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This paper reports on an extensive survey and analysis of research work related to machine learning as applied to 
automated planning over the past 30 years.  Major research contributions are characterized broadly by learning 
method and then into descriptive subcategories.  Survey results reveal learning techniques that have been 
extensively applied and a number that have received scant attention.  We extend the survey analysis to suggest 
promising avenues for future research in learning based on both previous experience and current needs in the 
planning community. 

 
In this article we consider the symbiosis of two of the most broadly recognized hallmarks of 

intelligence; planning -problem solving in which one uses beliefs about actions and their consequences to 
construct a sequence of actions that achieve one’s goals, and learning -using past experience and precepts 
to improve one’s ability to act in the future. Within the A.I. research community, machine learning is 
viewed as a potentially powerful means of endowing an agent with greater autonomy and flexibility, often 
compensating for the designer’s incomplete knowledge of the world that the agent will face, while 
incurring low overhead in terms of human oversight and control.  If we view a computer program with 
learning capabilities as an agent, then we can say that learning takes place as a result of the interaction of 
the agent and the world, and from observation by the agent of its own decision-making processes.  
Planning is one such decision-making process that such an agent might undertake, and a corpus of work 
spanning some 30 years attests that it is an interesting, broad and fertile field in which learning techniques 
can be applied to advantage.  We focus here on this learning-in-planning research, and employ both tables 
and graphical maps of existing studies to spotlight to the combinations of planning/learning methods that 
have received the most attention, as well as those that have scarcely been explored.  We do not attempt to 
provide, in this limited space, a tutorial of the broad range of planning and learning methodologies, 
assuming instead that the interested reader has at least passing familiarity with these fields.  

A cursory review of the state of the art in learning-in-planning during the early to mid-90’s reveals that 
the primary impetus for learning was to make up for often debilitating weaknesses in the planners 
themselves.  The general purpose planning systems of even a decade ago struggled to solve simple 
problems in the classical benchmark domains; “Blocksworld” problems of 10 blocks lay beyond their 
capabilities as did most logistics problems. (See for example, the texts; Machine learning methods for 
planning. 1993, Minton, S. and Machine Learning: An artificial intelligence approach. Vol 3, 1990, 
Kodtratoff, Y. & Michalski, R.S.)  The planners of the period employed only weak guidance in traversing 
their search spaces, so it is not surprising that augmenting the systems to learn some such guidance was 
often a winning strategy.  Relative to the largely naïve base planner, the learning-enhanced systems 
demonstrated improvements in both the size of problems that could be addressed and the speed with 
which they could be solved (Minton, et. al. 1989, Leckie, Zukerman 1998, Veloso, Carbonell 1993, 
Kambhampati, et al. 1996).   

With the advent of several new genres of planning systems in the past 5 - 6 years, the entire base 
performance level against which any learning-augmented system must compare has shifted dramatically.  
It is arguably a more difficult proposition to accelerate a planner in this generation by outfitting it with 
some form of online learning, as the overhead cost incurred by the learning system can overwhelm the 
gains in search efficiency.  This, in part may explain why the planning community appears to have paid 
less attention to learning in recent years.  From the machine learning community perspective, (Langley 
1997) remarked on the swell of research in learning for problem solving and planning that took place in 
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the 1980’s, as well as to note the subsequent tail-off;  “One source is the absence of robust algorithms for 
learning in natural language, planning, scheduling, and configuration, but these will come only if basic 
researchers regain their interest in these problems.” 

Of course, interest in learning within the planning community should not be limited to anticipated 
speedup benefits. As automated planning has advanced its reach to the point where it can cross the 
threshold from “toy” problems to some interesting real-world applications, a variety of issues comes into 
focus.  These range from dealing with incomplete and uncertain environments to developing an effective 
interface with human users.  

Our purpose in this study is to develop, via an extensive survey of published work, a broad perspective 
of the diverse research that has been conducted to date in learning-in-planning, and then to conjecture as 
to profitable directions for future work in this area.  The remainder of the article is organized into three 
parts; where learning is likely to be of assistance in automated planning, what roles has learning actually 
played in the relevant planning research conducted to date, and where might the research community 
gainfully direct its attentions in the near future.  In the next section, we describe a set of five dimensions 
for classifying learning-in-planning systems with respect to properties of both the underlying planning 
engine and the learning component.  By mapping the breadth of the surveyed work along these 
dimensions we reveal some underlying research trends, patterns, and possibly oversights.  This motivates 
our speculation in the final section, on some promising directions for such research in the near future, 
given our current generation of planning systems.   

Where Learning May Assist Planning 
In a number of ways, automated planning presents a fertile field for the application of machine 

learning. The simple (STRIPS) planning problem itself has been shown to be PSPACE-complete 
(Bylander, 1992), so in order for planning systems to handle problems “large” enough to be of interest, 
they must greatly reduce the size of the search space they traverse.  Indeed, the great preponderance of 
planning research, from alternate formulations of the planning problem to the design of effective search 
heuristics, can be seen as addressing this problem of pruning the search space.  It is therefore not 
surprising that the earliest and most widespread application of learning to automated planning has focused 
on the aspect of expediting solution search.  

As automated planning advanced beyond solving trivial problems, the issue of plan quality received 
increased attention.  Although there are often many valid plans for a given problem, generating one 
judged acceptable by the user or optimizing over several quality metrics can increase the complexity of 
the planning task immensely. A learning-augmented planning system that can perceive a user’s 
preferences and bias it’s subsequent search accordingly offers a means of reducing this complexity.  
Learning seems to have an obvious role in “mixed initiative” planning where it may be imperative to 
perceive and accommodate the expertise, preferences, and idiosyncrasies of humans.  Finally, expanding 
our view to a real-world situation in which a planning system might operate, we are likely to confront 
uncertainty as a fact of life, and complete and robust domain theories are rare.   As we will show, the 
study of machine learning methods in planning approaches that address uncertainty is in its infancy. 

Machine learning offers the promise of addressing such issues by endowing the planning system with 
the ability to profit from observation of its problem space and its decision-making experience, whether or 
not its currently preferred decision leads to success.   However, to actually realize this promise within a 
given application challenges the planning system designer on many fronts.  Success is generally heavily 
dependent on complex relationships and interconnections between planning and learning.  In Figure 1 we 
suggest five dimensions that capture perhaps the most important of these system design issues: 

1. Type of planning problem  
2. Approach to planning 
3. Goal for the learning component 
4. Planning/Execution phase in which learning is conducted 
5. Type of learning method 
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Problem Type 
 

Planning 
approach 

Planning-
Learning Goal 

Improve 
plan 

quality 

Learn or 
improve 
domain 
theory 

Speed 
up 

planning 

Learning Phase 

 

During plan 
execution

During planning 
process 

Before planning 
starts

Type of learning 
      

Classical Planning 
 9 static world 
 9 deterministic 
 9 fully observable 
 9 instant. actions 
 9 propositional 

‘Full Scope’ Planning 
 9 dynamic world 
 9 stochastic  
 9 partially observable 
 9 durative actions 
 9 asynchronous goals 
 9 metric/continuous 
 

Plan Space search 
[SNLP, TWEAK, UCPOP…] 

State Space search 

Disjunctive SS 
[Graphplan,STAN, IPP..] 

Conjunctive SS 
[Prodigy, HSPr,  FF,..] 

Compilation 
Approaches 

SAT 
[SATPLAN, Blackbox..] 

CSP 
[GP-CSP..] 

Integer 
Programming 

Inductive 
  decision tree 

 Neural Network 

 Bayesian learning 

 Inductive Logic 
Programming 

Reinforcement 
Learning 

Analytical 
 

 
 

 
analogical 

Explanaztion Based 
Learning 

Static analysis & 
Abstractions 

Derivational analogy / 
Case Based 

Multi-strategy 
 

EBL & Inductive Logic 
Programming 

analytical & induction 

 EBL &  
   Reinforcement Learning 

 
We hope to show that this set of dimensions is useful in both gaining useful perspective on the work 

that has been done in learning-augmented planning and speculating about profitable directions for future 
research. Admittedly, these are not independent or orthogonal dimensions, nor do they comprise an 
exhaustive list of relevant factors in the design of an effective learning component for a given planner.  
Among other candidate dimensions that could have been included are; ‘type of plan’ (e.g. conditional, 
conformant, serial or parallel actions), ‘type of knowledge learned’ (domain or search control), ‘learning 
impetus’ (data-driven or knowledge-driven), and whether plans are hierarchically organized or flat.  
Given the corpus of work to date and the difficulty of visualizing and presenting patterns and 
relationships in high-dimensional data, we settled on the five dimensions of Figure 1 as the most 
revealing.  Before reporting on the literature survey, we briefly discuss each of these dimensions. 

