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ABSTRACT

Current work in planning assumes that user preferences and/or domain dynamics are

completely specified in advance, and aims to search for a single solution plan to satisfy

these. In many real world scenarios, however, providing a complete specification of user

preferences and domain dynamics becomes a time-consuming and error-prone task. More

often than not, a user may provide no knowledge or at best partial knowledge of her pref-

erences with respect to a desired plan. Similarly, a domain writer may only be able to

determine certain parts, not all, of the model of some actions in a domain. Such modeling

issues requires new concepts on what a solution should be, and novel techniques in solving

the problem.

When user preferences are incomplete, rather than presenting a single plan, the planner

must instead provide a set of plans containing one or more plans that are similar to the one

that the user prefers. This research first proposes the usage of different measures to capture

the quality of such plan sets. These are domain-independent distance measures based on

plan elements if no knowledge of the user preferences is given, or the Integrated Preference

Function measure in case incomplete knowledge of such preferences is provided. It then

investigates various heuristic approaches to generate plan sets in accordance with these

measures, and presents empirical results demonstrating the promise of the methods.

The second part of this research addresses planning problems with incomplete domain

models, specifically those annotated with possible preconditions and effects of actions. It

formalizes the notion of plan robustness capturing the probability of success for plans dur-

ing execution. A method of assessing plan robustness based on the weighted model count-

ing approach is proposed. Two approaches for synthesizing robust plans are introduced.

The first one compiles the robust plan synthesis problems to the conformant probabilistic

planning problems. The second approximates the robustness measure with lower and upper

bounds, incorporating them into a stochastic local search for estimating distance heuristic
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to a goal state. The resulting planner outperforms a state-of-the-art planner that can handle

incomplete domain models in both plan quality and planning time.
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Chapter 1

OVERVIEW

In the past several years, significant strides have been made in scaling up plan synthesis

techniques. There are technology now to routinely generate plans with hundreds of actions.

A significant amount of ongoing work in the community has been directed at building on

these advances to provide efficient synthesis techniques under a variety of more expressive

formulations on user preferences and domain dynamics. All this work however makes a

crucial assumption—that a complete specification of user preferences and/or domain dy-

namics is given in advance. While there may be scenarios where a user can exactly describe

her preferences on desired plans (e.g., a passenger searching for flights between two close

cities is very likely interested only in the cost of tickets), very often she can at best partially

specify her desires on solution plans in many other situations. Similarly, while knowledge-

engineering a detailed domain model is necessary as well as feasible in some applications

(e.g., mission planning domains in NASA and factory-floor planning), completely model-

ing the domain dynamics can be very time-consuming and error-prone in many real-life

applications. It is increasingly recognized (c.f. Kambhampati, 2007) that there are also

many scenarios where insistence on complete models renders the current planning tech-

nology unusable. Such incompleteness modeling issues requires new concepts on what

solutions of a planning problem should be, and novel techniques in solving the problem.

The topic of this dissertation is about “model-lite” planning—planning with incomplete

user preferences and domain models. While the solution concept for a planning problem is

clearly understood when complete user preferences and domain models are available,1 it is

1In particular, it is the single best plan with respect to the user known preferences, and it is any valid plan

which reaches a state satisfying all goals from an initial state given a complete domain model.
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not even obvious what a reasonable concept for solutions of a planning problem should be

if the planner does not possess such complete specifications, let alone how to find them effi-

ciently. The contribution of this research, therefore, is first to propose solution concepts for

planning problems in those scenarios, and second to devise techniques for finding solutions

of those problems.

Planning with incomplete user preferences The first part of the dissertation describes

the work on planning when user preferences on plans are incomplete, in particular either

completely unknown or partially specified. 2 In such scenarios, the planner’s job changes

from finding a single plan to finding a set of representative plans and presenting them to the

user (in the hope that she will find one of them desirable). Quality measures for plan sets,

as a result, should be defined to evaluate plan sets with respect to the amount of knowledge

about user preferences; and techniques need to be devised to generate high quality plan

sets.

• Firstly, when the user is unable to provide any knowledge of her preferences, the

diversity measures for plan sets are defined based on distance measures between two

plans using various syntactic features of plans. The intuition is that by maximizing

the diversity of a plan set, the set is more likely to be uniformly distributed in the

unknown space of preferences, and thus the chance that one of them is close the plan

that she is interested in is increased. To synthesize plan sets with these diversity

measures, two representative planning approaches, GP-CSP (Do and Kambhampati,

2001) and LPG (Gerevini et al., 2003) are discussed, respectively typifying the issues

involved in generating diverse plans in bounded horizon compilation and heuristic

search based planning methods.

• Secondly, this research is interested in situations where the user can only be cer-

2This work has been published in (Srivastava et al., 2007; Nguyen et al., 2009). A unified and compre-

hensive study can be found in (Nguyen et al., 2012), which contains most of the first part of this dissertation.
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tain about part of her preferences, but not all. In particular, the assumption is that

the user can express a set of plan attributes that she wants to optimize, however

does not know how to correctly determine the degree of their relative importance.

The idea of Integrated Preference Function (IPF) (Carlyle et al., 2003) developed in

Operations Research (OR) community in the context of multi-criteria scheduling is

adapted, which measures the expected reward or penalty that a user will get or pay by

choosing one solution in a given set. A spectrum of approaches for generating plan

sets with this measure is presented, which are implemented on top of Metric-LPG

(Gerevini et al., 2008), a state-of-the-art planner that can effectively handle metric

planning problems.

Planning with incomplete domain models The second part of the dissertation describes

the work on planning with incomplete domain models. Following Garland & Lesh (2002),

it assumes that although the domain modelers cannot provide complete models, often they

are able to provide annotations on the partial model circumscribing the places where it is

incomplete. In the framework of this work, these annotations consist of allowing actions

to have possible preconditions and effects (in addition to the standard necessary precondi-

tions and effects). Incomplete domain models with such possible preconditions and effects

implicitly define an exponential set of complete domain models, with the semantics that

the real domain model is guaranteed to be one of these.

Given such an incomplete domain model, a plan generated cannot be guaranteed to

succeed during execution; all one can say is that a plan with higher chance to achieve the

goals should be considered better. In order to quantify the quality of plans, a robustness

measure for plans is introduced to capture the probability of their success during execution.

Two execution semantics for plans are considered which differs in how an action failure is

treated during execution. In the first one, Generous Execution semantics, the user continues

to execute the plan even if one of the actions in the plan fails to apply. The second semantics

3



following STRIPS-style planning (Fikes and Nilsson, 1972) considers the plan failed when

one of its actions fails to apply.

Two approaches are proposed for synthesizing robust plans.3 The first one translates

this problem into a conformant probabilistic planning problem (Domshlak and Hoffmann,

2007). While perhaps the most intuitive approach, this compilation method appears to

work only for small planning instances given the state-of-the-art conformant probabilistic

planner, Probabilistic-FF (Domshlak and Hoffmann, 2007).

The second approach is a heuristic search method that works well in much larger prob-

lem instances. This method is fully investigated and tested under the STRIPS Execution

semantics (the similar ideas can be adapted, with some additional challenges, for the Gen-

erous Execution semantics). It aims to directly take into account the robustness of plan

prefixes during search. There is however an immediate technical hurdle: the problem of

assessing the robustness of a given plan is equivalent to weighted model counting, and is

thus #P -complete. To overcome this issue, lower and upper bounds for the robustness

measure are derived and incorporated into the extraction of robust relaxed plans. The lengh

of these relaxed plans, as a common technique in classical planning, is used to guide the

search towards a goal state. The experiments show that our planner, PISA (Planning with

Incomplete STRIPS Actions), outperforms a state-of-the-art planner handling incomplete

domains in most of the tested domains, both in terms of plan quality and planning time.

Having formalized the two classes of planning problems with incomplete user prefer-

ences and domain models in separate settings, I also discuss situations where the two types

of incompleteness are simultaneously present. As a first step to tackle such complicated

scenarios, I provide an outlook on how to adapt the quality measures for plan sets, proposed

in the first part of the dissertation, in order to take the robustness of constituent plans into

consideration.

3This work has been appeared in (Nguyen et al., 2010, 2013; Nguyen and Kambhampati, 2014).
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The dissertation is organized as follows: I describe the work on planning with incom-

plete user preferences in Chapter 2. I then discuss the work on planning with incomplete

domain models in the next Chapter 3. In Chapter 4, I will summarize the work, and for fu-

ture directions I will describe scenarios when the two types of incompleteness are present,

and the extension of the quality measure for those situations.
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Chapter 2

PLANNING WITH INCOMPLETE USER PREFERENCES

2.1 Introduction

In many real world planning scenarios, user preferences on plans are either unknown or

at best partially specified (c.f. Kambhampati (2007)). In such cases, the planner’s task

changes from finding a single optimal plan to finding a set of representative solutions or

options. The user must then be presented with this set in the hope that she will find at least

one of the constituent plans desirable and in accordance with her preferences. Most work

in automated planning ignores this reality, and assumes instead that user preferences (when

expressed) will be provided in terms of a completely specified objective function.

This chapter presents a study on the problem of generating a set of plans using partial

knowledge of the user preferences. This set is generated in the hope that the user will

find at least one desirable according to her preferences. Specifically, the following two

qualitatively distinct scenarios are considered.

• The planner is aware that the user has some preferences on the solution plan, but it is

not provided with any knowledge on those preferences.

• The planner is provided with incomplete knowledge of the user preferences in the

form of plan attributes (such as the duration or cost of a flight, or the importance of

delivering all priority packages on time in a logistics problem). Each of these plan

attributes has a different and unknown degree of importance, represented by weights

or trade-off values. In general, users find it hard to indicate the exact value of a trade-

off, but are more likely to indicate that one attribute is more (or less) important than
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another. For instance, a business executive may consider the duration of a flight as a

more important factor than its cost. Incompletely specified preferences such as these

can be modeled with a probability distribution on weight values,1 and can therefore

be assumed as input to the planner (together with the attributes themselves).

In both of the cases above, the focus is on returning a set of plans. In principle, a

larger plan set implies that the user has a better chance of finding the plan that she desires;

however, there are two problems—one computational, and the other comprehensional. Plan

synthesis, even for a single plan, is costly in terms of computational resources used; for a

large set of plans, this cost only increases. The comprehensional problem, moreover, is that

it is unclear if the user will be able to completely inspect a set of plans in order to find the

plan she prefers. What is clearly needed, therefore, is the ability to generate a set of plans

with the highest chance of including the user’s preferred plan among all sets of bounded

(small) number of plans. An immediate challenge in this direction is formalizing what it

means for a meaningful set of plans—in other words, we want to define a quality measure

for plan sets given an incomplete preference specification.

We propose different quality measures for the two scenarios listed above. In the extreme

case where the user is unable to provide any knowledge of her preferences, we define a

spectrum of distance measures between two plans based on their syntactic features in order

to define the diversity measure of plan sets. These measures can be used regardless of the

user preferences, and by maximizing the diversity of a plan set we increase the chance that

the set is uniformly distributed in the unknown preference space. This makes it more likely

that the set contains a plan that is close to the one desired by the user.

The quality measure can be refined further when some knowledge of the user pref-

erences is provided. We assume that it is specified as a convex combination of the plan

1If there is no prior information about this probability distribution, one option is to initialize it with the

uniform distribution and gradually improve it based on interaction with the user.
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attributes mentioned above, and incomplete in the sense that a distribution of trade-off

weights, not their exact values, is available. The complete set of best plans (plans with the

best value function) can then be pictured as the lower convex-hull of the Pareto set on the

attribute space. To measure the quality of any (bounded) set of plans on the complete op-

timal set, we adapt the idea of Integrated Preference Function (IPF) (Carlyle et al., 2003),

and in particular its special case, the Integrated Convex Preference (ICP). This measure

was developed in the Operations Research (OR) community in the context of multi-criteria

scheduling, and is able to associate a robust measure of representativeness with any set of

solution schedules (Fowler et al., 2005).

Armed with these quality measures, we can formulate the problem of planning with

partial user preferences as finding a bounded set of the plans that has the best quality value.

Our next contribution therefore is to investigate effective approaches for using quality mea-

sures to search for a high quality plan set efficiently. For the first scenario—when the

preference specification is not provided—two representative planning approaches are con-

sidered. The first, GP-CSP (Do and Kambhampati, 2001), typifies the issues involved in

generating diverse plans in bounded horizon compilation approaches; while the second,

LPG (Gerevini et al., 2003), typifies the issues involved in modifying the heuristic search

planners. Our investigations with GP-CSP allow us to compare the relative difficulties of

enforcing diversity with each of the three different distance measures defined in the forth-

coming sections. With LPG, we find that the proposed quality measure makes it more

effective in generating plan sets over large problem instances. For the second case—when

part of the user preferences is provided—we also present a spectrum of approaches that

can solve this problem efficiently. We implement these approaches on top of Metric-LPG

(Gerevini et al., 2008). Our empirical evaluation compares these approaches both among

themselves as well as against the methods for generating diverse plans ignoring the partial

preference information, and the results demonstrate the promise of our proposed solutions.
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This chapter is organized as follows. The related work is first dicussed in the next Sec-

tion 2.2. Section 2.3 describes fundamental concepts in preferences and formal notations.

