of the

Sixth International Conference on Genetic Algorithms, Pittsburgh, Penn. 1995.
Smith, D., Peot, M. 1993. Postponing Threats in Partial-Order Planning. In Proceedings of the Eleventh National

Conference on Artificial Intelligence (AAAI-93), 1993.
Sutton,R. 1988. Learning to predict by the methods of temporal differences. Machine learning,3, 9-44.
Sutton, R. 1991. Planning by incremental dynamic programming. Proceedings of the Eighth International

Conference on Machine Learning (pp. 353-357). San Francisco: Morgan Kaufmann.
Sutton, R., Barto, G. 1998. Reinforcement Learning -An Introduction. Cambridge: The MIT Press.
Sycara, K., Guttal, R., Koning, J., Narasimhan, S. Navinchandra, D. 1992. “CADET”: a case-based synthesis tool

for engineering design. International Journal of Expert Systems, Vol. 4, No. 2, 1992.
Tadepalli, P. 1989. Lazy Explanation-Based Learning: A Solution to the Intractable Theory Problem. Proceedings

of International Joint Conference on Artificial Intelligence, Detriot, MI, 1989.
Tadepalli, P. 1993. Learning from queries and examples with tree-structured bias. Proceedings of the Tenth

International Conference on Machine Learning, Amherst, Massachusetts. Morgan Kaufmann.
Veloso, M., Carbonell, J. 1993. Derivational analogy in PRODIGY: automating case acquisition, storage, and

utilization. Machine Learning, 10:249-278.
Wang, X. 1996a. A Multistrategy Learning System for Planning Operator Acquisition. Third International

Workshop on Multistrategy Learning, Harpers Ferry, West Virginia, May 1996
Wang, X.: 1996b, Planning while learning operators, in: B. Drabble (ed.), Proc. of the 3rd International Conference

on Artificial Intelligence Planning Systems (AIPS’96), Edinburgh, Scotland, pp. 229–236.
Watkins, C. 1989. Learning from delayed rewards (Ph.D. dissertation). King’s College, Cambridge, England.
Wolfman, S., Weld, D. 1999. The LPSAT Engine & its Application to Resource Planning. Proceedings of the

Sixteenth International Joint Conference on Artificial Intelligence, IJCAI-99.
XuanLong, N., Kambhampati, S. 2001. Reviving Partial Order Planning. In Proceedings of the International Joint

Conference on Artificial Intelligence, 2001.
Zelle, J., Mooney, R. 1993. Combining FOIL and EBG to Speed-up Logic Programs. Proceedings of 13th

International Joint Conference on Artificial Intelligence. pp 1106-1111.
Zimmerman, T., Kambhampati, S. 1999. Exploiting Symmetry in the Planning-graph via Explanation-Guided

Search. I n Proceedings AAAI-99, 1999.
Zimmerman, T., Kambhampati, S. 2002. Generating parallel plans satisfying multiple criteria in anytime fashion.

Sixth International Conference on Artificial Intelligence Planning and Scheduling, workshop on Planning and
Scheduling with Multiple Criteria, Toulouse, France. April, 2002.

Zweben, M., Davis, E., Daun, B., Drascher, E., Deale, M. & Eskey, M., 1992. “Learning to Improve Constraint-
Based Scheduling”, Artificial Intelligence, Vol.58, Nos.1-3, pp271-296, December, 1992.