Planning problem type 
The nature of the environment in which the planner must conduct its reasoning defines where a given 
problems lies in the continuum of classes from “classical” to “full scope” planning.  Here classical 
planning refers to a world model in which fluents are propositional and they don’t change unless the 
planning agent acts to change them, all relevant attributes can be observed at any time, the impact of 

Figure 1.  Five dimensions characterizing automated planning systems augmented with a learning component 
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executing an action on the environment is known and deterministic, and the effects of taking an action 
occur instantly.  If we relax all these constraints such that fluents can take on a continuous range of values 
(e.g. metric), a fluent might change its value spontaneously or for reasons other than agent actions, the 
world has hidden variables, the exact impact of acting cannot be predicted, and actions have durations, 
then we are in the class of “full scope” planning problems.   In between these extremes lies a wide variety 
of interesting and practical planning problem types, such as classical planning with a partially observable 
world (e.g. playing poker), and classical planning where actions realistically require significant periods of 
time to execute (e.g. logistics domains). The difficulty of even the classical planning problem is such that 
it largely occupied the full attention of the research community up until the past few years.  The current 
extension into various ‘neo-classical’, temporal and metric planning modes has been spurred in part by 
impressive advances in automated planning technology over the past six years or so.   

  Planning approach 

Planning as a sub-field of AI has roots in Newell and Simon’s 1960-era problem-solving system, GPS, 
and theorem proving.  At a high level, planning can be viewed as either a problem solver or theorem 
prover. Planning methods can further be seen as either search processes or model checking.  Amongst 
planners most commonly characterized by search mode, there are two broad categories: search in state 
space and search in a space of plans. It is possible to further partition current state space planners into 
those that maintain a conjunctive state representation and those that search in a disjunctive representation 
of possible states.  

Planners most generally characterized as model checkers (though they also conduct search), involve 
recompiling the planning problem into a representation that can be tackled by a particular problem 
solution engine.  These systems can be partitioned into three categories: satisfiability (SAT), constraint 
satisfaction problems (CSP), and integer linear programming (IP).  Figure 1 lists these four different 
methods along with representative planning systems for each.  These categories are not entirely disjoint 
for purposes of classifying planners as some systems employ a hybrid approach or can be viewed as 
examples of more than one method.  Graphplan (Blum and Furst, 1997), for example, can be seen as 
either dynamic CSP, or as conducting “disjunctive state space search” (Kambhampati 2000).  Blackbox  
(Kautz and Selman, 1999) uses Graphplan’s disjunctive representation of states and iteratively converts 
the search into a SAT problem.    

Goal of planner’s learning component 
There is a wide variety of targets that the learning component of a planning system might aim at, such 

as learning search control rules, learning to avoid dead-end or unpromising states, or improving an 
incomplete domain theory.  As indicated in Figure 1, they can be categorized broadly into one of three 
groups; learning conducted to speed up planning, learning to elicit or improve the planning domain 
theory, or learning to improve the quality of the plans produced (where “quality” may have a wide range 
of definitions).   

Learning / improving domain theory:  Automated planning implies the presence of a domain theory –
the descriptions of the actions available to the planner.  When an exact model of how an agent’s actions 
affect its world is unavailable (a non-classical planning problem), there are obvious advantages to a 
planner that can evolve its domain theory via learning.    Few interesting environments are simple and 
certain enough to admit a complete model of their physics, so it’s likely that even ‘the best laid plans’ 
based on a static domain theory will occasionally (i.e. too often) go astray. Each such instance, 
appropriately fed back to the planner, provides a learning opportunity for evolving the domain theory 
towards a version more consistent with the actual environment in which its plans must succeed.   

Even in classical planning, the designer of a problem domain generally has many valid alternative ways 
of specifying the actions, and it is well known that the exact form of the action descriptions can have a 
large impact on the efficiency of a given planner on a given problem.  Even if the human designer can 
identify some of the complex manner in which the actions in a domain description will interact, she will 
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likely be faced with tradeoffs between efficiency and factors such as compactness, comprehensibility, and 
expressiveness.  . 

Planning speedup: In all but the most trivial of problems, a planner will have to conduct considerable 
search to construct a solution, in the course of which it will be forced to backtrack numerous times. The 
primary goals of speedup learning are to avoid unpromising portions of the search space and/or to bias the 
search in directions most likely to lead to high quality plans. 

Improving plan quality:  This category ranges from learning to bias the planner towards plans with a 
specified attribute or metric value to learning a user’s preferences in plans and variations of mixed-
initiative planning.  

Planning phase in which learning is conducted 
At least three opportunities for learning present themselves over the course of a planning and execution 
cycle: 

Learning before planning starts:  Before the solution search even begins, the specification of the 
planning problem itself presents learning opportunities.  This phase is closely connected to the aspect of 
learning and improving the domain theory, but encompasses only preprocessing of a given domain theory.  
It is done ‘offline’ and produces a modified domain that is useful for all future domain problems. 

Learning during the process of finding a valid plan: Planners capable of learning in this mode have 
been augmented with some means of observing their own decision-making process.  They then take 
advantage of their experience during planning to expedite the further planning or to improve the quality of 
plans generated.  The learning process itself may be either on or offline. 

Learning during execution of a plan:  A planner has yet another opportunity to improve its performance 
when it is an embedded component of a system that can execute a plan and provide sensory feedback.   A 
system that seeks to improve an incomplete domain theory would conduct learning in this phase, as might 
a planner seeking to improve plan quality based on actual execution experience.  The learning process 
itself may be either on or offline. 

Type of learning 
The machine learning techniques themselves can be classified in a variety of ways, irrespective of the 

learning goal or the planning phase they might be used in.  Two of the broadest traditional class 
distinctions that can be drawn are between so-called inductive (or empirical) methods and deductive or 
analytical methods. In Figure 1, we have broadly partitioned the machine learning techniques dimension 
into these two categories along with a multi-strategy approach.  We then consider additional properties 
that can be used to characterize a given method. The inductive/deductive classification is drawn based on 
the following formulations of the learning problem: 
• Inductive learning: the learner is confronted with a hypothesis space H and a set of training examples 

D.  The desired output is a hypothesis h from H that is consistent with these training examples. 
• Analytical learning: the learner is confronted with the same hypothesis space and training examples 

as for inductive learning.  However, the learner has an additional input: a domain theory B composed 
of background knowledge that can be used to help explain observed training examples. The desired 
output is a hypothesis h from H that is consistent with both the training examples D and the domain 
theory B. 

Understanding the advantages/disadvantages of applying a given machine learning technique to a given 
planning system may help to make sense of any research bias that becomes apparent in the survey tables. 
The primary types of analytical learning systems developed to date along with their relative strengths and 
weaknesses and an indication of their inductive biases are listed in Table 1.  The major types of pure 
inductive learning systems are similarly described in Table 2.  Admittedly, the various subcategories 
within these tables are not disjoint, nor do they nicely partition the entire class (inductive or analytical).    
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Analytical Technique Models Strengths Weaknesses 

‘Nogood’  learning 
(memoization, caching) 

Inconsistent states 
and sets of fluents 

Simple, fast learning.  
Generally low computational 
overhead 
Practical, widely used 

‘Low strength’ learning  -each 
nogood typically prunes small 
sections of search space. 
Difficult to generalize across 
problems. 
Memory requirements can be 
high. 

 
Explanation Based 
Learning  (EBL) 

Search control rules.   
Domain refinement 

Uses a domain theory –the available 
background knowledge.   Can learn 
from a single training example. 
If-Then rules are generally intuitive 
(readable).  
Widely used 

Requires a domain theory –
incorrect domain theory can 
lead to incorrect deductions. 
 
Rule utility problem 

Static analysis & 
 abstractions learning 

Existing problem/ 
domain invariants or 
structure. 