In Section 2.4, we formalize quality measures of plan set in the two scenarios discussed

above. Sections 2.5 and 2.6 discuss our various heuristic approaches to generate plan sets,

together with the experimental results. Section 2.7 gives the discussion including the limi-

tations of our work. We finish our discussion on planning with incomplete user preferences

with a conclusion in Section 2.8.

2.2 Related Work

There are currently very few research efforts in the planning literature that explicitly con-

sider incompletely specified user preferences during planning. The most common approach

for handling multiple objectives is to assume that a specific way of combining the objectives

is available (Refanidis and Vlahavas, 2003; Do and Kambhampati, 2003), and then search

for an optimal plan with respect to this function. In a sense, such work can be considered

as assuming a complete specification of user preferences. Other relevant work includes

(Bryce et al., 2007), in which the authors devise a variant of the LAO* algorithm to search

for a conditional plan with multiple execution options for each observation branch, such

that each of these options is non-dominated with respect to objectives like probability and

cost to reach the goal.

Our work can be seen as complementing the current research in planning with prefer-

ences. Under the umbrella of planning with preferences, most current work in planning

focuses on synthesizing either a single plan under the assumption that the user has no pref-

erences, or a single best solution assuming that a complete knowledge of the preferences is

provided. We, on the other hand, address the problem of synthesizing a plan set when the

knowledge of user preferences is either completely unknown,2 or partially specified.

2Note that not knowing anything about the user’s preferences is different from assuming that the user has
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In the context of decision-theoretic planning, some work has considered Markov De-

cision Processes with imprecise reward functions, which are used to represent user prefer-

ences on the visited states during execution. These methods however assume that the true

reward function is revealed only during the execution of policies, whereas in our setting

the incomplete knowledge about user preferences is resolved after the synthesis of plans

but before plan execution (with some required effort from the user). Many different no-

tions of optimality for policies have been defined with respect to the incomplete reward

function, and the aim is to search for an optimal policy. The minimax regret criterion (Re-

gan and Boutilier, 2009, 2010; Xu and Mannor, 2009) has been defined for the quality

of policies when the true reward function is deterministic but unknown in a given set of

functions. This criterion seeks an optimal policy that minimizes the loss (in terms of the

expected discounted reward) assuming the presence of an adversary who selects a reward

function, among all possible ones, to maximize the loss should a policy be chosen. An-

other criterion, called maximin, maximizes the worst-case expected reward also assuming

an adversary acting optimally against the agent (McMahan et al., 2003).

Incomplete knowledge of user preferences can also be resolved with some effort from

the user during plan generation. This idea unfortunately has not been considered in pre-

vious work on automated planning with preferences; there is however some work in two

related areas, decision theory and preference elicitation. In (Chajewska et al., 2000), the

user is provided with a sequence of queries, one at a time, until an optimal strategy with

respect to the refined preference model meets a stopping criterion, which is then output to

the user. That work ignores the user’s difficulty in answering questions that are posted, and

instead emphasizes the construction of those which will give the best value of information

at every step. This issue is overcome by (Boutilier, 2002) which takes into account the

cost of answering future elicitation questions in order to reduce the user’s effort. Boutilier

no preferences.
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et al. (2010) consider the preference elicitation problem in which the incompleteness in

user preferences is specified on both the set of features and the utility function. In systems

implementing the example-critiquing interaction mechanism (e.g., Viappiani et al. (2006),

Linden et al. (1997)), a user critiques examples or options presented by the system, and

this information is then used to revise the preference model. The process continues until

the user can pick a final choice from the k examples presented. There is one important

difference between these methods and ours: the “outcomes” or “configurations” in these

scenarios are considered given upfront (or can be obtained with low cost), whereas a fea-

sible solution in many planning domains is computationally expensive to synthesize. As a

result, an interactive method in which a sequence of plans or sets of plans needs to be gen-

erated for critiquing may not be suitable for our applications. Our approach, which presents

a set of plans to the user to select, requires less effort from the user and at the same time

avoids presenting a single optimal plan according to pessimistic or optimistic assumptions,

such as those used in the minimax regret and maximin criteria.

The problem of reasoning with partially specified preferences has also long been stud-

ied in multi-attribute utility theory, though this work is also different from ours when ignor-

ing the computation cost of “alternatives”. Given prior preference statements on how the

user compares two alternatives, Hazen (1986) considers additive and multiplicative utility

functions with unknown scaling coefficients, which represents the user partial preferences,

and proposes algorithms for the consistency problem (i.e., if there exists a complete utility

function consistent with the prior preferences), the dominance problem (i.e., whether the

prior information implies that one alternative is preferred to another), and the potential op-

timality problem (i.e., if there exists a complete utility function consistent with the prior

preferences under which a particular alternative is preference optimal). Ha and Haddawy

(1999) addressed the last two problems for multi-linear utility functions with unknown

coefficients. These efforts are similar to ours in how the user preferences are partially rep-
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resented. However, similar to the example-critiquing work mentioned above, they assume

that the user is able to provide pairwise comparison between alternatives, which is then

used to further constrain the set of complete utility functions representing user preferences.

Our approach to generating diverse plan sets to cope with planning scenarios without

knowledge of user preferences is in the same spirit as (Tate et al., 1998) and (Myers, 2006;

Myers and Lee, 1999), though for different purposes. Myers, in particular, presents an

approach to generate diverse plans in the context of an HTN planner by requiring the meta-

theory of the domain to be available and by using bias on the meta-theoretic elements to

control search (Myers and Lee, 1999). The metatheory of the domain is defined in terms of

pre-defined attributes and their possible values covering roles, features and measures. Our

work differs from this in two respects. First, we focus on domain-independent distance

measures. Second, we consider the computation of diverse plans in the context of domain

independent planners.

The problem of finding multiple but similar plans has been considered in the context of

replanning (Fox et al., 2006a). Our work focuses on the problem of finding diverse plans

by a variety of measures when the user preferences exist but are either completely unknown

or partially specified.

Outside the planning literature, our closest connection is first to the work by Gelain

et al. (2010), who consider soft constraint satisfaction problems (CSPs) with incomplete

preferences. These are problems where quantitative values of some constraints that rep-

resent their preferences are unspecified. Given such incomplete preferences, the authors

are interested in finding a single solution that is “necessarily” optimal (possibly with some

effort from the user), i.e. an assignment of variables that is optimal in all possible ways

that the currently unspecified preferences can be revealed. In a sense, this notion of op-

timality is very similar to the maximin criterion when seeking a solution that is optimal

even with the “worst” selection of the unspecified preferences. Hebrard et al. (2005) use a
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model closer to ours that focuses on the problem of finding similar/dissimilar solutions for

CSPs, assuming that a domain-specific distance measure between two solutions is already

defined. It is instructive to note that unlike CSPs with finite variable domains, where the

number of potential solutions is finite (albeit exponential), the number of distinct plans for

a given problem can be infinite. Thus, effective approaches for generating a good quality

set of plans are even more critical.

The challenges in finding a set of interrelated plans also bear some tangential similar-

ities to the work in other research areas and applications. In information retrieval, Zhang

et al. (2002) describe how to return relevant as well as novel (non-redundant) documents

from a stream of documents; their approach is to first find relevant docs and then find non-

redundant ones. In adaptive web services composition, the causal dependencies among

some web services might change at execution time, and as a result the web service en-

gine wants to have a set of diverse plans/compositions such that if there is a failure while

executing one composition, an alternative may be used which is less likely to be failing

simultaneously (Chafle et al., 2006). However, if a user is helping in selecting the com-

positions, the planner could be first asked for a set of plans that may take into account the

user’s trust in some particular sources and when she selects one of them, it is next asked

to find plans that are similar to the selected one. Another example of the use of diverse

plans can be found in (Memon et al., 2001) in which test cases for graphical user interfaces

(GUIs) are generated as a set of distinct plans, each corresponding to a sequence of actions

that a user could perform, given the user’s unknown preferences on how to interact with the

GUI to achieve her goals. The capability of synthesizing multiple plans would also have

potential application in case-based planning (e.g., Serina (2010)) where it is important to

have a plan set satisfying a case instance. These plans can be different in terms of criteria

such as resources, makespan and cost that can only be specified in the retrieval phase.

The primary focus of our research are scenarios where the end user is interested in
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Figure 2.1: The planning problem with unknown (A) and partially known (B) user prefer-

ences can be reformulated as the problem of synthesizing plan-sets with complete prefer-

ences over plan-sets (C).

single plans, but her preferences on that single plan are either unknown or partially known

to the planner. Our work shows that an effective technique for handling these scenarios is

to generate a set of diverse plans and present them to the user (so she can select the single

plan she is most interested in). While we came to sets of plans as an intermediate step for

handling lack of preference knowledge about single plans, there are also applications where

the end user is in fact interested in sets of plans (a.k.a “plan-sets”), and has preferences over

these plan-sets. Techniques for handling this latter problem do overlap with the techniques

we develop in this proposal, but it is important to remember their distinct motivations.

Figure 2.1 makes these distinctions clear by considering two orthogonal dimensions. The

X-axis is concerned with whether the end user is interested in single plans or plan-sets. The

Y-axis is concerned with the degree of the knowledge of user preferences.

In this space, traditional planning with preferences corresponds to (single-plan,

full-knowledge). The problems we are considering in this proposal are (single-plan,

no-knowledge) and (single-plan, partial-knowledge), respectively. A contribu-

tion of our work is to show that these two latter problems can be reformulated as (plan-set,
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full-knowledge), where the quality of plan-sets is evaluated by the internal diversity

measures we will develop. There are also compelling motivations to study the (plan-set,

full-knowledge) problem in its own right if the end user is explicitly interested in plan-

sets. This is the case, for example, in applications such as intrusion detection (Boddy et al.,

2005), where the objective is to come up with a set of plans that can inhibit system breaches,

or option generation in mission planning, where the commander wants a set of options not

to immediately commit to one of them, but rather to study their trade-offs.

The techniques we develop in this proposal are related but not equivalent to the tech-

niques and inputs for solving that plan-set generation problem. In particular, when the

end users are interested in plan sets, they may have preferences on plan-sets, not on single

plans.3 This means that (i) we need a language support for expressing preferences on plan

sets such as the work on DD-PREF language (desJardins and Wagstaff, 2005), and (ii) our

planner has to take as input and support a wide variety of plan-set preferences (in contrast

to our current system where the plan-set preference is decided internally—in terms of dis-

tance measures for unknown (single plan) preference case, and in terms of IPF measure for

partially known preference cases).

2.3 Background and Notation

Given a planning problem with the set of solution plans S , a user preference model is a

transitive, reflexive relation in S × S , which defines an ordering between two plans p and

p′ in S . Intuitively, p � p′ means that the user prefers p at least as much as p′. Note that

this ordering can be either partial (i.e. it is possible that neither p � p′ nor p′ � p holds—

in other words, they are incomparable), or total (i.e. either p � p′ or p′ � p holds). A

plan p is considered (strictly) more preferred than a plan p′, denoted by p ≺ p′, if p � p′,

3This is akin to a college having explicit preferences on its freshman classes—such as student body

diversity—over and above their preferences on individual students.
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p′ 6� p, and they are equally preferred if p � p′ and p′ � p. A plan p is an optimal (i.e.,

most preferred) plan if p � p′ for any other plan p′. A plan set P ⊆ S is considered more

preferred than P ′ ⊆ S , denoted by P ≪ P ′, if p ≺ p′ for any p ∈ P and p′ ∈ P ′, and they

are incomparable if there exists p ∈ P and p′ ∈ P ′ such that p and p′ are incomparable.

The ordering � implies a partition of S into disjoint plan sets (or classes) S0, S1, ...

(S0 ∪ S1 ∪ ... = S , Si ∩ Sj = ∅) such that plans in the same set are equally preferred,

and for any set Si, Sj , either Si ≪ Sj , Sj ≪ Si, or they are incomparable. The partial

ordering between these sets can be represented as a Hasse diagram (Birkhoff, 1948) where

the sets are vertices, and there is an (upward) edge from Sj to Si if Si ≪ Sj and there

is not any Sk in the partition such that Si ≪ Sk ≪ Sj . We denote l(Si) as the “layer”

of the set Si in the diagram, assuming that the most preferred sets are placed at the layer

0, and l(Sj) = l(Si) + 1 if there is an edge from Sj to Si. A plan in a set at a layer of

smaller value, in general, is either more preferred than or incomparable with ones at layers

of higher values.4 Figure 2.2 shows two examples of Hasse diagrams representing a total

and partial preference ordering between plans. We will use this representation of plan sets

in Section 2.4 to justify the design of our quality measures for plan sets when no knowledge

of user preferences is available.

The preference model of a user can be explicitly specified by iterating the set of plans

and providing the ordering between any two of them, and in this case answering queries

such as comparing two plans, finding a most preferred (optimal) plan becomes an easy

task. This is, however, practically infeasible since synthesizing a plan in itself is hard,

and the solution space of a planning problem can be infinite. Many preference languages,

therefore, have been proposed to represent the relation� in a more compact way, and serve

as starting points for algorithms to answer queries. Most preference languages fall into the

4If � is a total ordering, then plans at a layer of smaller value are strictly more preferred than ones at a

layer of higher value.
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Figure 2.2: The Hasse diagrams and layers of plan sets implied by two preference models.

In (a), S1 ≪ S2 ≪ S3, and any two plans are comparable. In (b), on the other hand,

S1 ≪ S2 ≪ S4, S1 ≪ S3, and each plan in S3 is incomparable with plans in S2 and S4.

following two categories:

• Quantitative languages define a value function V : S → R which assigns a real

number to each plan, with a precise interpretation that p � p′ ⇐⇒ V (p) ≤ V (p′).

Although this function is defined differently in many languages, at a high level it

combines the user preferences on various aspects of plan that can be measured quan-

titatively. For instance, in the context of decision-theoretic planning (Boutilier et al.,

1999), the value function of a policy is defined as the expected rewards of states that

are visited when the policy executes. In partial satisfaction (over-subscription) plan-

ning (PSP) (Smith, 2004; Van Den Briel et al., 2004), the quality of plans is defined

as its total rewards of soft goals achieved minus its total action costs. In PDDL2.1

(Fox and Long, 2003), the value function is an arithmetic function of numerical flu-

ents such as plan makespans, fuel used etc., and in PDDL3 (Gerevini et al., 2009) it is

enhanced with individual preference specifications over state trajectory constraints,

defined as formulae with modal operators having their semantics consistent with that

used for modal operators in linear temporal logic (Pnueli, 1977) and other modal
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Figure 2.3: The metamodel (Brafman and Domshlak, 2009). The user preference model

is compactly represented by a preference language, on which algorithms perform tasks of

answering queries.

temporal logics.

• Qualitative languages provide qualitative statements that are more intuitive for lay

users to specify. A commonly used language of this type is CP-networks proposed

in (Boutilier et al., 2004), where the user can specify her preference statements on

values of plan attributes, possibly given specification of others (for instance, “Among

tickets with the same prices, I prefer airline A to airline B.”). Another example is LPP

(Bienvenu et al., 2006) in which the statements can be specified using LTL formulae,

and possibly being aggregated in different ways.

Figure 2.3 shows the conceptual relation of preference models, languages and algo-

rithms. We refer the reader to the work by Brafman and Domshlak (2009) for a more

detailed discussion on this metamodel, and by Baier and McIlraith (2009) for an overview

of different preference languages used in planning with preferences.

From the modeling point of view, in order to design a suitable language capturing the

user preference model, the modeler should be provided with some knowledge of the user’s

interest that affects the way she evaluates plans (for instance, flight duration and ticket

cost in a travel planning scenario). Such knowledge in many cases, however, cannot be

completely specified. Our purpose therefore is to present a bounded set of plans to the user

in the hope that it will increase the chance that she can find a desired plan. In the next
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section, we formalize the quality measures for plan sets in two situations where either no

knowledge of the user preferences or only part of them is given.

2.4 Quality Measures for Plan Sets

2.4.1 Syntactic Distance Measures for Unknown Preference Cases

We first consider the situation in which the user has some preferences for solution plans, but

the planner is not provided with any knowledge of such preferences. It is therefore impos-

sible for the planner to assume any particular form of preference language representing the

hidden preference model. There are two issues that need to be considered in formalizing a

quality measure for plan sets:

• What are the elements of plans that can be involved in a quality measure?

• How should a quality measure be defined using those elements?

For the first question, we observe that even though users are normally interested in

some high level features of plans that are relevant to them, many of those features can be

considered as “functions” of base level elements of plans. For instance, the set of actions

in the plan determines the makespan of a (sequential) plan, and the sequence of states

when the plan executes gives the total reward of goals achieved. We consider the following

three types of base level features of plans which could be used in defining quality measure,

independently of the domain semantics:

• Actions that are present in plans, which define various high level features of the

plans such as its makespan, execution cost, etc. that are of interest to the user whose

preference model could be represented with preference languages such as in PSP and

PDDL2.1.
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• Sequence of states that the agent goes through, which captures the behaviors result-

ing from the execution of plans. In many preference languages defined using high

level features of plans such as the reward of goals collected (e.g., PSP), of the whole

state (e.g., MDP), or the temporal relation between propositions occurring in states

(e.g. PDDL3, PP (Son and Pontelli, 2006) and LPP (Fritz and McIlraith, 2006)),

the sequence of states can affect the quality of plan evaluated by the user.

• The causal links representing how actions contribute to the goals being achieved,

which measures the causal structures of plans.5 These plan elements can affect the

quality of plans with respect to the languages mentioned above, as the causal links

capture both the actions appearing in a plan and the temporal relation between actions

and variables.

A similar conceptual separation of features has also been considered recently in the con-

text of case-based planning by Serina (2010), in which planning problems were assumed to

be well classified, in terms of costs to adapt plans of one problem to solve another, in some

unknown high level feature space. The similarity between problems in the space was im-

plicitly defined using kernel functions of their domain-independent graph representations.

In our situation, we aim to approximate quality of plan sets on the space of features that

the user is interested by using distance between plans with respect to the base level features

mentioned above.

Table 2.1 gives the pros and cons of using the different base level elements of plan.

We note that if actions in the plans are used in defining quality measure of plan sets, no

additional problem or domain theory information is needed. If plan behaviors are used

as base level elements, the representation of the plans that bring about state transition be-

comes irrelevant since only the actual states that an execution of the plan will go through

5A causal link a1 → p− a2 records that a proposition p is produced by a1 and consumed by a2.
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Basis Pros Cons

Actions Does not require No problem information

problem information is used

States Not dependent on any specific Needs an execution

plan representation simulator to identify states

Causal links Considers causal proximity Requires domain theory

of state transitions (action)

rather than positional

(physical) proximity

Table 2.1: The pros and cons of different base level elements of plan.

are considered. Hence, we can now compare plans of different representations, e.g., four

plans where the first is a deterministic plan, the second is a contingent plan, the third is

a hierarchical plan and the fourth is a policy encoding probabilistic behavior. If causal

links are used, then the causal proximity among actions is now considered rather than just

physical proximity in the plan.

Given those base level elements, the next question is how to define a quality measure

of plan sets using them. Recall that without any knowledge of the user preferences, there is

no way for the planner to assume any particular preference language, thus the motivation

behind the choice of quality measure should come from the hidden user preference model.

Given a Hasse diagram induced from the user preference model, a k-plan set that will be

presented to the user can be considered to be randomly selected from the diagram. The

probability of having one plan in the set classified in a class at the optimal layer of the

Hasse diagram would increase when the individual plans are more likely to be at different

layers, and this chance in turn will increase if they are less likely to be equally preferred
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by the user.6 On the other hand, the effect of base level elements of a plan on high level

features relevant to the user suggests that plans similar with respect to base level features

are more likely to be close to each other on the high level feature space determining the

user preference model.

In order to define a quality measure using base level features of plans, we proceed with

the following assumption: plans that are different from each other with respect to the base

level features are less likely to be equally preferred by the user, in other words they are

more likely to be at different layers of the Hasse diagram. With the purpose of increasing

the chance of having a plan that the user prefers, we propose the quality measure of plan

sets as its diversity measure, defined using the distance between two plans in the set with

respect to a base level element. More formally, the quality measure ζ : 2S → R of a plan

set P can be defined as either the minimal, maximal, or average distance between plans:

• minimal distance:

ζmin(P) = min
p,p′∈P

δ(p, p′), (2.1)

• maximal distance:

ζmax(P) = max
p,p′∈P

δ(p, p′), (2.2)

• average distance:

ζavg(P) =

(
|P|

2

)−1

×
∑

pi,pj∈P,i<j

δ(pi, pj), (2.3)

6To see this, consider a diagram with S1 = {p1, p2} at layer 0, S2 = {p3} and S3 = {p4} at layer 1,

and S4 = {p5} at layer 2. Assuming that we randomly select a set of 2 plans. If those plans are known to

be at the same layer, then the chance of having one plan at layer 0 is 1

2
. However, if they are forced to be at

different layers, then the probability will be 3

4
.
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where δ : S × S → [0, 1] is the distance measures between two plans.

Distance measures between plans There are various choices on how to define the dis-

tance measure δ(p, p′) between two plans using plan actions, sequence of states or causal

links, and each way can have different impact on the diversity of plan set on the Hasse

diagram. In the following, we propose distance measures in which a plan is considered as

(i) a set of actions and causal links, or (ii) sequence of states the agent goes through, which

could be used independently of plan representation (e.g. total order, partial order plans).

• Plan as a set of actions or causal links: given a plan p, let A(p) and C(p) be the

set of actions or causal links of p. The distance between two plans p and p′ can be

defined as the ratio of the number of actions (causal links) that do not appear in both

plans to the total number of actions (causal links) appearing in one of them:

δa(p, p
′) = 1−

|A(p) ∩ A(p′)|

|A(p) ∪ A(p′)|
, (2.4)

δcl(p, p
′) = 1−

|C(p) ∩ C(p′)|

|C(p) ∪ C(p′)|
. (2.5)

• Plan as a sequence of states: given two sequences of states (s0, s1, ..., sk) and (s′
0, s

′
1, ..., s

′
k′)

resulting from executing two plans p and p′, and assume that k′ ≤ k. Since the two se-

quences of states may have different lengths, there are various options in defining dis-

tance measure between p and p′, and we consider here two options. In the first one, it

can be defined as the average of the distances between state pairs (si, s
′
i) (0 ≤ i ≤ k′),

and each state sk′+1,... sk is considered to contribute maximally (i.e., one unit) into

the difference between two plans:

δs(p, p
′) =

1

k
× [

k′∑

i=1

∆(si, s
′
i) + k − k′]. (2.6)
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On the other hand, we can assume that the agent continues to stay at the goal state

s′
k′ in the next (k − k′) time steps after executing p′, and the measure can be defined

as follows:

δs(p, p
′) =

1

k
× [

k′∑

i=1

∆(si, s
′
i) +

k∑

i=k′+1

∆(si, s
′
k′)]. (2.7)

The distance measure ∆(s, s′) between two states s, s′ used in those two measures is

defined as:

∆(s, s′) = 1−
|s ∩ s′|

|s ∪ s′|
. (2.8)

These distance metrics would consider long plans to be distant from short plans. In the

absence of information about user preferences, we cannot rule out the possibility that the

unknown preference might actually favor longer plans (e.g., it is possible that a longer plan

has cheaper actions, making it attractive for the user). In the implementation of a system

for computing diverse plans, while these distance measures affect which part of the (partial

plan) search space a planner tends to focus on, in general the length of resulting plans es-

pecially depends on whether the search strategy of the planner attempts to minimize it. In

our experiments, we will use two types of planners employing exhaustive search and local

search, respectively. For the second, which does not attempt to minimize plan length, we

will introduce additional constraints into the search mechanism that, by balancing the dif-

ferences in the generated diverse plans, also attempts to control the relative size of resulting

plans.

Example: Figure 2.4 shows three plans p1, p2 and p3 for a planning problem where the

initial state is {r1} and the goal propositions are {r3, r4}. The specification of actions are

shown in the table. The action sets of the first two plans ({a1, a2, a3} and {a1, a2, a4})
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Figure 2.4: Example illustrating plans with base-level elements. aI and aG denote dummy

actions producing the initial state and consuming the goal propositions, respectively (see

text for more details).

are quite similar (δa(p1, p2) = 0.5), but the causal links which involve a3 (a2 → r3 − a3,

a3 → r4−aG) and a4 (aI → r1−a4, a4 → r4−aG) make their difference more significant

with respect to causal-link based distance (δcl(p1, p2) = 4
7
). Two other plans p1 and p3, on

the other hand, are very different in terms of action sets (and therefore the sets of causal

links): δa(p1, p3) = 1, but they are closer in term of state-based distance (13
18

as defined in

Equation 2.6, and 0.5 if defined in Equation 2.7).

2.4.2 Integrated Preference Function (IPF) for Partial Preference Cases

We now discuss a quality measure for plan sets in the case when the user preference is par-

tially expressed. In particular, we consider scenarios in which the preference model can be

represented by some quantitative language with an incompletely specified value function

of high level features. As an example, the quality of plans in languages such as PDDL2.1
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(Fox and Long, 2003) and PDDL3 (Gerevini et al., 2009) are represented by a metric func-

tion combining metric fluents and preference statements on state trajectory with parameters

representing their relative importance. While providing a convenient way to represent pref-

erence models, such parameterized value functions present an issue of obtaining reasonable

values for the relative importance of the features. A common approach to model this type

of incomplete knowledge is to consider those parameters as a vector of random variables,

whose values are assumed to be drawn from a distribution. This is the representation that

we will follow.

To measure the quality of plan sets, we propose the usage of Integrated Preference

Function (IPF) (Carlyle et al., 2003), which has been used to measure the quality of a

solution set in a wide range of multi-objective optimization problems. The IPF measure

assumes that the user preference model can be represented by two factors: (1) a proba-

bility distribution h(α) of parameter vector α, whose domain is denoted by Λ, such that

∫
α∈Λ

h(α) dα = 1 (in the absence of any special information about the distribution, h(α)

can be assumed to be uniform), and (2) a value function V (p, α) : S × Λ → R combines

different objective functions into a single real-valued quality measure for plan p. We as-

sume that such objective functions represent aspects of plans that have to be minimized,

such as makespan and execution cost. This incomplete specification of the value function

represents a set of candidate preference models, for each of which the user will select a

different plan, the one with the best value, from a given plan set P ⊆ S . The IPF value of

solution set P is defined as:

IPF (P) =

∫

α∈Λ

h(α)V (pα, α) dα, (2.9)

with pα = argmin
p∈P

V (p, α), i.e., the best solution in P according to V (p, α) for each given

α value. Let p−1
α be a range of α values for which p is an optimal solution according to

V (p, α), i.e., V (p, α) ≤ V (p′, α) for all α ∈ p−1
α , p′ ∈ P \ {p}.
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As pα is piecewise constant, the IPF (P) value can be computed as:

IPF (P) =
∑

p∈P

[∫

α∈p−1
α

h(α)V (p, α) dα

]
. (2.10)

Let P∗ = {p ∈ P : p−1
α 6= ∅}; then we have:

IPF (P) = IPF (P∗) =
∑

p∈P∗

[∫

α∈p−1
α

h(α)V (p, α) dα

]
. (2.11)

SinceP∗ is the set of plans that are optimal for some specific parameter vector, IPF (P)

now can be interpreted as the expected value that the user can get by selecting the best plan

inP . Therefore, the setP∗ of solutions (known as lower convex hull ofP) with the minimal

IPF value is most likely to contain the desired solutions that the user wants, and in essence

it is a good representative of the plan set P .