Performed “offline”, benefits 
generally available for all subsequent 
problems in domain. 

Benefits vary greatly depending 
on domain and problem  

Derivational analogy / 
Case-Based Reasoning 

(CBR) 

Similarity between 
current state and 
previously cataloged 
states 

Holds potential for shortcutting much 
planning effort where ‘similar’ 
problem states arise frequently. 
Extendable to full analogy? 

Large space required as case 
library builds.  
Case-matching overhead. 
Revising old plan may be costly 

  Table 1  Characterization of the most common analytical learning techniques 

Inductive 
Technique 

Models Strengths Weaknesses 

 
Decision Tree 
learning 

Discrete-valued 
functions, classification 
problems. 
 

Robust to noisy data, missing values. 
Learns disjunctive clauses. 
If-then rules are easily understandable. 
Practical, widely used. 

Approximating real-valued or 
vector-valued, functions. 
(essentially propositional) 
Incapable of learning relational 
predicates. 

artificial     
 Neural Networks 

Discrete, real,  & 
vector-valued functions 

Robust to noisy & complex data, errors 
in data 

Long training times are common. 
Learned target function is largely 
inscrutable 

 
Inductive  
 Logic  
  Programming 

1st order logic, theories 
as logic programs 
 

Robust to noisy data, missing values. 
More expressive than propositional 
based learners.  Able to generate new 
predicates. 
If-then rules (Horn clauses) are easily 
understandable. 

Large training sample size may be 
needed to acquire effective set of 
predicates. 
Rule utility problem   

 
Bayesian learning 
 

Probabilistic inference. 
Hypotheses that make 
probabilistic  predictions 

Readily combine prior knowledge with 
observed data. 
 Modifies hypothesis probability 
incrementally based on each training 
example. 

Require large initial probability sets 
High computational cost to obtain 
Bayes optimal hypothesis 

 Reinforcement     
   Learning 
  

Control policy to 
maximize rewards. 
Fits the MDP setting 

Domain theory not required. 
Handling actions with non-deterministic 
outcomes. 
Optimal policy from non-optimal 
training sets, facilitates life-long learning  

Depends on a real-valued reward 
signal for each transition. 
Difficulty handling large state 
spaces.   Convergence can be slow, 
Space requirements can be huge 

Table 2.  Characterization of the most common inductive learning techniques 
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The research literature itself conflicts at times, as to what 
constitutes ‘learning’ in a given implementation, so 
Tables 1 and 2 reflect the decisions made in this regard 
for this study.1    

The classification scheme we propose for learning-
augmented planning systems is perhaps most inadequate 
when it comes to reinforcement learning.  We discuss 
this special case, in which planning and learning are 
inextricably intertwined, in the sidebar on this page.      

Analogical learning is only represented in Table 1 by a 
specialized and constrained form known as derivational 
analogy, and the closely related case-based reasoning 
formulism.  More flexible and powerful forms of 
analogy can be envisioned  (c.f. Hofstadter, Marshall 
1993, ‘96), but the lack of active research in this area 
within the machine learning community effectively 
eliminates more general analogy as a useful category in 
our learning-in-planning survey.  

The three columns for each technique of Tables 1 & 2 
give a sense of the degree to which the method may be 
effective when applied to a given learning problem; in 
our case, automated planning. Two columns summarize 
the relative strengths and weaknesses of each technique.  
The column headed  ‘Models’ refers to the type of 
function or structure that the method was designed to 
represent or process.  A method chosen to learn a 
particular function is not well suited if it is either 
incapable of expressing the function or is inherently 
much more expressive than required. This choice of 
representation involves a crucial tradeoff.  A very 
expressive representation that allows the target function 
to be represented as close as possible will also require 
more training data in order to choose among the 
alternative hypotheses it can represent. 

The heart of the learning problem is how to 
successfully generalize from examples. Analytical 
learning leans on the learner’s background knowledge to 
analyze a given training instance so as to discern the 
relevant features.  In many domains, such as the stock 
market, complete and correct background knowledge is not available.  In these cases, inductive 
techniques that can discern regularities over many examples in the absence of a domain model may prove 
useful.  One possible motivation for adopting a multi-strategy approach is that analytical learning 
methods generate logically justified hypotheses while inductive methods generate statistically justified 
hypotheses.  The logical justifications fall short when the prior knowledge is flawed while the statistical 
justifications are suspect when data is scarce or assumptions about distributions are questionable. 

We next consider the learning-in-planning work that has been done in light of the characterization 
structure given in Figure 1 and described above. 
                                                 
1 For example,  “dependency directed backtracking (backjumping)”, a technique closely related to EBL in CSP 
methods is not tracked in this survey. 

Reinforcement learning, the special case:   
   In the context of the Figure 1 dimensions
for a learning-in-planning system,
reinforcement learning (RL) must be seen as
a special case .  Unlike the other learning
types, this widely studied machine learning
field is not readily characterized as a
learning technique for augmenting a
planning system.  Essentially, it’s a toss-up
whether to view RL as a learning system
that contains a planning subsystem or a
planning system with a learning component.
Reinforcement learning is defined more
clearly by characterizing a learning problem
instead of a learning technique.   
   A general RL problem may be seen as
comprised of just three elements; goals an
agent must achieve, an observable
environment, and actions an agent can take
to affect the environment (Sutton, Barto
1998).  Through trial-and-error online
visitation of states in its environment, such
an RL system seeks to find an optimal policy
for achieving the problem goals.  When
reinforcement learning is applied to a
planning problem a fourth element, the
presence of a domain theory comes into
play.  The explicit model of the valid
operators is used to direct the exploration of
the state space and this exploration is used
(together with the reward associated with
each state), in turn, to refine the domain
theory. Since, in principle, the “exact
domain theory” is never acquired,
reinforcement learning has been termed a
“lifelong learning” process.  This stands in
sharp contrast to the assumption in classical
planning that the planner is provided a
complete and perfect domain theory. 
   Due to the tightly integrated nature of the
planning and learning aspects of RL, the 5-
dimensional view of Figure 1 is not as useful
for characterizing implemented RL-planning
systems as it is for other learning-augmented
planners.  Nonetheless, when we analyze the
survey results in the next section we will
map planning-oriented RL work onto this
dimensional structure for purposes of
comparison with the other nine learning
techniques that have been (or could be) used
to augment planning systems. 
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What Role has Learning Played in Planning? 
  We report here the results of an extensive survey of AI research literature2 focused on applications of 

machine learning techniques to planning.  Research in the area of machine learning goes back at least as 
far as 1959, with Arthur Samuel’s checkers playing program that improved its performance through 
learning (Samuel, 1959). It is noteworthy that perhaps the first work in what was to become the AI field 
of planning (“STRIPS” Fikes and Nilsson, 1971) was quickly followed by a learning-augmented version 
that could improve its performance by analyzing its search experience (Fikes et.al., 1972).  Space 
considerations preclude an all-inclusive survey for this 30-year span, of course, but we sought to list 
either seminal studies in each category or a typical representative study if the category has many.  

It is difficult to present the survey results in 2-dimensional format in a manner such that the five 
dimensions represented in Figure 1 are usefully reflected. We have employed three different formats, 
emphasizing different combinations and orderings of the Figure 1 dimensions;  

1. A set of three tables organized around just two dimension; type of learning and type of planning.  
2. A set of tables reflecting all five dimensions for each relevant study in the survey.  
3. A graphical representation providing a visual mapping of the studies’ demographics along the 

five dimensions 
  We discuss each of these representations next. 

Survey tables according to Learning Type / Planning Type 
Table 3A deals with studies focused primarily on analytical (deductive) learning in its various forms 

while Table 3B is concerned with inductive learning.  Table 3C addresses studies and multi-strategy 
systems that aim at some combination of analytical and inductive techniques.  All studies/publications 
appearing in these tables are listed in full in the references section. 

The table rows feature the major learning types outlined in Tables 1 & 2, occasionally further 
subdivided as indicated in the leftmost column.  The 2nd column contains a listing of some of the more 
important non-planning studies and implementations of the learning technique in the first column. These 
‘General Applications’ were deemed particularly relevant to planning, and of course the list is highly 
abridged.  Comparing the ‘General Applications’ column with the ‘Planning’ columns for each table 
provides a sense of which machine learning methods have been applied within the planning community. 
The last three columns of each table indicate which techniques have been applied in automated planning –
subdivided into ‘state space’, ‘plan space’, and CSP/SAT/IP planning.  Studies dealing with planning 
problems beyond classical planning (as defined above) appear in shaded blocks in these tables. 