The requirement for IPF (P) to exist is that the function h(α)V (p, α) needs to be

integrable over the p−1
α domains.7 The complication in computing the IPF (P) value is

in deriving a partition of Λ, the domain of α, into the ranges p−1
α for p ∈ P∗, and the

computation of integration over those ranges of the parameter vector. As we will describe,

the computational effort to obtain IPF (P) is negligible in our work with two objectives.

Although it is beyond the scope of our work, we refer the readers to (Kim et al., 2006) for

the calculation of the measure when the value function is a convex combination of high

number of objectives, and to (Bozkurt et al., 2010) for the weighted Tchebycheff value

function with two and three criteria.

In this work, in order to make our discussion on generating plan sets concrete, we will

concentrate on metric temporal planning where each action a ∈ A has a duration da and an

7Although a value function can take any form satisfying axioms about preferences, the user preferences in

many real-world scenarios can be represented or approximated with an additive value function (Russell and

Norvig, 2010), including the setting in our application, which is integrable over the parameter domain. Since

h(α) is integrable, so is the product h(α)V (p, α) in those situations.
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execution cost ca. The planner needs to find a plan p = 〈a1, . . . , an〉, which is a sequence

of actions that is executable and achieves all goals. The two most common plan quality

measures are: makespan, the total execution time of p, plan cost, the total execution cost of

all actions in p. Both of them are high level features that can be affected by the actions in

the plan. In most real-world applications, these two criteria compete with each other in that

shorter plans usually have higher cost and vice versa. We use the following assumptions:

• The desired objective function involves minimizing both components: time(p) mea-

sures the makespan of the plan p and cost(p) measures its execution cost.

• The quality of a plan p is a convex combination: V (p, w) = w× time(p)+(1−w)×

cost(p), where weight w ∈ [0, 1] represents the trade-off between the two competing

objective functions.

• The belief distribution of w over the range [0, 1] is known. If the user does not provide

any information or we have not learnt anything about the preference on the trade-off

between time and cost of the plan, then the planner can assume a uniform distribution

(and improve it later using techniques such as preference elicitation).

Given that the exact value of w is unknown, our purpose is to find a bounded represen-

tative set of non-dominated8 plans minimizing the expected value of V (p, w) with regard

to the given distribution of w over [0, 1].

IPF for Metric Temporal Planning: The user preference model in our target domain of

temporal planning is represented by a convex combination of the time and cost quality

measures, and the IPF measure now is called Integrated Convex Preference (ICP). Given

a set of plans P∗, let tp = time(p) and cp = cost(p) be the makespan and total execution

8A plan p1 is dominated by p2 if time(p1) ≥ time(p2) and cost(p1) ≥ cost(p2) and at least one of the

inequalities is strict.
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cost of plan p ∈ P∗, the ICP value of P∗ with regard to the objective function V (p, w) =

w × tp + (1− w)× cp and the parameter vector α = (w, 1− w) (w ∈ [0, 1]) is defined as:

ICP (P∗) =
k∑

i=1

∫ wi

wi−1

h(w)(w × tpi
+ (1− w)× cpi

)dw, (2.12)

where w0 = 0, wk = 1 and V (pi, w) ≤ V (p, w) for all p ∈ P∗ \ {pi} and every w ∈

[wi−1, wi]. In other words, we divide [0, 1] into k non-overlapping regions such that in each

region (wi−1, wi) there is an optimal solution pi ∈ P
∗ according to the value function.

We select the IPF/ICP measure to evaluate our solution set for the following reasons:

• From the perspective of decision theory, presenting a plan set P ⊆ S to the user,

among all possible subsets of S , can be considered as an “action” with possible

“outcomes” p ∈ P that can occur (i.e., being selected by the user) with probability

∫
α∈p−1

α
h(α) dα. Since the IPF (P) measures the expected utility of P , presenting a

set of plans with an optimal IPF value is a rational action consistent with the current

knowledge of the user preferences.

• If P1 dominates P2 in the set Pareto dominance sense, then IPF (P1) ≤ IPF (P2)

for any type of weight density function h(α) (Carlyle et al., 2003), and this property

also holds with any scaling of the objective values for ICP measure (Fowler et al.,

2005). Intuitively, this means that if we “merge” those two plan sets, all nondomi-

nated plans “extracted” from the resulting set are those in P1.

• The value of IPF (P) is monotonically nonincreasing over increasing sequences of

solution sets, and the set of plans optimal according to the utility function V (p, α),

i.e., the efficient frontier, has the minimal IPF value (Carlyle et al., 2003). Thus,

the measure can be used as an indicator for the quality of a plan set during the search

towards the efficient frontier.
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Figure 2.5: Solid dots represent plans in the Pareto set (p1, p2, p3, p5, p7). Connected dots

represent plans in the lower convex hull (p1, p3, p7) giving optimal ICP value for any distri-

bution on trade-off between cost and time.

Empirically, extensive results on scheduling problems in (Fowler et al., 2005) have

shown that ICP measure “evaluates the solution quality of approximation robustly (i.e.,

similar to visual comparison results) while other alternative measures can misjudge the

solution quality”.

Example: Figure 2.5 shows our running example in which there are a total of 7 plans with

their time(p) and cost(p) values as follows: p1 = {4, 25}, p2 = {6, 22}, p3 = {7, 15},

p4 = {8, 20}, p5 = {10, 12}, p6 = {11, 14}, and p7 = {12, 5}. Among these 7 plans, 5

of them belong to a Pareto optimal set of non-dominated plans: Pp = {p1, p2, p3, p5, p7}.

The other two plans are dominated by some plans in Pp: p4 is dominated by p3 and p6

is dominated by p5. Plans in Pp are depicted in solid dots, and the set of plans P∗ =

{p1, p3, p7} that are optimal for some specific value of w is highlighted by connected dots.

In particular, p7 is optimal when w ∈ [w0 = 0, w1 = 2
3
] where w1 = 2

3
can be derived from

the satisfaction of the constraints V (p7, w) ≤ V (p, w), p ∈ {p1, p3}. Similarly, p3 and p1

are respectively optimal for w ∈ [w1 = 2
3
, w2 = 10

13
] and w ∈ [w2 = 10

13
, w3 = 1]. Assuming

that h(w) is a uniform distribution, the value of ICP (P) can therefore be computed as
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follows:

ICP (P∗) =

∫ 2
3

0

h(w)V (p7, w)dw +

∫ 10
13

2
3

h(w)V (p3, w)dw +

∫ 1

10
13

h(w)V (p1, w)dw

=

∫ 2
3

0

[12w + 5(1− w)]dw +

∫ 10
13

2
3

[7w + 15(1− w)]dw +

+

∫ 1

10
13

[4w + 25(1− w)]dw

≈ 7.32.

In the next two Sections 2.5 and 2.6, we investigate the problem of generating high

quality plan sets for two cases mentioned: when no knowledge about the user preferences

is given, and when part of it is given as input to the planner.

2.5 Generating Diverse Plan Sets in the Absence of Preference Knowledge

In this section, we describe approaches to searching for a set of diverse plans with respect

to a measure defined with base level elements of plans as discussed in the previous section.

In particular, we consider the quality measure of plan set as the minimal pair-wise distance

between any two plans, and generate a set of plans containing k plans with the quality of

at least a predefined threshold d. As discussed earlier, by diversifying the set of plans on

the space of base level features, it is likely that plans in the set would cover a wide range

of space of unknown high level features, increasing the possibility that the user can select

a plan close to the one that she prefers. The problem is formally defined as follows:

dDISTANTkSET : FindP withP ⊆ S , | P | = k and ζ(P) = min
p,q∈P

δ(p, q) ≥ d,

where any distance measure between two plans formalized in Section 2.4.1 can be used to

implement δ(p, p′).

We now consider two representative state-of-the-art planning approaches in generating

diverse plan sets. The first one is GP-CSP (Do and Kambhampati, 2001) representing
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constraint-based planning approaches, and the second one is LPG (Gerevini et al., 2003)

that uses an efficient local-search based approach. We use GP-CSP to compare the relation

between different distance measures in diversifying plan sets. On the other hand, with LPG

we stick to the action-based distance measure, which is shown experimentally to be the

most difficult measure to enforce diversity (see below), and investigate the scalability of

heuristic approaches in generating diverse plans.

2.5.1 Finding Diverse Plan Set with GP-CSP

The GP-CSP planner converts the planning graph of Graphplan (Blum and Furst, 1997)

into a CSP encoding, and solves it using a standard CSP solver. A planning graph is a

data structure consisting of alternating levels of proposition set and action set. The set

of propositions present in the initial state is the proposition set at the zero-th level of the

graph. Given a k-level planning graph, all actions whose preconditions are present in the

proposition set of level k are introduced into the next level k + 1. In addition, one “noop”

action is also added for each proposition at level k, which are both the precondition and

effect of the action. The set of propositions at level k + 1 is then constructed by taking

the union of additive effects of all actions at the same level. This expansion process also

computes and propagates a set of “mutex” (i.e., mutually exclusive) constraints between

pairs of propositions and actions at each level. At the first level, the computation starts

by marking as mutex the actions that are statically interfering with each other (i.e., their

preconditions and effects are inconsistent). The mutex constraints are then propagated as

follows: (i) at level k, two propositions are mutually exclusive if any action at level k

achieving one of them is mutually exclusive with all actions at the same level supporting

the other one; (ii) two actions at level k + 1 are mutex if they are statically interfering or if

one of the precondition of the first action is mutually exclusive with one of the precondition

of the second action.
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Figure 2.6: An example of (a portion of) a planning graph. At each level, propositions

presenting in a previous one and noop actions are omitted, and at level k only the actions

used to support the goals are shown for simplification.

The planning graph construction stops at a level T at which one of the following con-

ditions is satisfied: (i) all goal propositions are present in the proposition set of level T

without any mutex constraints between them, or (ii) two consecutive levels of the graph

have the same sets of actions, propositions and mutex constraints. In the first case, the

Graphplan algorithm searches this graph backward (i.e., from level T ) for a valid plan, and

continuing the planning graph expansion before a new search if no solution exists. In the

second condition, the problem is provably unsolvable. Figure 2.6, which is taken from (Do

and Kambhampati, 2001), shows an example of two levels of a planning graph. The top-

level goals are G1, ..., G4 supported by actions A1, ..., A4 at the same level k. Each of these

actions has preconditions in the set {P1, ..., P6} appearing at level k − 1, which are in turn

supported by actions A5, ..., A11 at that level. The action pairs {A5, A9}, {A7, A11} and

{A6, A8} are mutually exclusive, however these mutex relations are not enough to make

any pair of propositions at level k − 1 mutually exclusive.

The GP-CSP planner replaces the search algorithm in Graphplan by first converting the

planning graph data structure into a constraint satisfaction problem, and then invoking a
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solver to find an assignment of the encoding, which represents a valid plan for the original

planning problem. In the encoding, the CSP variables correspond to the predicates that

have to be achieved at different levels in the planning graph (different planning steps) and

their possible values are the actions that can support the predicates. For each CSP variable

representing a predicate p, there are two special values: i) ⊥: indicates that a predicate is

not supported by any action and is false at a particular level/planning-step; ii) “noop”: indi-

cates that the predicate is true at a given level i because it was made true at some previous

level j < i and no other action deletes p between j and i. Constraints encode the relations

between predicates and actions: 1) mutual exclusion relations between predicates and ac-

tions; and 2) the causal relationships between actions and their preconditions. Figure 2.7

shows the CSP encoding corresponding the portion of the planning graph in Figure 2.6.

2.5.1.1 Adapting GP-CSP to Different Distance Metrics

When the above planning encoding is solved by any standard CSP solver, it will return

a solution containing 〈var, value〉 of the form {〈x1, y1〉, ...〈xn, yn〉}. The collection of xi

where yi 6= ⊥ represents the facts that are made true at different time steps (plan trajectory)

and can be used as a basis for the state-based distance measure;9 the set of (yi 6= ⊥)∧(yi 6=

noop) represents the set of actions in the plan and can be used for action-based distance

measure; lastly, the assignments 〈xi, yi〉 themselves represent the causal relations and can

be used for the causal-based distance measure.

However, there are some technical difficulties we need to overcome before a specific

distance measure between plans can be computed. First, the same action can be repre-

sented by different values in the domains of different variables. Consider a simple example

in which there are two facts p and q, both supported by two actions a1 and a2. When

setting up the CSP encoding, we assume that the CSP variables x1 and x2 are used to

9We implement the state-based distance between plans as defined in Equation 2.6.