Table 3C, covering multi-strategy learning, reflects the fact that the particular combination of 
techniques employed in some studies could not always be easily subcategorized relative to the analytical 
and inductive approaches of Tables 3A and 3B.   This is often the case, for example, with an inductive 
learning implementation that exploits the design of a particular planning system.  Examples include 
HAMLET (Borrajo, Veloso 1997) which exploits the search tree produced by the PRODIGY 4.0 planning 
system to lazily learn search control heuristics and EGBG, PEGG (Zimmerman, Kambhampati 1999, 
2002) which exploit Graphplan’s use of the planning graph structure to learn to shortcut the iterative 
search episodes.  Studies such as these appear in Table 3C under the broader category “analytical and 
inductive”. 

                                                 
2 The major sources employed in the search included AAAI proceedings (1980 - 2000), IJCAI proceedings 
('89,'91,'93,'95,'97,'99,’01), Artificial Intelligence Planning and Scheduling proceedings (AIPS -1994, '96, '98, '00, 
‘02), European Conference on Planning proceedings (ECP 1997, ’99, ‘01), Third International Conference on 
Multistrategy Learning, 1996, International Conference of Machine Learning  proceedings (ICML -1991, '94, '96 - 
'00),  Journal of Artificial Intelligence Research  (JAIR, 1993 - Jan. 2001), Artificial Intelligence, Elsevier (1987 - 
2001), Kluwer journals: AI Review ('96 - '00), Machine Learning ( '94 - Mar. 2001), Applied Intelligence ( '95 - 
Mar. 2001 ), Artificial Intelligence and Law ('95 - Sep. 2000) 
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Table 3A.   Analytical learning applications and studies     
    Studies in diagonal hashed blocks concern planners applied to problems beyond classical planning.  
    Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [- ] 
 

 

Planning Applications ANALYTICAL 
LEARNING 

General 
Applications State Space 

[ Conjunctive / Disjunctive ] 
Plan Space Compilation 

[ CSP  /  SAT / IP ] 

Static / Domain 
analysis 

& Abstractions 

  Learning abstractions:  
   Sacerdoti, ’74  ABSTRIPS  
   Knoblock  ’90  ALPINE 
Static analysis, domain invars: 
   Etzioni  ’93 
      STATIC  [-PRODIGY] 
  Perez, Etzioni  ’92   (w/ EBL)    
      DYNAMIC  [-PRODIGY] 
  Nebel, Koehler, Dimopoulos  
     ’97    RIFO 
  Gerevini, Schubert ’98         
     DISCOPLAN 
  Fox, Long  ’98, ’99  
     STAN/ TIM  [-Graphplan] 
  Rintanen ‘00 

Smith, Peot ’93  
                    [-SNLP] 
Gerevini, Schubert ’96  
                   [-UCPOP] 

 

Fikes, Nilsson  ’72  STRIPS  
Minton, et. al. ’89    PRODIGY 
Gratch, DeJong ’92 
    COMPOSER   [-PRODIGY] 
Bhatnagar  ’94.   FAILSAFE 
Borrajo, Veloso  ’97 
   <see Multi-strategy> 
Kambhampati  ’00  
      “Graphplan-EBL” 

 
Explanation 
Based 
Learning 

General problem 
solving; ‘chunking’:  
   Laird et al. ’87        
SOAR 
Horn clause rules: 
Kedar-Cabelli  ’87 
    Prolog-EBG 
Symbolic integration 
  Mitchell, et. al. ‘86     
    LEX-2 
  <see Multi-strategy> 

Permissive real world plans: 
  Bennett, DeJong  ‘96 
       GRASPER 

Chien, ‘89  
Kambhampati, et al.     
   ’96    UCPOP-EBL 

Wolfman, Weld ‘99 
   LPSAT  [-RELSAT] 
 
Nogood learning: 
   Selman, Kautz ’99 
      BLACKBOX     
       (using RELSAT) 

   Do, Kambhampati  
      ’01   GP-CSP 
              [-Graphplan] 

Analogical 
 
         
 
 Case-Based     
   Reasoning 
 

(  derivational 
& 

transformational 
analogy  ) 

 
 
 
    
 
 

 Jones, Langley ‘95 
   EUREKA 
Microdomain analogy 
maker: 
  Hofstadter, Marshall   
   ’93 ’96   COPYCAT 
Conceptual design : 
   Sycara, et al  ’92      
      CADET 
Legal reasoning by 
analogy 
  Ashley, Mclaren  ’95 
     TRUTH-TELLER 
  Ashley, Aleven  ’97     
      CATO  
  Kakuta, et al. ‘97 

 
 
 

 
transformational: 
   Hammond  ’89   CHEF  
   Kambhampati, Hendler  ’92    
                           PRIAR 
   Hanks, Weld ’95   SPA 
   Leake, Kinley, Wilson ‘96        
<see Multi-strategy> 
derivational:   
   Veloso, Carbonell ’93    
           PRODIGY / ANALOGY 
Learning various abstraction 
level cases 
  Bergmann, Wilke  ’96   PARIS 
User assist planning: 
  Avesani, et. al. ’00 CHARADE   

 
 
 
 

 
 
 
 

 

derivational: 
 Ihrig, Kambhampati 
    ’96   [-UCPOP] 
 with EBL… 
  Ihrig, Kambhampati 
     ’97   [-UCPOP] 
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Planning Applications INDUCTIVE 
LEARNING 

 
General Applications 

 
State Space 

[Conjunctive / Disjunctive] 
Plan Space Compilation 

[ CSP  /  SAT/ IP ] 

Learning operators for real 
world robotics, clustering: 
 Schmill, Oates, Cohen  ’00 
   [-TBA for inducing decision tree] 

Propositional 
      Decision Trees 
 
 
 
 

Concept learning: 
   Hunt et. al. ’66    CLS 
General DT learning: 
   Quinlan, ’86    ID3 
   Quinlan, ’93    C4.5 
   Khardon, ‘99     L2ACT 
   Cohen, Singer  ’99  SLIPPER 

 

 
 
 
 
 
 

 

 
 
 
 
 

 

Real Valued 
     Neural Network 
 
  

Hinton, 1989 
Symbolic rules from NN: 
   Craven, Shavlik ‘93 
Reflex/Reactive 
   Pomerleau, ‘93  ALVINN 

 
 
 

 

 
 

 
 
 

 

1st-Order Logic 
     ILP  
  (Inductive Logic 
    Programming) 

Horn-like clauses: 
  Quinlan  ’90     FOIL 
  Muggleton, Feng ’90  GOLEM  
  Lavrac, et al. 1991   LINUS 

 Leckie, Zukerman ’98 
   GRASSHOPPER [-PRODIGY] 
 Zelle, Mooney   ‘93 
    <see Multi-strategy> 
 Reddy, Tadepalli  ’99    ExEL  

 
 Estlin, Mooney   ‘96 
   <see Multi-strategy> 
 

 
Huang,Selman,Kautz  
   ’00 
   <see Multi-strategy> 

 Bayesian     
   Learning 
 

Train Bayesian belief networks, 
unobserved variables: 
  Dempster, et al.  ’77   EM 
Text classification: 
   Lang ’95  “NewsWeeder” 
Predict run time of problem 
solvers for decision-theoretic 
control    Horvitz, et. al. ‘01 

   

 Other Inductive 
     Learning 

 Action strategies & Rivest’s 
decision list learning: 
   Khardon ‘99 
   Martin, Geffner ‘00 
Plan rewriting: 
  Ambite, Knoblock, Minton ‘00  
           PbR 

  

Reinforcement 
Learning  (RL) 
 
 
 

 Sutton, ’88  TD[lambda] 
 Watkins, ’89  “Q learning” 
 Barto, Bradtke, Singh ‘95 
    “Real-time dynamic  
      programming” 
Dearden, Friedman, Russel     
  ’98  “Bayesian Q learning” 

 Dietterich, Flann  ’95 
     <see Multi-strategy> 
Incremental dynamic prog: 
    Sutton, ’91   DYNA 
Planning w/ learned operators: 
   Garcia-Martinez, Borrajo ’00    
       LOPE 

  

Table 3B.  Inductive learning applications and studies 
Implemented system/program names capitalized or in double quotes, Underlying planners & subsystems appear in [- ]  
Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning. 
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Table 3C.  Multi-strategy learning applications and studies 
  EBL: Explanation Based Learning   NN:  Neural Network   ILP: Inductive Logic Programming   RL:  Reinforcement Learning 
   Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [- ] 
   Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning. 
 