34



represent p and q. The domains for x1 and x2 are {v11, v12} and {v21, v22}, both repre-

senting the two actions {a1, a2} (in that order). The assignments {〈x1, v11〉, 〈x2, v21〉} and

{〈x1, v12〉, 〈x2, v22〉} have a distance of 2 in traditional CSP because different values are

assigned for each variable x1 and x2. However, they both represent the same action set

{a1, a2} and thus lead to the plan distance of 0 if we use the action-based distance in our

plan comparison. Therefore, we first need to translate the set of values in all assignments

back to the set of action instances before doing comparison using action-based distance.

The second complication arises for the causal-based distance. A causal link a1 → p − a2

between two actions a1 and a2 indicates that a1 supports the precondition p of a2. However,

the CSP assignment 〈p, a1〉 only provides the first half of each causal-link. To complete the

causal-link, we need to look at the values of other CSP assignments to identify action a2

that occurs at the later level in the planning graph and has p as its precondition. Note that

there may be multiple “valid” sets of causal-links for a plan, and in the implementation we

simply select causal-links based on the CSP assignments.

2.5.1.2 Making GP-CSP Return a Set of Plans

To make GP-CSP return a set of plans satisfying the dDISTANTkSET constraint using one

of the three distance measures, we add “global” constraints to each original encoding to

enforce d-diversity between every pair of solutions. When each global constraint is called

upon by the normal forward checking and arc-consistency checking procedures inside the

default solver to check if the distance between two plans is over a predefined value d, we

first map each set of assignments to an actual set of actions (action-based), predicates that

are true at different plan-steps (state-based) or causal-links (causal-based) using the method

discussed in the previous section. This process is done by mapping all 〈var, value〉 CSP

assignments into action sets using a call to the planning graph, which is outside of the CSP

solver, but works closely with the general purpose CSP solver in GP-CSP. The comparison
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is then done within the implementation of the global constraint to decide if two solutions

are diverse enough.

We investigate two different ways to use the global constraints:

1. The parallel strategy to return the set of k plans all at once. In this approach, we

create one encoding that contains k identical copies of each original planning encod-

ing created using the GP-CSP planner. The k copies are connected together using

k(k − 1)/2 pair-wise global constraints. Each global constraint between the ith and

jth copies ensures that two plans represented by the solutions of those two copies will

be at least d distant from each other. If each copy has n variables, then this constraint

involves 2n variables.

2. The greedy strategy to return plans one after another. In this approach, the k copies

are not setup in parallel up-front, but sequentially. We add to the ith copy one global

constraint to enforce that the solution of the ith copy should be d-diverse from any

of the earlier i− 1 solutions. The advantage of the greedy approach is that each CSP

encoding is significantly smaller in terms of the number of variables (n vs. k × n),

smaller in terms of the number of global constraints (1 vs. k(k − 1)/2), and each

global constraint also contains lesser number of variables (n vs. 2×n).10 Thus, each

encoding in the greedy approach is easier to solve. However, because each solution

depends on all previously found solutions, the encoding can be unsolvable if the

previously found solutions comprise a bad initial solution set.

2.5.1.3 Empirical Evaluation

We implemented the parallel and greedy approaches discussed earlier for the three distance

measures and tested them with the benchmark set of Logistics problems provided with

10However, each constraint is more complicated because it encodes (i− 1) previously found solutions.
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the Blackbox planner (Kautz and Selman, 1998). All experiments were run on a Linux

Pentium 4, 3Ghz machine with 512MB RAM. For each problem, we test with different d

values ranging from 0.01 (1%) to 0.95 (95%)11 and k increases from 2 to n where n is the

maximum value for which GP-CSP can still find solutions within the plan horizon. The

horizon (parallel plan steps) limit is 30.

We found that the greedy approach outperformed the parallel approach and solved sig-

nificantly higher number of problems. Therefore, we focus on the greedy approach here-

after. For each combination of d, k, and a given distance measure, we record the solving

time and output the average/min/max pairwise distances of the solution sets.

Baseline Comparison: As a baseline comparison, we have also implemented a randomized

approach. In this approach, we do not use global constraints but use random value ordering

in the CSP solver to generate k different solutions without enforcing them to be pairwise

d-distance apart. For each distance d, we continue running the random algorithm until we

find kmax solutions where kmax is the maximum value of k that we can solve for the greedy

approach for that particular d value. In general, we want to compare with our approach of

using global constraint to see if the random approach can effectively generate diverse set

of solutions by looking at: (1) the average time to find a solution in the solution set; and (2)

the maximum/average pairwise distances between k ≥ 2 randomly generated solutions.

Table 2.2 shows the comparison of average solving time to find one solution in the

greedy and random approaches. The results show that on average, the random approach

takes significantly more time to find a single solution, regardless of the distance measure

used by the greedy approach. To assess the diversity in the solution sets, Table 2.3 shows

the comparison of: (1) the average pairwise minimum distance between the solutions in

sets returned by the random approach; and (2) the maximum d for which the greedy ap-

proach still can find a set of diverse plans. The comparisons are done for all three distance

11Increments of 0.01 from 0.01 to 0.1 and of 0.05 thereafter.
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log-easy rocket-a log-a log-b log-c log-d

δa 0.087 7.648 1.021 6.144 8.083 178.633

δs 0.077 9.354 1.845 6.312 8.667 232.475

δcl 0.190 6.542 1.063 6.314 8.437 209.287

Random 0.327 15.480 8.982 88.040 379.182 6105.510

Table 2.2: Average solving time (in seconds) to find a plan using greedy (first 3 rows) and

by random (last row) approaches

log-easy rocket-a log-a log-b log-c log-d

δa 0.041/0.35 0.067/0.65 0.067/0.25 0.131/0.1* 0.126/0.15 0.128/0.2

δs 0.035/0.4 0.05/0.8 0.096/0.5 0.147/0.4 0.140/0.5 0.101/0.5

δcl 0.158/0.8 0.136/0.95 0.256/0.55 0.459/0.15* 0.346/0.3* 0.349/0.45

Table 2.3: Comparison of the diversity in the plan sets returned by the random and greedy

approaches. Cases where random approach is better than greedy approach are marked with

*.

measures. For example, the first cell (0.041/0.35) in Table 2.3, implies that the minimum

pairwise distance averaged for all solvable k ≥ 2 using the random approach is d = 0.041

while it is 0.35 (i.e., 8x more diverse) for the greedy approach using the δa distance mea-

sure. Except for 3 cases, using global constraints to enforce minimum pairwise distance

between solutions helps GP-CSP return significantly more diverse set of solutions. On av-

erage, the greedy approach returns 4.25x, 7.31x, and 2.79x more diverse solutions than the

random approach for δa, δs and δcl, respectively.

Analysis of the different distance-bases: Overall, we were able to solve 1264 (d, k) com-

binations for three distance measures δa, δs, δcl using the greedy approach. We were partic-
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ularly interested in investigating the following issues:

• Q1: Computational efficiency - Is it easy or difficult to find a set of diverse so-

lutions using different distance measures? Thus, (1) for the same d and k values,

which distance measure is more difficult (time consuming) to solve; and (2) given an

encoding horizon limit, how high is the value of d and k for which we can still find a

set of solutions for a given problem using different distance measures.

• Q2: Solution diversity - What, if any, is the correlation/sensitivity between different

distance measures? Thus, how the comparative diversity of solutions is when using

different distance measures.

Regarding Q1, Table 2.4 shows the highest solvable k value for each distance d and

base δa, δs, and δcl. For a given (d, k) pair, enforcing δa appears to be the most difficult,

then δs, and δcl is the easiest. GP-CSP is able to solve 237, 462, and 565 combinations of

(d, k) respectively for δa, δs and δcl. GP-CSP solves dDISTANTkSET problems more easily

with δs and δcl than with δa due to the fact that solutions with different action sets (diverse

with regard to δa) will likely cause different trajectories and causal structures (diverse with

regard to δs and δcl). Between δs and δcl, δcl solves more problems for easier instances

(log-easy, rocket-a and log-a) but less for the harder instances, as shown in Table 2.4. We

conjecture that for solutions with more actions (i.e., in bigger problems) there are more

causal dependencies between actions and thus it is harder to reorder actions to create a

different causal-structure.

For running time comparisons, among 216 combinations of (d, k) that were solved by

all three distance measures, GP-CSP takes the least amount of time for δa in 84 combina-

tions, for δs in 70 combinations and in 62 for δcl. The first three lines of Table 2.2 show the

average time to find one solution in d-diverse k-set for each problem using δa, δs and δcl

(which we call ta, ts and tc respectively). In general, ta is the smallest and ts > tc in most
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d log-easy rocket-a log-a log-b log-c log-d

0.01 11,5, 28 8,18,12 9,8,18 3,4,5 4,6,8 8,7,7

0.03 6,3,24 8,13,9 7,7,12 2,4,3 4,6,6 4,7,6

0.05 5,3,18 6,11,9 5,7,10 2,4,3 4,6,5 3,7,5

0.07 2,3,14 6,10,8 4,7,6 2,4,2 4,6,5 3,7,5

0.09 2,3,14 6,9,6 3,6,6 2,4,2 3,6,4 3,7,4

0.1 2,3,10 6,9,6 3,6,6 2,4,2 2,6,4 3,7,4

0.2 2,3,5 5,9,6 2,6,6 1,3,1 1,5,2 2,5,3

0.3 2,2,3 4,7,5 1,4,4 1,2,1 1,3,2 1,3,3

0.4 1,2,3 3,6,5 1,3,3 1,2,1 1,2,1 1,2,3

0.5 1,1,3 2,4,5 1,2,2 - 1,2,1 1,2,1

0.6 1,1,2 2,3,4 - - - -

0.7 1,1,2 1,2,2 - - - -

0.8 1,1,2 1,2,2 - - - -

0.9 - 1,1,2 - - - -

Table 2.4: For each given d value, each cell shows the largest solvable k for each of the

three distance measures δa, δs, and δcl (in this order). The maximum values in cells are in

bold.

problems. Thus, while it is harder to enforce δa than δs and δcl (as indicated in Table 2.4),

when the encodings for all three distances can be solved for a given (d, k), then δa takes

less time to search for one plan in the diverse plan set; this can be due to tighter constraints

(more pruning power for the global constraints) and simpler global constraint setting.

To test Q2, in Table 2.5, we show the cross-comparison between different distance

measures δa, δs, and δcl. In this table, cell 〈row, column〉 = 〈δ′, δ′′〉 indicates that over

all combinations of (d, k) solved for distance δ′, the average value d′′/d′ where d′′ and

40



δa δs δcl

δa - 1.262 1.985

δs 0.485 - 0.883

δcl 0.461 0.938 -

Table 2.5: Cross-validation of distance measures δa, δs, and δcl.

d′ are distance measured according to δ′′ and δ′, respectively (d′ ≥ d). For example,

〈δs, δa〉 = 0.485 means that over 462 combinations of (d, k) solvable for δs, for each d,

the average distance between k solutions measured by δa is 0.485×ds. The results indicate

that when we enforce d for δa, we will likely find even more diverse solution sets according

to δs (1.26 × da) and δcl (1.98 × da). However, when we enforce d for either δs or δcl, we

are not likely to find a more diverse set of solutions measured by the other two distance

measures. Nevertheless, enforcing d using δcl will likely give comparable diverse degree

d for δs (0.94 × dc) and vice versa. We also observe that ds is highly dependent on the

difference between the parallel lengths of plans in the set. The distance ds seems to be

the smallest (i.e., ds < da < dc) when all k plans have the same/similar number of time

steps. This is consistent with the fact that δa and δcl do not depend on the steps in the plan

execution trajectory while δs does.

2.5.2 Finding Diverse Plan Set with LPG

In this section, we consider the problem of generating diverse sets of plans using another

planning approach, in particular the LPG planner which is able to scale up to bigger prob-

lems, compared to GP-CSP. We focus on the action-based distance measure between plans,

which has been shown in the previous section to be the most difficult to enforce diversity.

LPG is a local-search-based planner, that incrementally modifies a partial plan in a search

for a plan that contains no flaws (Gerevini et al., 2003). The behavior of LPG is con-
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trolled by an evaluation function that is used to select between different plan candidates in

a neighborhood generated for local search. At each search step, the elements in the search

neighborhood of the current partial plan π are the alternative possible plans repairing a se-

lected flaw in π. The elements of the neighborhood are evaluated according to an action

evaluation function E (Gerevini et al., 2003). This function is used to estimate the cost of

either adding or of removing an action node a in the partial plan p being generated.

2.5.2.1 Revised Evaluation Function for Diverse Plans

In order to manage dDISTANCEkSET problems, the function E has been extended to include

an additional evaluation term that has the purpose of penalizing the insertion and removal

of actions that decrease the distance of the current partial plan p under adaptation from a

reference plan p0. In general, E consists of four weighted terms, evaluating four aspects of

the quality of the current plan that are affected by the addition (E(a)i) or removal (E(a)r)

of a

E(a)i = αE · Execution cost(a)i + αT · Temporal cost(a)i+

+ αS · Search cost(a)i + αD · |(p0 − p) ∩ pi
R|,

E(a)r = αE · Execution cost(a)r + αT · Temporal cost(a)r+

+ αS · Search cost(a)r + αD · |(p0 − p− a) ∩ pr
R|.

The first three terms of the two forms of E are unchanged from the standard behavior of

LPG. The fourth term, used only for computing diverse plans, is the new term estimating

how the proposed plan modification will affect the distance from the reference plan p0.

Each cost term in E is computed using a relaxed temporal plan pR (Gerevini et al., 2003).
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The pR plans are computed by an algorithm, called RelaxedPlan, formally described

and illustrated in (Gerevini et al., 2003). We have slightly modified this algorithm to pe-

nalize the selection of actions decreasing the plan distance from the reference plan. The

specific change to RelaxedPlan for computing diverse plans is very similar to the change

described in (Fox et al., 2006a), and it concerns the heuristic function for selecting the ac-

tions for achieving the subgoals in the relaxed plans. In the modified function for Relaxed-

Plan, we have an extra 0/1 term that penalizes an action b for pR if its addition decreases

the distance of p+pR from p0 (in the plan repair context investigated in (Fox et al., 2006a),

b is penalized if its addition increases such a distance).

The last term of the modified evaluation function E is a measure of the decrease in plan

distance caused by adding or removing a: |(p0 − p) ∩ pi
R| or |(p0 − p − a) ∩ pr

R|, where

pi
R contains the new action a. The α-coefficients of the E-terms are used to weigh their

relative importance.12 The values of the first 3 terms are automatically derived from the

expression defining the plan metric for the problem (Gerevini et al., 2003). The coefficient

for the fourth new term of E (αD) is automatically set during search to a value proportional

to d/δa(p, p0), where p is the current partial plan under construction. The general idea is

to dynamically increase the value of αD according to the number of plans n that have been

generated so far: if n is much higher than k, the search process consists of finding many

solutions with not enough diversification, and hence the importance of the last E-term

should increase.

2.5.2.2 Making LPG Return a Set of Plans

In order to compute a set of k d-distant plans solving a dDISTANCEkSET problem, we run

LPG multiple times, until the problem is solved, with the following two additional changes

12These coefficients are also normalized to a value in [0, 1] using the method described in (Gerevini et al.,

2003).
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to the standard version of LPG: (i) the preprocessing phase computing mutex relations and

other reachability information exploited during the relaxed plan construction is done only

once for all runs; (ii) we maintain an incremental set of valid plans, and we dynamically

select one of them as the reference plan p0 for the next search. Concerning (ii), let P =

{p1, ..., pn} be the set of n valid plans that have been computed so far, and CPlans(pi)

the subset of P containing all plans that have a distance greater than or equal to d from a

reference plan pi ∈ P .

The reference plan p0 used in the modified heuristic function E is a plan pmax ∈ P

which has a maximal set of diverse plans in P , i.e.,

pmax = argmax
pi∈P

{|CPlans(pi)|} . (2.13)

The plan pmax is incrementally computed each time the local search finds a new so-

lution. In addition to being used to identify the reference plan in E, pmax is also used

for defining the initial state (partial plan) of the search process. Specifically, we initial-

ize the search using a (partial) plan obtained by randomly removing some actions from a

(randomly selected) plan in the set CPlans(pmax) ∪ {pmax}.

The process of generating diverse plans starting from a dynamically chosen reference

plan continues until at least k plans that are all d-distant from each other have been pro-

duced. The modified version of LPG to compute diverse plans is called LPG-d.

2.5.2.3 Experimental Analysis with LPG-d

Recall that the distance function δa, using set-difference, can be written as the sum of two

terms:

δa(pi, pj) =
|A(pi)− A(pj)|

|A(pi) ∪ A(pj)|
+
|A(pj)− A(pi)|

|A(pi) ∪ A(pj)|
. (2.14)
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The first term represents the contribution of the actions in pi to the plan difference,

while the second term indicates the contribution of pj to δa. We experimentally observed

that in some cases the differences between two diverse plans computed using δa are mostly

concentrated in only one of the δa components. This asymmetry means that one of the two

plans can have many more actions than the other one, which could imply that the quality

of one of the two plans is much worse than the quality of the other plan. In order to avoid

this problem, we can parametrize δa by imposing the two extra constraints

δA
a ≥ d/γ and δB

a ≥ d/γ,

where δA
a and δB

a are the first and second terms of the RHS of Equation 2.14, respectively,

and γ is an integer parameter “balancing” the diversity of pi and pj .

In this section, we analyze the performance of LPG-d in four different benchmark do-

mains: DriverLog, Satellite, Storage and FloorTile from the 3rd, 5th and 7th IPCs.13 The

main goals of the experimental evaluation were (i) showing that LPG-d can efficiently solve

a large set of (d, k)-combinations, (ii) investigating the impact of the δa γ-constraints on

performance, (iii) comparing LPG-d and the standard LPG.

We tested LPG-d using both the default and parametrized versions of δa, with γ = 2

and γ = 3. We give detailed results for γ = 3 and a more general evaluation for γ = 2

and the original δa. We consider d that varies from 0.05 to 0.95, using 0.05 increment

step, and with k = 2...5, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32 (overall, a total of 266 (d, k)-

combinations). Since LPG-d is a stochastic planner, we use the median of the CPU times

(in seconds) and the median of the average plan distances (over five runs). The average

plan distance for a set of k plans solving a specific (d, k)-combination (δav) is the average

of the plans distances between all pairs of plans in the set. The tests were performed on an

Intel(R) Xeon(TM) CPU 3.00 GHz, 3Gb RAM. The CPU-time limit was 300 seconds.

13We have similar results for other domains: Rovers (IPC3-5), Pathways (IPC5), Logistics (IPC2), Zeno-

Travel (IPC3).
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Figure 2.8 gives the results for the largest problem in the IPC-3 DriverLog-Time domain

(fully-automated track). LPG-d solves 161 (d, k)-combinations, including combinations

d ≤ 0.4 and k = 20, and d = 0.95 and k = 2. The average CPU time (top plots) is 151.85

seconds. The average δav (bottom plots) is 0.73, with δav always greater than 0.57. With the

original δa function LPG-d solves 168 (d, k)-combinations, the average CPU time is 149.5

seconds, and the average δav is 0.73; while with γ = 2 LPG-d solves 139 combinations,

the average CPU time is 144.2 seconds, and the average δav is 0.72.

Figure 2.9 shows the results for the largest problem in the IPC-3 Satellite-Strips domain.

LPG-d solves 242 (k, d)-combinations; 153 of them require less than 10 seconds. The

average CPU time is 5.46 seconds, and the average δav is 0.69. We observed similar results

when using the original δa function or the parametrized δa with γ = 2 (in the second case,

LPG-d solves 230 problems, while the average CPU time and the average δav are nearly

the same as with γ = 3).

Figure 2.10 shows the results for a middle-size problem in the IPC-5 Storage-Propositional

domain. With γ = 3 LPG-d solves 252 (k, d)-combinations, 58 of which require less than

10 seconds, while 178 of them require less than 50 seconds. The average CPU time is

25.4 seconds and the average δav is 0.91. With the original δa, LPG-d solves 257 (k, d)-

combinations, the average CPU time is 14.5 seconds, and the average δav is 0.9; with γ = 2,

LPG-d solves 201 combinations, the average CPU time is 31 seconds and the average δav

is 0.93.

Figure 2.11 gives the results for the largest problem in the IPC-7 FloorTile-MetricTime

domain. LPG-d solves 210 (d, k)-combinations; 171 of them require less than 10 seconds.

The average CPU time is 3.6 seconds, and the average δav is 0.7. We observed similar

results when using the original δa function or the parametrized δa with γ = 2 (in the

second case, LPG-d solves 191 problems, while the average CPU time and the average δav

are nearly the same as with γ = 3).
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The local search in LPG is randomized by a “noise” parameter that is automatically

set and updated during search (Gerevini et al., 2003). This randomization is one of the

techniques used for escaping local minima, but it also can be useful for computing diverse

plans: if we run the search multiple times, each search is likely to consider different por-

tions of the search space, which can lead to different solutions. It is then interesting to

compare LPG-d and a method in which we simply run the standard LPG until k d-diverse

plans are generated. An experimental comparison of the two approaches show that in many

cases LPG-d performs better. In particular, the new evaluation function E is especially

useful for planning problems that are easy to solve for the standard LPG, and that admit

many solutions. In these cases, the original E function produces many valid plans with not

enough diversification. This problem is significantly alleviated by the new term in E. An

example of domain where we observed this behavior is Logistics.14

2.6 Generating Plan Sets with Partial Preference Knowledge

In this section, we consider the problem of generating plan sets when the user preferences

are only partially expressed. In particular, we focus on metric temporal planning where the

preference model is assumed to be represented by an incomplete value function specified

by a convex combination of two features: plan makespan and execution cost, with the

exact trade-off value w drawn from a given distribution. The quality value of plan sets is

measured by the ICP value, as formalized in Equation 2.12. Our objective is to find a set

of plans P ⊆ S where |P| ≤ k and ICP (P) is the lowest.

Notice that we restrict the size of the solution set returned, not only for the compre-

14E.g., LPG-d solved 176 instances for the log a problem, 47 of them in less than 1 CPU second and 118

of them in less than 10 CPU seconds; the average CPU time was 3.75 seconds and the average δav was 0.47.

While using the standard LPG, only 107 instances were solved, 27 of them in less than 1 CPU seconds and

73 of them in less than 10 CPU seconds; the average CPU time was 5.14 seconds and the average δav was

0.33.
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hension issue discussed earlier, but also for an important property of the ICP measure: it

is a monotonically non-increasing function of the solution set (specifically, given two so-

lution sets P1 and P2 such that the latter is a superset of the former, it is easy to see that

ICP (P2) ≤ ICP (P1)).

2.6.1 Sampling Weight Values

Given that the distribution of trade-off value w is known, the straightforward way to find

a set of representative solutions is to first sample a set of k values for w: {w1, w2, ..., wk}

based on the distribution h(w). For each value wi, we can find an (optimal) plan pi mini-

mizing the value of the overall value function V (p, wi) = wi× tp +(1−wi)× cp. The final

set of solutions P = {p1, p2, ....pk} is then filtered to remove duplicates and dominated so-

lutions, thus selecting the plans making up the lower-convex hull. The final set can then be

returned to the user. While intuitive and easy to implement, this sampling-based approach

has several potential flaws that can limit the quality of its resulting plan set.

First, given that k solution plans are searched sequentially and independently of each

other, even if the plan pi found for each wi is optimal, the final solution setP = {p1, p2...pk}

may not even be the optimal set of k solutions with regard to the ICP measure. More specif-

ically, for a given set of solutions P , some trade-off value w, and two non-dominated plans

p, q such that V (p, w) < V (q, w), it is possible that ICP (P ∪ {p}) > ICP (P ∪ {q}).

In our running example (Figure 2.5), let P = {p2, p5} and w = 0.8 then V (p1, w) =

0.8× 4 + 0.2× 25 = 8.2 < V (p7, w) = 0.8× 12 + 0.2× 5 = 10.6. Thus, the planner will

select p1 to add to P because it looks locally better given the weight w = 0.8. However,

ICP ({p1, p2, p5}) ≈ 10.05 > ICP ({p2, p5, p7}) ≈ 7.71 so indeed by taking previous set

into consideration then p7 is a much better choice than p1.

Second, the values of the trade-off parameter w are sampled based on a given distri-

bution, and independently of the particular planning problem being solved. As there is no
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relation between the sampled w values and the solution space of a given planning prob-

lem, sampling approach may return very few distinct solutions even if we sample a large

number of weight values w. In our example, if all w samples have values w ≤ 0.67 then

the optimal solution returned for any of them will always be p7. However, we know that

P∗ = {p1, p3, p7} is the optimal set according to the ICP measure. Indeed, if w ≤ 0.769

then the sampling approach can only find the set {p7} or {p3, p7} and still not be able to

find the optimal set P∗.

2.6.2 ICP Sequential Approach

Given the potential drawbacks of the sampling approach outlined above, we also pursued

an alternative approach that takes into account the ICP measure more actively. Specifically,

we incrementally build the solution set P by finding a solution p such that P ∪ {p} has the

lowest ICP value. We can start with an empty solution set P = ∅, then at each step try to

find a new plan p such that P ∪ {p} has the lowest ICP value.

While this approach directly takes the ICP measure into consideration at each step of

finding a new plan and avoids the drawbacks of the sampling-based approach, it also has its

own share of potential flaws. Given that the set is built incrementally, the earlier steps where

the first “seed” solutions are found are very important. The closer the seed solutions are to

the global lower convex hull, the better the improvement in the ICP value. In our example

(Figure 2.5), if the first plan found is p2 then the subsequent plans found to best extend {p2}

can be p5 and thus the final set does not come close to the optimal set P∗ = {p1, p3, p7}.

2.6.3 Hybrid Approach

In this approach, we aim to combine the strengths of both the sampling and ICP-sequential

approaches. Specifically, we use sampling to find several plans optimizing for different

weights. The plans are then used to seed the subsequent ICP-sequential runs. By seeding
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Algorithm 1: Incrementally find solution set P

1 Input: A planning problem with a solution space S; maximum number of plans

required k; number of sampled trade-off values k0 (0 < k0 < k); time bound t;

2 Output: A plan set P (|P| ≤ k);

3 begin

4 W ← sample k0 values for w;

5 P ← find good quality plans in S for each w ∈ W ;

6 while |P| < k and search time < t do

7 Search for p s.t. ICP (P ∪ {p}) < ICP (P)

8 P ← P ∪ {p}

9 end

10 Return P

11 end

the hybrid approach with good quality plan set scattered across the pareto optimal set, we

hope to gradually expand the initial set to a final set with a much better overall ICP value.