In addition to classifying the studies surveyed along the learning-type / planning-type dimensions, these 
tables illustrate several foci of this corpus of work.  For example, the preponderance of research in 
analytical learning assists to planning as compared to inductive learning styles is apparent, as is the heavy 
weighting in the area of state space planning.  We return to such issues when discussing implications for 
future research in the final section.     

Survey tables based on all five dimensions 
   The same studies appearing in tables 3A, 3B, and 3C are tabulated in tables 4A and 4B according to all 
five dimensions of Figure 1.  We have used a block structure within the tables to emphasize shared 
attribute values wherever possible, given the left-to-right ordering of the dimensions.  Here the two   

Planning Applications MULTI-
STRATEGY 
LEARNING 

 
General Applications State Space 

[ Conjunctive/Disjunctive ] 
Plan Space Compilation 

[ CSP  /  SAT/  IP ] 

Learn / refine operators: 
  Carbonell, Gil ’90,  Gil ‘94  
     EXPO   [-PRODIGY] 
  Wang  ’96a, ‘96b    
     OBSERVER [-PRODIGY] 

EBL & induction: 
 Calistri-Yeh, Segre, Sturgill  
    ’96   ALPS 

Analytical &  
            Inductive 
 
 
 
 
 
 
 
     
     
 
 
 
 
 

Symbolic integration: 
   Mitchell, Keller, Kedar-Cabelli   
      ’86   LEX-2 
Learn CSP variable ordering: 
   Zweban, et.al. ’92  GERRY  
Incorp. symbolic knowledge in NNs  
   Shavlik, Towell  ’89  KBANN 
   Fu  ’89 
Learn Horn clause sets focused by 
domain theory: 
  Pazzani  ’91   FOCL 
Refining domain theories using 
empirical data: 
   Ourston, Mooney  ’94  EITHER 

NN and fuzzy logic to implement 
analogy:     
     Hollatz ’99 
Genetic, lazy RL, 
    k-Nearest Neighbor: 
   Sheppard, Salzberg  ‘95 

CBR and induction: 
  Leake, Kinley, Wilson ’96 
      DIAL 
Borrajo, Veloso ’97 
     HAMLET [- PRODIGY] 

Zimmerman, Kambhampati  
   ’99, ’02    EGBG,  PEGG  
                      [-Graphplan] 
Deduct,induct, & genetic: 
   Aler, Borrajo, Isasi  ’98 
      HAMLET-EvoCK  
                     [-PRODIGY] 
   Aler, Borrajo ’02 
      HAMLET-EvoCK  
                     [-PRODIGY] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

     EBL & NN 
 
      

Domain theory cast in neural 
network form: 

   Mitchell, Thrun  ’95    EBNN 

 
 
 

 
 
 

 
 

 

     EBL & ILP 
      
 

Search control for logic programs 
  Cohen, ’90     AxA-EBL  
  Zelle,Mooney   ‘93 
    DOLPHIN  [-FOIL/PRODIGY] 

 
Zelle,Mooney   ‘93  
DOLPHIN 
      [-PRODIGY/FOIL] 

 
Estlin,Mooney ’96 
  SCOPE   [-FOIL] 

EBL, ILP,  &   
 some static  analysis: 
Huang, Selman,Kautz 
 ’00 [-BLACKBOX/-FOIL] 

      EBL & RL  Dietterich, Flann  ’97 
     EBRL  policies 
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DIMENSIONS 
Planning/ 

Learning Goal 
Learning Phase Type of 

Learning 
Planning 
Approach 

 
PLANNING SYSTEMS / STUDIES 

Plan Space Smith, Peot  ’93   [-SNLP] 
Gerevini, Schubert  ’96   [-UCPOP]         

Analytical 

Static analysis . 
. 

 
State Space 

Etzioni, ’93  STATIC  [-PRODIGY] 
Nebel, Koehler, Dimopoulos  ’97    RIFO 
Fox, Long ’98, ’99  STAN / TIM [-Graphplan] 
Rintanen ‘00 

. 

. 
Before planning 

starts 
. 
. 
. 
.    Static analysis:  

    learn abstractions 
. 
. 

Sacerdoti, ’74  ABSTRIPS  
Knoblock  ’90  ALPINE  [-PRODIGY] 

Before & during 
planning 

Static analysis  & 
EBL 

. Perez, Etzioni, ’92 DYNAMIC  [-PRODIGY] 

. 

. 
State Space 

. 

. 

Fikes, Nilsson  ’72  STRIPS  
Minton  ’89       PRODIGY/EBL 
Gratch, DeJong ’92 COMPOSER [-PRODIGY] 
Bhatnagar  ’94.  FAILSAFE 
Kambhampati  ’00    “Graphplan-EBL” 

Plan Space Chien, ‘89  
Kambhampati, et al. ’96   UCPOP-EBL 

(Compilation) 
SAT 

Nogood learning: 
   Kautz, Selman ’99  BLACKBOX   

LP & SAT Wolfman, Weld ‘99  LPSAT  [-RELSAT] 

Analytical 
. 
. 
. 

EBL 
. 
. 
. 
. 
. 

CSP Nogood learning: 
   Do, Kambhampati ’01 GP-CSP  [-Graphplan] 

 
. 
. 
. 

State Space 
. 
. 
. 
. 
. 

Learning various abstraction level cases 
    Bergmann, Wilke  ’96   PARIS 
User assist planning: 
    Avesani, et. al.  ’00   CHARADE   

transformational analogy / adaptation: 
    Hammond  ’89   CHEF  
    Kambhampati, Hendler ’92   PRIAR 
    Hanks, Weld  ’95   SPA 
    Leake,Kinley,Wilson ’96  DIAL 

derivational analogy / adaptation: 
   Veloso, Carbonell ’93  PRODIGY/ANALOGY 

 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 

Speedup 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 

 
. 
. 
. 
. 
. 
. 
. 
. 

During planning 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 

Analytical 
  Analogical  

 
Case-based 
Reasoning 

 

Plan Space 
 

 Ihrig, Kambhampati ’96  [-UCPOP] 
  With EBL… 
    Ihrig, Kambhampati ’97   [-UCPOP] 

Table 4A.  Survey studies mapped across all five dimensions 
   Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning. 
   Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [- ] 
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DIMENSIONS 
Planning/ 

Learning Goal 
Learning 

Phase 
Type of 

Learning 
Planning 
Approach 

 
PLANNING SYSTEMS / STUDIES 

Inductive: 
Inductive Logic 
Programming 

. 
State Space 

Leckie, Zukerman    ‘98 
    GRASSHOPPER [-PRODIGY] 
 Reddy, Tadepalli  ’99    ExEL 

 
Other induction 

. 

. 

. 

Action strategies & Rivest’s decision list 
learning of policies: 
   Khardon ’99         Martin, Geffner     ’00 

Calistri-Yeh, Segre, Sturgill      ’96   ALPS 

CBR and induction: 
    Leake, Kinley, Wilson ’96   DIAL 

 
. 
. 
. 
. 
. 
. 
 

During planning 
 
. 
. 
. 

Multi-Strategy 
 

Analytical &    
Inductive 

 
 

. 

. 
State Space 

. 

. 
 

Zimmerman, Kambhampati   ’99  
     EGBG  [-Graphplan] 

Before  & During 
Planning 

EBL, ILP,  &     
static analysis 

(Compilation) 
SAT 

  Huang,Selman,Kautz ’00 
        [-BLACKBOX/-FOIL] 

 
State Space 

 Zelle, Mooney   ‘93  DOLPHIN 
                                 [-PRODIGY/FOIL] 

 
. 
. 
. 
. 
. 
. 
. 
. 
. 

Speedup 
. 
. 
. 
. 
. 
. 
. 
. 
 

. 

. 

. 

. 

. 
EBL & ILP 

. 
Plan Space  Estlin,Mooney   ’96      SCOPE   [-FOIL] 

 
EBL  &  

 Inductive 

. 

. 

. 
State Space 

. 

  Borrajo,Veloso ’97 HAMLET [- PRODIGY] 
Deductive-Inductive & Genetic:    
    Aler, Borrajo ’98, ’02 
        HAMLET-EvoCK   [-PRODIGY] 
Zimmerman, Kambhampati   ’02    
        PEGG   [-Graphplan] 

 
 

Speedup 
& 

Improve Plan 
Quality 

. 

. 
.During planning 

. 

. 

. 

. Inductive: 
(analysis of plan 

differences) 

. 

. 
Plan rewriting: 
  Ambite, Knoblock, Minton    ’00    PbR 

 
Before planning 

starts 

(Propositional) 
Decision Trees 

. 
State Space 

Learning operators for real world robotics, 
clustering:   Schmill, Oates, Cohen  ’00 
                        [-TBA for inducing decision tree] 

Analytical: 
      EBL 

. 

. 
Permissive real world plans: 
  Bennett, DeJong  ’96  GRASPER 

 
 
 

Learn or improve 
domain theory 

 

 
During plan 
execution 

Multi-Strategy: 

analytical & 
inductive 

. 

. 

. 

Learning / refining operators: 
  Wang  ’96a, ‘96b  OBSERVER [-PRODIGY]
  Carbonell, Gil ’90,   Gil ‘94          
             EXPO   [-PRODIGY] 

EBL & RL “State Space” Dietterich, Flann  ’97   EBRL Learn or improve 
domain theory 

& 
Improve Plan 

Quality 

. 

. 
During planning 

. 

. 

Inductive: 
Reinforcement 

Learning 

. 

. 

. 

Incremental dynamic prog: 
   Sutton, ’91   DYNA 
Planning with learned operators: 
   Garcia-Martinez, Borrajo ’00     LOPE 

Table 4B.  Survey studies mapped across all five dimensions 
   Studies in diagonal hashed blocks feature planners applied to problems beyond classical planning. 
   Implemented system/program names capitalized, Underlying planners & learning subsystems appear in [- ] 
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dimensions not represented in the previous set of tables, ‘planning/learning goal’ and ‘learning phase’, are 
ordered first so this block structure reveals the most about the distribution of work across attributes in 
these dimensions.  It’s apparent that the major focus of learning-in-planning work has been on speedup, 
with much less attention to the aspects of learning to improve plan quality or building/improving the 
domain theory.  Also obvious is the extent to which research has focused on learning prior to or during 
planning, with scant attention paid to learning during plan execution.   

 
Graphical analysis of survey 

There are obvious limitations to what can be readily gleaned from any tabular presentation of a data set 
across more than 2-3 dimensions.   In order to more easily visualize patterns and relationships in learning-
in-planning work, we have devised a graphical method of depicting the corpus of work in this survey with 
respect to the five dimensions of Figure 1.  Figure 2 illustrates this method of depiction by mapping two 
studies from the survey onto a version of Figure 1.   

PLANNING ASPECTS      LEARNING ASPECTS 

 

Multi-Strategy 

Inductive 
 

 
 

Problem Type Planning 
approach 

Planning-
Learning Goal 

Learning 
Phase 

Type of learning 

Classical Planning 
 9 static world 
 9 deterministic 
 9 fully observable 
 9 instant. actions 
 9 propositional 

State Space search 
Conjunctive / Disjunctive 

Plan Space search 

Speed 
up 

planning 

Improve 
plan 

quality 

Before planning 
starts 

During planning 
process 

Analytical 
 

 
 

 
analogical 

E B L 

Static analysis & 
Abstractions 

Derivational analogy / 
Case Based 

EBL & Inductive Logic 
Programming 

analytical &  induction 

 

Compilation 
Approaches 

 

Learn or 
improve 
domain 
theory 

Figure 2.    Example graphical mapping of two learning-in-planning systems  
The layout of the five dimensions of Figure 1 and their range of values can be used to map the research work covered in 
the survey tables.  By way of example, the PRODIGY-EBL system (Minton, et.al.,1989)  is represented by the top 
connected series of cross-hatched lines; it’s a classical planning system that conducts state-space search, and it aims to 
speed up planning via explanation based learning during the planning process.  Tracing the subgraph from the left, the 
edge picks up the cross-hatch at the ‘State Space’ node, and the gray shade of the ‘Speed up planning’ node.  The 
SCOPE system ( Estlin, Mooney 1996) is then represented as the branched series of wavy patterned lines; it’s a classical 
planning system that conducts plan space search, and the goal of it’s learning subsystem is to both speedup planning and 
improve plan quality.  Thus, the ‘Plan Space’ node branches to both of these ‘Planning-Learning Goal’ nodes. All of 
SCOPE’s learning occurs during the planning process, employing both EBL and inductive logic programming.  As such, 
the edges converge at the ‘During planning process’ node, but both edges persist to connect with the EBL & ILP node.   
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In this manner every study or project covered in the survey has been mapped onto at least one 5-node, 
directed subgraph of either Figure 3 (classical planning systems) or Figure 4 (systems designed to handle 
problems beyond the classical paradigm)3. The edges express which combinations of the Figure 1 
dimensional attributes were actually realized in a system covered by the survey.   

Besides providing a visual characterization of the corpus of research in learning-in-planning, this 
graphical presentation mode permits quick identification of all planner-learning system configurations 
that embody any of the aspects of the five dimensions (nodes).  For example, since the survey tables don’t 
show all possible values in each dimension’s range, aspects of learning-in-planning that have received 
scant attention are not obvious until one glances at the graphs.  This entails simply observing the edges 
incident on any given node.  Admittedly, a disadvantage of this presentation mode is that the specific 
planning system associated with a given subgraph cannot be extracted from the graphical figure alone. 
However, the tables above can assist with in this regard. 

   Learning within the classical planning framework: 
Figure 3 indicates via dashed lines and fading, those aspects (nodes) of the five dimensions of learning-

in-planning that are not relevant to classical planning.  Specifically, ‘learning / improving the domain 
theory’ is inconsistent with the classical planning assumption of a complete and correct domain theory.   
Similarly, the strength of reinforcement learning lies in its ability to handle stochastic environments in 
which the domain theory is either unknown or incomplete. (Dynamic programming, a close cousin to 
reinforcement learning methods, requires a complete and perfect domain theory, but due to efficiency 
considerations it has remained primarily of theoretical interest with respect to classical planning.) 

Broadly, the figure indicates that some form of learning has been implemented with all planning 
approaches.  If we consider the ‘learning phase’ dimension of Figure 3, it is obvious that the vast majority 
of the work to date has focused on learning conducted during the planning process. Work in automatic 
extraction of domain-specific knowledge through analysis of the domain theory (see Fox, Long 1998, ’99, 
Gerevini, Schubert 1998) constitutes the learning conducted before planning.  Not surprisingly learning in 
the third phase, during plan execution, is not a focus for classical planning scenarios as this mode has 
clear affinity with improving a faulty domain theory –a non-classical problem.   

It is apparent, based on the Figure 3 graph in combination with the survey tables, that EBL has been 
extensively studied and applied to every planning approach and both relevant planning-learning goals. 
This is perhaps not surprising, given the presence of the sort of domain theory that EBL can readily 
exploit.  Perhaps more notable is the scant attention paid to inductive learning techniques for classical 
planners.  Although inductive logic programming (ILP) has been extensively applied as a learning tool for 
planners, other inductive techniques such as decision tree learning, neural networks, and bayesian 
learning, have seen few planning applications.  