Algorithm 1 shows the pseudo-code for the hybrid approach. We first independently sample

the set of k0 values (with k0 pre-determined) of w given the distribution on w (step 4). We

then run a heuristic planner multiple times to find an optimal (or good quality) solution for

each trade-off value w (step 5). We then collect the plans found and seed the subsequent

runs when we incrementally update the initial plan set with plans that lower the overall ICP

value (steps 6-8). The algorithm terminates and returns the latest plan set (step 9) if k plans

are found or the time bound exceeds.
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2.6.4 Making LPG Search Sensitive to ICP

We use a modified version of the Metric-LPG planner (Gerevini et al., 2008) in implement-

ing our algorithms, introducing the totalcost numerical fluent into the domain to represent

the plan cost that we are interested in.15 Not only is Metric-LPG equipped with a very

flexible local-search framework that has been extended to handle various objective func-

tions, but it can also be made to search for single or multiple solutions. Specifically, for

the sampling-based approach, we first sample the w values based on a given distribution.

For each w value, we set the metric function in the domain file to: w ×makespan + (1−

w) × totalcost, and run the original LPG in the quality mode to heuristically find the best

solution within the time limit for that metric function. The final solution set is filtered to

remove any duplicate solutions, and returned to the user.

For the ICP-sequential and hybrid approach, we can not use the original LPG imple-

mentation as is and need to modify the neighborhood evaluation function in LPG to take

into account the ICP measure and the current plan set P . For the rest of this section, we

will explain this procedure in detail.

Background: Metric-LPG uses local search to find plans within the space of numeri-

cal action graphs (NA-graph). This leveled graph consists of a sequence of interleaved

proposition and action layers. The proposition layers consist of a set of propositional and

numerical nodes, while each action layer consists of at most one action node, and a number

of no-op links. An NA-graph G represents a valid plan if all actions’ preconditions are

supported by some actions appearing in the earlier level in G. The search neighborhood

for each local-search step is defined by a set of graph modifications to fix some remaining

inconsistencies (unsupported preconditions) p at a particular level l. This can be done by

15Although we are interested in the plan cost as summation of action costs, our implementation can also

be extended for planning problems where plan cost is an expression involving numerical fluents.
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either inserting a new action a supporting p or removing from the graph the action a that p

is a precondition of (which can introduce new inconsistencies).

Each local move creates a new NA-graph G′, which is evaluated as a weighted com-

bination of two factors: SearchCost(G′) and ExecCost(G′). Here, SearchCost(G′) is

the amount of search effort to resolve inconsistencies newly introduced by inserting or re-

moving action a; it is measured by the number of actions in a relaxed plan R resolving all

such inconsistencies. The total cost ExecCost(G′), which is a default function to measure

plan quality, is measured by the total action execution costs of all actions in R. The two

weight adjustment values α and β are used to steer the search toward either finding a solu-

tion quickly (higher α value) or better solution quality (higher β value). Metric-LPG then

selects the local move leading to the smallest E(G′) value.

Adjusting the evaluation function E(G′) for finding set of plans with low ICP measure:

To guide Metric-LPG towards optimizing our ICP-sensitive objective function instead of

the original minimizing cost objective function, we need to replace the default plan quality

measure ExecCost(G′) with a new measure ICPEst(G′). Specifically, we adjust the

function for evaluating each new NA-graph generated by local moves at each step to be

a combination of SearchCost(G′) and ICPEst(G′). Given the set of found plans P =

{p1, p2, ..., pn}, ICPEst(G′) guides Metric-LPG’s search toward a plan p generated from

G′ such that the resulting setP∪{p} has a minimum ICP value: p = argmin
p

ICP (P∪{p}).

Thus, ICPEst(G′) estimates the expected total ICP value if the best plan p found by

expanding G′ is added to the current found plan set P . Like the original Metric-LPG, p

is estimated by pR = G′
⋃

R where R is the relaxed plan resolving inconsistencies in G′

caused by inserting or removing a. The ICPEst(G′) for a given NA-graph G′ is calculated

as: ICPEst(G′) = ICP (P ∪ pR) with the ICP measure as described in Equation 2.12.

Notice here that while P is the set of valid plans, pR is not. It is an invalid plan represented

by a NA-graph containing some unsupported preconditions. However, Equation 2.12 is
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still applicable as long as we can measure the time and cost dimensions of pR. To measure

the makespan of pR, we estimate the time points at which unsupported facts in G′ would

be supported in pR = G′ ∪ R and propagate them over actions in G′ to its last level. We

then take the earliest time point at which all facts at the last level appear to measure the

makespan of pR. For the cost measure, we just sum the individual costs of all actions

in pR. At each step of Metric-LPG’s local search framework, combining two measures

ICPEst(G′) and SearchCost(G′) gives us an evaluation function that fits right into the

original Metric-LPG framework and prefers a NA-graph G′ in the neighborhood of G that

gives the best trade-off between the estimated effort to repair and the estimated decrease in

quality of the next resulting plan set.

2.6.5 Experimental Results

We have implemented several approaches based on our algorithms discussed in the pre-

vious sections: Sampling (Section 2.6.1), ICP-sequential (Section 2.6.2) and Hybrid that

combines both (Section 2.6.3) with both the uniform and triangular distributions. We con-

sider two types of distributions in which the most probable weight for plan makespan are

0.2 and 0.8, which we will call “w02” and “w08” distributions respectively (Figure 2.12

shows these distributions). We test all implementations against a set of 20 problems in each

of several benchmark temporal planning domains used in the previous International Plan-

ning Competitions (IPC): ZenoTravel, DriverLog, and Depots. The only modification to

the original benchmark set is the added action costs. The descriptions of these domains can

be found at the IPC website (ipc.icaps-conference.org). The experiments were conducted

on an Intel Core2 Duo machine with 3.16GHz CPU and 4Gb RAM. For all approaches, we

search for a maximum of k = 10 plans within the 10-minute time limit for each problem

(i.e., t = 10 minutes), and the resulting plan set is used to compute the ICP value. In the

Sampling approach, we generate ten trade-off values w between makespan and plan cost
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based on the distribution, and for each one we search for a plan p subject to the value func-

tion V (p, w) = w× tp + (1−w)× cp. In the Hybrid approach, on the other hand, the first

Sampling approach is used with k0 = 3 generated trade-off values to find an initial plan set,

which is then improved by the ICP-Sequential runs. As Metric-LPG is a stochastic local

search planner, we run it three times for each problem and average the results. In 77% and

70% of 60 problems in the three tested domains for the Hybrid and Sampling approaches

respectively, the standard deviation of ICP values of plan sets are at most 5% of the average

values. This indicates that ICP values of plan set in different runs are quite stable. As the

Hybrid approach is an improved version of ICP-sequential and gives better results in almost

all tested problems, we omit the ICP-Sequential in discussions below. We now analyze the

results in more detailed.

The utility of using the partial knowledge of user’s preferences: To evaluate the utility

of taking partial knowledge of user preferences into account, we first compare our results

against the naive approaches that generate a plan set without explicitly taking into account

the partial knowledge. Specifically, we run the default LPG planner with different random

seeds to find multiple non-dominated plans. The LPG planner was run with both speed

setting, which finds plans quickly, and diverse setting, which takes longer time to find bet-

ter set of diverse plans. Figure 2.13 shows the comparison between quality of plan sets

returned by Sampling and those naive approaches when the distribution of the trade-off

value w between makespan and plan cost is assumed to be uniform. Overall, among 20

tested problems for each of the ZenoTravel, DriverLog, and Depots domains, the Sampling

approach is better than LPG-speed in 19/20, 20/20 and 20/20 and is better than LPG-d in

18/20, 18/20, and 20/20 problems respectively. We observed similar results comparing Hy-

brid and those two approaches: in particular, the Hybrid approach is better than LPG-speed

in all 60 problems and better than LPG-d in 19/20, 18/20, and 20/20 problems respectively.
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These results support our intuition that taking into account the partial knowledge about user

preferences (if it is available) increases the quality of plan set.

Comparing the Sampling and Hybrid approaches: We now compare the effectiveness

of the Sampling and Hybrid approaches in terms of the quality of returned plan sets with

the uniform, w02 and w08 distributions.

ICP value: We first compare the two approaches in terms of the ICP values of plan sets

returned indicating their quality evaluated by the user. Table 2.6, 2.7, and 2.8 show the

results in the three domains. In general, Hybrid tends to be better than Sampling in this

criterion for most of the domains and distributions. In particular, in the ZenoTravel domain

it returns higher quality plan sets in 15/20 problems when the distribution is uniform, 10/20

and 13/20 problems when it is w02 and w08 respectively (both approaches return plan sets

with equal ICP values for two problems with the w02 distribution and one problem with

the w08 distribution). In the DriverLog domain, Hybrid returns better plan sets for 11/20

problems with the uniform distribution (and for other three problems the plan sets have

equal ICP values), but worse with the triangular distributions: 8/20 (another 2 equals) and

9/20 (another one equals) with w02 and w08. The improvement on the quality of plan

sets that Hybrid contributes is more significant in the Depots domain: it is better than

Sampling in 11/20 problems with the uniform distribution (and equal in 3 problems), in

12/20 problems with the w02 and w08 distributions (with w02 both approaches return plan

sets with equal ICP values for 4 problems, and for 2 problems when it is w08).

In many large problems of the ZenoTravel and DriverLog domains where Sampling per-

forms better than Hybrid, we notice that the first phase of the Hybrid approach that searches

for the first 3 initial plans normally takes most of the allocated time, and therefore there is

not much time left for the second phase to improve the quality of plan set. We also observe

that among the three settings of the trade-off distributions, the positive effect of the second

phase in Hybrid approach (which is to improve the quality of the initial plan sets) tends to
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Prob Sampling Hybrid Prob Sampling Hybrid Prob Sampling Hybrid

1* 840.00 839.98 1 972.00 972.00 1 708.00 708.00

2* 2,661.43 2,661.25 2 3,067.20 3,067.20 2* 2,255.792 2,255.788

3* 1,807.84 1,805.95 3* 2,083.91 2,083.83 3* 1,535.54 1,535.32

4* 3,481.31 3,477.49 4* 4,052.75 4,026.92 4* 2,960.84 2,947.66

5* 3,007.97 2,743.85 5* 3,171.86 3,171.73 5* 2,782.16 2,326.94

6* 3,447.37 2,755.25 6* 4,288.00 3,188.61 6* 2,802.00 2,524.18

7* 4,006.38 3,793.44 7* 4,644.40 4,377.40 7* 3,546.95 3,235.63

8* 4,549.90 4,344.70 8* 5,060.81 5,044.43 8* 3,802.60 3,733.90

9* 6,397.32 5,875.13 9* 7,037.87 6,614.30 9* 5,469.24 5,040.88

10* 7,592.72 6,826.60 10* 9,064.40 7,472.37 10* 6,142.68 5,997.45

11* 5,307.04 5,050.07 11* 5,946.68 5,891.76 11* 4,578.09 4,408.36

12* 7,288.54 6,807.28 12* 7,954.74 7,586.28 12 5,483.19 5,756.89

13* 10,208.11 9,956.94 13* 11,847.13 11,414.88 13* 8,515.74 8,479.09

14 11,939.22 13,730.87 14 14,474.00 15,739.19 14* 11,610.38 11,369.46

15 9,334.68 13,541.28 15 16,125.70 16,147.28 15* 11,748.45 11,418.59

16* 16,724.21 13,949.26 16 19,386.00 19,841.67 16 14,503.79 15,121.77

17* 27,085.57 26,822.37 17 29,559.03 32,175.66 17 21,354.78 22,297.65

18 23,610.71 25,089.40 18 28,520.17 29,020.15 18 20,107.03 21,727.75

19 29,114.30 29,276.09 19 34,224.02 36,496.40 19 23,721.90 25,222.24

20 34,939.27 37,166.29 20 39,443.66 42,790.97 20 28,178.45 28,961.51

(a) (b) (c)

Table 2.6: The ICP value of plan sets in the ZenoTravel domain returned by the Sampling

and Hybrid approaches with the distributions (a) uniform, (b) w02 and (c) w08. The prob-

lems where Hybrid returns plan sets with better quality than Sampling are marked with

*.
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Prob Sampling Hybrid Prob Sampling Hybrid Prob Sampling Hybrid