Learning within a non-classical planning framework: 
Figure 4 covers planning systems designed to learn in the wide range of problem classes beyond the 

classical formulation (shown in shaded blocks in tables 3A-C, 4A, and 4B).  There are, as yet, far fewer 
learning-augmented systems, although this a growing area of planning community interest.  Those that 
exist extend the classical planning problem in a variety of different ways, but due to space considerations, 
we have not reflected this with separate versions of Figure 4 for each combination.  This is the natural 
domain of reinforcement learning systems, and as discussed above, this popular machine learning field 
does not so readily fit our 5-dimensional learning-in-planning perspective.  Figure 4 therefore represents 
RL in a different manner than the other approaches; a single shade, brick cross-hatch set of edges is used 
to span the five dimensions.  The great majority of RL systems to date adopt a state space perspective so 
there is an edge skirting this node.  With respect to the planning-learning goal dimension, RL can be 
viewed as both ‘improving plan quality’ (the process moves toward the optimal policy) and ‘learning the  

                                                 
3 For this survey the classical/non-classical partition of a system is drawn based on the applications made by it’s 
designers in the survey reference, regardless of what class of problems it might conceivably handle. 
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                              PLANNING ASPECTS        LEARNING ASPECTS 

 

 

      
 

 
 

 

 

 

 

   

 

 

   Learning Phase 

 

Problem Type 
 

Type of Learning    
  

 
 

Planning-
Learning Goal 

Planning Approach 

Figure 3: Mapping of the survey planning-learning systems for classical planning problems onto the Figure 1 characterization structure. 

Learn or 
improve 
domain 
theory

 bayesian learning 

Compilation 
Approaches 

Plan Space search 

State Space search 
[Conjunctive / Disjunctive ] 

CSP 

L P 

SAT 
During plan execution 

Before planning starts 

During planning process 

Inductive 
  decision tree 

 Neural Network 

 ‘other’ induction 

Reinforcement Learning 

 Inductive Logic Programming 

Analytical 
 

EBL 

Static analysis/ 
Abstractions 

Case Based Reasoning 
(derivational / transformational 

analogy) 

Multi-strategy 
 
 

EBL &                
Inductive Logic 
Programming 

analytical & induction 

EBL &              
Reinforcement Learning 

  Classical Planning 
 9 static world 
 9 deterministic 
 9 fully observable 
 9 instantaneous 

actions 

‘Full Scope’ 
Planning 

 9 dynamic world 
 9 stochastic  
 9 partially observable 
 9 durative actions 
 9 asynchronous goals 
 9 metric/continuous 

Speed up 
planning 

Improve 
plan 

quality 
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                              PLANNING ASPECTS         LEARNING ASPECTS 

 

 

      
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4:   Mapping of the survey planning-learning systems for beyond-classical planning problems onto the Figure 1 characterization structure. 

 decision tree 

 Neural Network 

 Bayesian learning 

 Inductive Logic Programming 

 Reinforcement Learning 

Multi-strategy 
 
 

Inductive 
 

Analytical 
 

EBL 

 Case Based Reasoning 

Static analysis/ 
Abstractions 

 EBL & ILP 

 analytical & induction 

EBL & 
Reinforcement Learning 

  Classical Planning 
 9 static world 
 9 deterministic 
 9 fully observ… 

‘Full Scope’ 
Planning 

 9 dynamic world 
 9 stochastic  
 9 partially observable 
 9 durative actions 
 9 asynchronous goals 
 9 metric/continuous 

‘beyond-classical’ 
Planning 

 9 dynamic world  
 9 stochastic 
 9  … 
 9  … 

Compilation 
Approaches 

SAT 

CSP 

L P 

State Space search 
[Conjunctive / 
Disjunctive ] 

Plan Space search 

  Learning Phase 

 
Problem Type 

Type of Learning    
   

Planning-
Learning Goal Planning Approach 

During plan execution 

Before planning starts 

During planning process 
Improve 

plan 
quality 

Speed 
up 

planning 

Learn or 
improve 
domain 
theory 
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domain theory’ (it requires none to determine the best action to take from each state).  This view is 
reflected in Figure 4 as the vertical RL edge spanning these nodes under the planning-learning goal 
dimension.  Finally, since RL learning is both rooted in interacting with its environment, and takes place 
during the process of building the plan, there is a vertical edge spanning these nodes under the learning 
phase dimension. 

Beyond reinforcement learning systems, Figure 4 suggests at least three aspects to the learning-in-
planning work done to date for non-classical planning problems; all fielded systems plan via state space 
search, most systems conduct learning during the plan execution phase, and EBL is again the learning 
method of choice.  It is also notable that the only decision tree learning conducted in any planner is based 
in a non-classical planning system. 

With this overview of where we have been with learning-in-planning, we next turn our attention to 
open issues and research directions that beckon. 

Where to for learning in Automated Planning? 
We organize this discussion of promising directions for future work in this field along two broad 

partitions:  1) apparent ‘gaps’ in the corpus of learning-in-planning research as suggested by the survey 
tables and figures of this report, and 2) recent advances in planning that suggest a role for learning 
notably beyond the modes investigated by existing studies.  

Research gaps suggested by the survey 
There are significant biases apparent in the focus and distribution of the survey studies relative to the five 
dimensions we have defined.  This is to be expected, since some configurations of planning/learning 
methods are intrinsically infeasible or poorly matched (e.g. the learning of domain theory in a classical 
planning context, or combining reinforcement learning with SAT -which does not capture the concept of a 
‘state’). In assessing the survey tables here, however, we seek learning-in-planning configurations that are 
feasible, have been largely ignored, and appear to hold promise.   

Non-analytical learning techniques:  The survey tables suggest a considerable bias towards analytical 
learning in planning.  This deserves to be questioned.  Why is this so favored?  In a sense, a planner 
employing EBL is learning ‘guaranteed knowledge’, control information that is provably correct.  But it is 
well known within the machine learning community that ‘approximately correct knowledge’ can be at 
least as useful, particularly if we’re careful not to sacrifice completeness.  Given the presence of a high-
level domain theory, it is reasonable to exploit it to learn.  However, large constraints are placed on just 
what can be learned if the planner doesn’t also take advantage of the full planning search experience.  The 
tables and figures of this study indicate the extent to which inductive logic programming has been 
employed in this spirit together with EBL.  This is a logical marriage of two mature methodologies; ILP 
in particular has powerful engines for inducing logical expressions, such as FOIL (Quinlan 1990), that 
can be readily employed.   It is curious to note, however, decision tree learning has been used in only one 
study in this entire survey.  And yet this inductive technique is at least as mature and features its own very 
effective engines such as ID3 and C4.5  (Quinlan 1986, ‘93) There is no obvious reason why the approach 
of learning decision trees to, for example, select the best action to apply in a given state has not been 
investigated within the planning community. 

Learning across problems:   A learning aspect that has largely fallen out of favor in recent years is the 
compilation and retention of search guidance that can be used across different problems and perhaps even 
different domains.  One of the earliest implementations of this took the form of learning search control 
rules (e.g. via EBL).  There may be two culprits that led to disenchantment with learning this inter-
problem search control: 

• The ‘utility problem’ that can surface when too many, or relatively ineffective rules are learned.  
• The ‘propositionalization’ of the planning problem, wherein lifted representations of the domain 

theory were forsaken for the faster processing of ‘grounded’ versions involving only propositions.  



 

 19 

The cost of rule checking and matching in more recent systems that use grounded operators is much 
lower than for planning systems that handle uninstantiated variables.   

Not conceding these to be insurmountable hurdles, we suggest the following research approaches:   
One tradeoff associated with a move to planning with grounded operators is the loss of generality in the 

basic precepts that are most readily learned.  For example, Graphplan may learn a great number of 
nogoods during search on a given problem, but in their basic form, they are only relevant to the given 
problem.  Graphplan retains no inter-problem memory.  It is worth considering what might constitute 
effective inter-problem learning for such a system. 

The rule utility issue faced by analytical learning systems (and possibly all systems that learn search 
control rules) can be viewed as the problem of incurring the cost of a large set of sound, exact and 
probably over-specific rules.  Learning systems that can reasonably relax the ‘soundness’ criterion for 
learned rules may move broadly towards a problem goal using ‘generally correct’ search control.  Some 
of the multi-strategy studies reflected in Table 3C, are relevant to this view to the extent that they attempt 
to leverage the strengths of both analytical and inductive learning techniques to acquire more “useful” 
rules.  Initial work with an approach that does not directly depend on a large set of training examples was 
reported in (Kambhampati, 1999).  Here a system is described that seeks to learn approximately correct 
rules by relaxing the constraint of the UCPOP-EBL system that requires regressed failure explanations 
from all branches of a search subtree before a search control rule is constructed. 

Perhaps the most ambitious approach to learning across problems would be to extend some of the work 
being done in analogical reasoning elsewhere in AI to the planning field.  The goal is to exploit any 
similarity between problems to speedup solution finding.  Current ‘case-based reasoning’ 
implementations in planning are capable of recognizing a narrow range of similarities between an 
archived partial plan and the current state the planner is working from. Such systems cannot apply 
knowledge learned in one logistics domain, for example, to another –even though a human would find it 
natural to use what she has learned in solving a AIPS planning competition ‘driverlog’ problem to a 
‘depot’ problem.   We note that this has been approached from a somewhat different direction in (Fox, 
Long 1999) via a process of identifying abstract types during domain preprocessing. 

Extending Learning to Non-Classical Planning Problems:  The preponderance of planning research has 
been based in classical planning, as is born out by the survey tables and figures.  Historically this was 
largely motivated by the need to study a less daunting problem than full scope planning, and much of the 
progress realized in classical planning has indeed provided the foundation for advances now being made 
in non-classical formulations.  It is a reasonable expectation that the body of work in learning methods 
adapted to classical planning will similarly be modified and extended to non-classical planning systems.  
With the notable exception of reinforcement learning, the surface has scarcely been scratched in this 
regard.   

If, as we suggest in the introduction, the recent striking advances in speed for state of the art planning 
systems lies behind the relative paucity of current research in speed-up learning, the focus may soon shift 
back in that direction.  These systems, impressive though they are, demonstrated their speedup abilities in 
classical planning domains.  As the research attention shifts to problems beyond the classical paradigm, 
the greatly increased difficulty of the problems themselves seems likely to renew planning community 
interest in speed-up learning approaches. 

New avenues for learning-in-planning motivated by recent developments in planning 
Off-line learning of domain-knowledge:  We have previously noted the high overhead cost of conducting 
learning ‘online’ during the course of solving a single problem, relative to often short solution times for 
the current generation of fast and efficient planners.  This may help explain more recent interest in offline 
learning, such as domain analysis, which can be reused to advantage over a series of problems within a 
given domain.  The survey results and Figure 3 also suggest an area of investigation that has so far been 
neglected in studies focused on non-classical planning; static analysis –the learning of domain invariants 
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before planning starts.  This has been shown to be an effective speedup approach for many classical 
planning domains and there is no reason to believe it cannot similarly boost non-classical planning. 

On another front, there has been much enthusiasm in parts of the planning community for applying 
domain-specific knowledge to speed up a given planner (for example, ‘TL Plan’; Bacchus, Kabanza 2000, 
‘Blackbox’; Kautz, Selman 1998).   This advantage has also been realized in hierarchical task network 
(HTN) planning systems, by supplying domain-specific task reduction schemas to the planner (‘SHOP’; 
Nau, et.al. 1999).  Such leveraging of user-supplied domain knowledge has been shown to greatly 
decrease planning time for a variety of domains and problems.  One drawback of this approach is the 
burden it places on the user to hand-code the domain knowledge ahead of time correctly and in a form 
usable by the particular planner.  Offline learning techniques might be exploited here.  If the user provides 
very high-level domain knowledge in a format readily understandable by humans, the system could learn 
in supervised fashion, to operationalize this to the particular formal representation usable by a given target 
planning system.  If the user is not to be burdened with learning the planner’s low-level language for 
knowledge representation, this might entail solving sample problems iteratively with combinations of 
these domain rules to determine both correctness and efficacy. 

An interesting related issue is the question of which types of knowledge are easiest/hardest to learn. 
This has a direct impact on which might actually be worth learning.  The closely related machine learning 
aspect of “sample complexity” addresses the number and type of examples that are needed to induce a 
given concept or target function.  To date this has received little attention with respect to the domain-
specific knowledge employed by some planners.  What are the differences in terms of the sample 
complexity of learning different types of domain specific control knowledge?  For example, it would be 
worth categorizing the TL Plan control rules vs. SHOP/HTN style schemas in terms of their sample 
complexity. 

Learning to improve heuristics:   The credit for both the revival of plan space planning and the impressive 
performance of most state space planners in recent years goes largely to the development of heuristics that 
guide the planner at key decision points in its search.  As such, considerable research effort is focusing on 
finding both more effective domain-independent heuristics and tuning heuristics to particular problems 
and domains.  The role that learning might play in acquiring or refining such heuristics has been largely 
unexplored.  In particular learning such heuristics inductively during the planning process would seem to 
hold promise.  Generally, the heuristic values are calculated by a linear combination of weighted terms 
where the designer chooses both the terms and their weights in hopes of obtaining an equation that will be 
robust across a variety of problems and domains.  The search trace (states visited) resulting from a 
problem-solving episode could provide the negative and positive examples needed to train a neural 
network or learn a decision tree.  Possible target functions for inductively learning or improving heuristics 
include:  
� term weights that are most likely to lead to a higher quality solutions for a given domain 
� term weights that will be most robust across many domains 
� attributes that are most useful for classifying states 
� exceptions to an existing heuristic such as employed in LRTA* (Korf  1990) 
� a meta-level function that selects or modifies a search heuristics based on the problem / domain 
Multi-strategy learning might also play a role in that the user might provide background knowledge in 

the form of the base heuristic. 
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The ever-growing cadre of planning 
approaches and learning tools, each with 
their own strengths and weaknesses, 
suggests another inviting direction for 
speedup learning.  Learning a rule set or 
heuristic that will direct the application of 
the most effective approach (or multiple 
approaches) for a given problem could 
lead to a meta-planning system with 
capabilities well beyond any individual 
planner.  Interesting steps in this direction 
have been taken by (Horvitz, et. al. 2001) 
via the construction and use of Bayesian 
models to predict the run time of various 
problem solvers. 

Learning to improve plan quality:     

The survey tables and figures suggest that 
the issue of improving ‘plan quality’ via learning, has received much less attention in the planning 
community than speedup learning.  Yet, as planning systems are ported into real-world applications, this 
is likely to be a primary concern.  Many planning systems that successfully advance into the marketplace 
will need to interact frequently with human users in ways that have received scant attention in the lab.  
Such users are likely to have individual biases with respect to plan quality that they may be hard-pressed 
to quantify.  These planning systems could be charted in a two-dimensional space with the axes: 

1. Degree of coverage of the issues confronted in a real-world problem.  That is, the capability of the 
system to, deal with all aspects of a problem without abstracting them away. 

2. Degree of automation.  That is, the extent to which the system automatically reasons about the 
various problem aspects and makes decisions without guidance by the human user. 

Figure 5 shows such a chart for present day planning systems.  The ideal planner plotted on this chart 
would obviously lie in the top-right corner.  It is interesting to note that most users –aware that they can’t 
have it all- prefer a system that can, in some sense, handle most aspects of the real-world problem at the 
expense of full automation.  And yet, most current-day planning systems abstract away large portions of 
the real-world problem in favor of fully automating what the planner can actually accomplish. In large 
practical planning environments, fully automated plan generation is neither feasible nor desirable because 
users wish to observe and control plan generation.  

Some planning systems such as HICAP [Aha, et. al 1999] and ALPS [Calistri-Yeh, Segre  1996] have 
made inroads towards building an effective interface with their human users.  No significant role for 
learning has been established yet for such systems, but possibilities include learning user preferences with 
respect to plan actions, intermediate states, and pathways.  Given the human inclination to ‘have it their 
way’ it may be that the best way to tailor an interactive planner will be after the manner of the 
“programming by demonstration” systems that have recently received attention in the machine learning 
community [Lau, Domingos, Weld 2000].  Such a system implemented on top of a planner might entail 
having the user create plans for several problems that the learning system would then parse to learn plan 
aspects peculiar to the particular user. 

Summary and Conclusion 
We have presented the results of a extensive survey of research conducted and published since the first 

application of learning to automated planning was implemented some 30 years ago.  In addition to 
compiling categorized tables of the corpus of work, we have presented a five-dimensional 
characterization of learning-in-planning and mapped the studies onto it.   This has clarified the foci of the 
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work in this area and suggested a number of avenues along which the community might reasonably 
proceed in the future.  It is apparent that automated planning and machine learning are well-matched 
methodologies in a variety of configurations, and we suggest there are a number of these that merit more 
research attention than they have received to date. We have expanded on several of these possibilities and 
offered our conjectures as to where the more interesting work might lie.   
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