1 212.00 212.00 1 235.99 236.00 1 188.00 188.00

2* 363.30 348.38 2* 450.07 398.46 2* 333.20 299.70

3 176.00 176.00 3 203.20 203.20 3 148.80 148.80

4* 282.00 278.45 4* 336.01 323.79 4* 238.20 233.20

5* 236.83 236.33 5 273.80 288.51 5* 200.80 199.52

6* 222.00 221.00 6 254.80 254.80 6* 187.47 187.20

7 176.50 176.50 7* 226.20 203.80 7 149.20 149.20

8* 338.96 319.43 8 387.53 397.75 8 300.54 323.87

9* 369.18 301.72 9* 420.64 339.05 9* 316.80 263.92

10* 178.38 170.55 10* 196.44 195.11 10* 158.18 146.12

11* 289.04 232.65 11* 334.13 253.09 11* 245.38 211.60

12 711.48 727.65 12* 824.17 809.93 12* 605.86 588.82

13* 469.50 460.99 13 519.92 521.05 13 388.80 397.67

14 457.04 512.11 14 524.56 565.94 14 409.02 410.53

15* 606.81 591.41 15* 699.49 643.72 15 552.79 574.95

16 4,432.21 4,490.17 16 4,902.34 6,328.07 16 3,580.32 4,297.47

17 1,310.83 1,427.70 17 1,632.86 1,659.46 17 1,062.03 1,146.68

18* 1,800.49 1,768.17 18 1,992.32 2,183.13 18 1,448.36 1,549.09

19 3,941.08 4,278.67 19 4,614.13 7,978.00 19* 3,865.54 2,712.08

20 2,225.66 2,397.61 20 2,664.00 2,792.90 20 1,892.28 1,934.11

(a) (b) (c)

Table 2.7: The ICP value of plan sets in the DriverLog domain returned by the Sampling

and Hybrid approaches with the distributions (a) uniform, (b) w02 and (c) w08. The prob-

lems where Hybrid returns plan sets with better quality than Sampling are marked with

*.
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Prob Sampling Hybrid Prob Sampling Hybrid Prob Sampling Hybrid

1 27.87 27.87 1 28.56 28.56 1* 28.50 27.85

2 39.22 39.22 2 41.12 41.12 2 38.26 38.26

3* 51.36 50.43 3* 54.44 52.82 3* 49.49 48.58

4 43.00 43.00 4 46.00 46.00 4* 40.87 40.00

5 80.36 81.01 5 82.93 84.45 5 75.96 78.99

6 99.40 111.11 6 102.58 110.98 6 94.79 98.40

7* 38.50 38.49 7* 40.53 40.40 7* 37.04 36.60

8* 59.08 58.41 8* 62.15 62.08 8* 55.89 54.67

9 95.29 103.85 9 100.59 106.00 9 87.93 95.05

10* 52.04 50.00 10 52.40 52.40 10* 47.86 47.60

11 101.43 107.66 11* 110.18 108.07 11 97.56 99.06

12 123.09 129.34 12* 144.67 135.80 12 124.58 128.01

13* 57.37 57.22 13* 60.83 60.72 13 54.66 54.66

14* 62.75 62.33 14* 70.32 69.87 14* 65.20 62.02

15 116.82 117.86 15 113.15 124.28 15 101.09 124.43

16* 50.77 49.36 16* 54.98 54.12 16* 47.04 46.35

17* 38.38 37.77 17* 42.86 41.50 17* 37.56 36.92

18* 88.28 85.55 18* 94.53 90.02 18* 76.73 75.29

19* 82.60 82.08 19* 94.21 89.28 19* 74.73 72.45

20* 137.13 133.47 20* 150.80 135.93 20* 122.43 120.31

(a) (b) (c)

Table 2.8: The ICP value of plan sets in the Depots domain returned by the Sampling and

Hybrid approaches with the distributions (a) uniform, (b) w02 and (c) w08. The problems

where Hybrid returns plan sets with better quality than Sampling are marked with *.
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be more stable across different domains with uniform distribution, but less with the trian-

gular, in particular Sampling wins Hybrid in the DriverLog domain when the distribution is

w02. Perhaps this is because with the triangular distributions, the chance that LPG planner

(that is used in our Sampling approach) returns the same plans even with different trade-off

values would increase, especially when the most probable value of makespan happens to

be in a (wide) range of weights in which one single plan is optimal. This result agrees with

the intuition that when the knowledge about user preferences is almost complete (i.e., the

distribution of trade-off value is “peak”), then the Sampling approach with smaller number

of generated weight values may be good enough (assuming that a good planner optimizing

a complete value function is available).

Since the quality of a plan set depends on how the two features makespan and plan

cost are optimized, and how the plans “span” the space of time and cost, we also com-

pare the Sampling and Hybrid approaches in terms of those two criteria. In particular, we

compare plan sets returned by the two approaches in terms of (i) their median values of

makespan and cost, which represent how “close” the plan sets are to the origin of the space

of makespan and cost, and (ii) their standard deviation of makespan and cost values, which

indicate how the sets span each feature axis.

Table 2.9 summarizes for each domain, distribution and feature the number of problems

in which each approach (either Sampling or Hybrid) generates plan sets with better median

of each feature value (makespan and plan cost) than the other. There are 60 problems

across 3 different distributions, so in total, 180 cases for each feature. Sampling and Hybrid

return plan sets with better makespan in 40 and 62 cases, and with better plan cost in 52

and 51 cases (respectively), which indicates that Hybrid is slightly better than Sampling on

optimizing makespan but is possibly worse on optimizing plan cost. In ZenoTravel domain,

for all distributions Hybrid likely returns better plan sets on the makespan than Sampling,

and Sampling is better on the plan cost feature. In the DriverLog domain, Sampling is
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Median of makespan Median of cost

Domain Distribution S > H H > S S > H H > S

ZenoTravel

uniform 3 17 16 4

w02 6 12 14 4

w08 6 13 13 6

DriverLog

uniform 6 11 7 11

w02 10 8 8 10

w08 10 7 9 9

Depots

uniform 9 8 9 7

w02 7 9 5 9

w08 11 7 7 11

Table 2.9: Number of problems for each domain, distribution and feature where Sampling

(Hybrid) returns plan sets with better (i.e., smaller) median of feature value than that of

Hybrid (Sampling), denoted in the table by S > H (H > S, respectively). We mark bold

the numbers of problems that indicate the outperformance of the corresponding approach.

better on the makespan feature with both non-uniform distributions, but worse than Hybrid

with the uniform. On the plan cost feature, Hybrid returns plan sets with better median than

Sampling on the uniform and w02 distributions, and both approaches perform equally well

with the w08 distribution. In the Depots domain, Sampling is better than Hybrid on both

features with the uniform distribution, and only better than Hybrid on the makespan with

the distribution w08.

In terms of spanning plan sets, Hybrid performs much better than Sampling on both

features across three domains, as shown in Table 2.10. In particular, over 360 cases for

both makespan and plan cost features, there are only 10 cases where Sampling produces

plan sets with better standard deviation than Hybrid on each feature. Hybrid, on the other

hand, generates plan sets with better standard deviation on makespan in 91 cases, and in 85
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SD of makespan SD of cost

Domain Distribution S > H H > S S > H H > S

ZenoTravel

uniform 8 12 6 14

w02 4 14 7 11

w08 6 13 8 11

DriverLog

uniform 5 11 6 10

w02 7 10 7 9

w08 8 9 10 7

Depots

uniform 10 7 7 9

w02 7 9 5 10

w08 5 13 7 11

Table 2.10: Number of problems for each domain, distribution and feature where Sampling

(Hybrid) returns plan sets with better (i.e., larger) standard deviation of feature value than

that of Hybrid (Sampling), denoted in the table by S > H (H > S, respectively). We

mark bold the numbers of problems that indicate the outperformance of the corresponding

approach.

cases on the plan cost.

These experimental results support our arguments in Section 2.6.1 about the limits of

sampling idea. Since one single plan could be optimal for a wide range of weight values,

the search in the Sampling approach with different trade-off values may focus on looking

for plans only at the same region of the feature space (specified by the particular value

of the weight), which can reduce the chance of having plans with better value on some

particular feature. On the opposite side, the Hybrid approach tends to be better in spanning

plan sets to a larger region of the space, as the set of plans that have been found is taken

into account during the search.

Contribution to the lower convex hull: The comparison above between Sampling and Hy-
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brid considers the two features separately. We now examine the relation between plan sets

returned by those approaches on the joint space of both features, in particular taking into

account the the dominance relation between plans in the two sets. In other words, we

compare the relative total number of plans in the lower convex-hull (LCH) found by each

approach. Given that this is the set that should be returned to the user (to select one from),

the higher number tends to give her a better expected utility value. To measure the relative

performance of both approaches with respect to this criterion, we first create a set S com-

bining the plans returned by them. We then compute the set Slch ⊆ S of plans in the lower

convex hull among all plans in S. Finally, we measure the percentages of plans in Slch

that are actually returned by each of our tested approaches. Figures 2.14, 2.15 and 2.16

show the contribution to the LCH of plan sets returned by Sampling and Hybrid in the

ZenoTravel, DriverLog and Depots domains.

In general, we observe that the plan set returned by Hybrid contributes more into the

LCH than that of Sampling for most of the problems (except for some large problems) with

most of the distributions and domains. Specifically, in the ZenoTravel domain, Hybrid con-

tributes more plans to the LCH than Sampling in 15/20, 13/20 (and another 2 equals), 13/20

(another 2 equals) problems for the uniform, w02 and w08 distributions respectively. In the

DriverLog domain, it is better than Sampling in 10/20 (another 6 equals), 10/20 (another 4

equals), 8/20 (another 5 equals) problems; and Hybrid is better in 11/20 (another 6 equals),

11/20 (another 4 equals) and 11/20 (another 4 equals) for the uniform, w02 and w08 dis-

tributions in the Depots domain. Again, similar to the ICP value, the Hybrid approach is

less effective on problems with large size (except with the w08 distribution in the Depots

domain) in which the searching time is mostly used for finding initial plan sets. We also

note that a plan set with higher contribution to the LCH is not guaranteed to have better

quality, except for the extreme case where one plan set contributes 100% and completely

dominates the other which contributes 0% to the LCH. For example, consider problem 14
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in the ZenoTravel domain: even though the plan sets returned by Hybrid contribute more

than those of Sampling in all three distributions, it is only the w08 where it has a better ICP

value. The reason for this is that the ICP value depends also on the range of the trade-off

value (and its density) for which a plan in the LCH is optimal, whereas the LCH is con-

structed by simply comparing plans in terms of their makespan and cost separately (i.e.,

using the dominance relation), ignoring their relative importance.

The sensitivity of plan sets to the distributions: All analysis having been done so far is

to compare the effectiveness of approaches with respect to a particular distribution of the

trade-off value. In this part, we examine how sensitive the plan sets are with respect to

different distributions.

Optimizing high-priority feature: We first consider how plan sets are optimized on each

feature (makespan and plan cost) by each approach with respect to two non-uniform distri-

butions w02 and w08. Those are the distributions representing scenarios where the users

have different priority on the features, and plan sets should be biased to optimizing the

feature that has higher priority (i.e., larger value of weight). In particular, plans generated

using the w08 distribution should have better (i.e., smaller) makespan values than those

found with the w02 distribution (since in the makespan has higher priority in w08 than it

is in w02); on the other hand, plan set returned with w02 should have better values of plan

cost than those with w08.

Table 2.11 summarizes for each domain, approach and feature, the number of problems

in which plan sets returned with one distribution (either w02 or w08) have better median

value than with the other. We observe that for both features, the Sampling approach is

very likely to “push” plan sets to regions of the space of makespan and cost with better

value of more interested feature. On the other hand, the Hybrid approach tends to be more

sensitive to the distributions on both the features in the ZenoTravel domain, and is more

sensitive only on the makespan feature in the DriverLog and Depots domains. Those results
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Median of makespan Median of cost

Approach Domain w02 > w08 w08 > w02 w02 > w08 w08 > w02

Sampling

ZenoTravel 5 13 11 8

DriverLog 6 10 13 5

Depots 6 12 10 7

Hybrid

ZenoTravel 5 10 10 4

DriverLog 4 10 6 9

Depots 8 10 4 11

Table 2.11: Number of problems for each approach, domain and feature where the plan sets

returned with the w02 (w08) distribution with better (i.e., smaller) median of feature value

than that with w08 (w02), denoted in the table by w02 > w08 (w08 > w02, respectively).

For each approach, we mark bold the numbers for domains in which there are more prob-

lems whose plan sets returned with w08 (w02) have better makespan (plan cost) median

than those with w02 (w08, respectively).

generally show that our approaches can bias the search towards optimizing features that are

more desired by the user.

Spanning plan sets on individual features: Next, we examine how plan sets span each

feature, depending on the degree of incompleteness of the distributions. Specifically, we

compare the standard deviation of plan sets returned using the uniform distribution with

those generated using the w02 and w08 distributions. Intuitively, we expect that the plan

sets returned with the uniform distribution will have higher standard deviation than those

with the distributions w02 and w08.

Table 2.12 shows for each approach, domain and feature, the number of problems gen-

erated with the uniform distribution that have better standard deviation on the feature than

those found with the distribution w02. We observe that with the makespan feature, both ap-
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SD of makespan SD of cost

Approach Domain U > w02 w02 > U U > w02 w02 > U

Sampling

ZenoTravel 9 10 10 7

DriverLog 6 8 7 8

Depots 9 6 8 7

Hybrid

ZenoTravel 9 10 12 7

DriverLog 6 9 8 7

Depots 8 6 9 4

Table 2.12: Number of problems for each approach, domain and feature where the plan sets

returned with the uniform (w02) distribution have better (i.e., higher) standard deviation of

the feature value than that with w02 (uniform), denoted in the table by U > w02 (w02 > U ,

respectively). For each approach and feature, we mark bold the numbers for domains in

which there are more problems whose plan sets returned with the uniform distribution have

better standard deviation value of the feature than those with the w02 distribution.

proaches return plan sets that are more “spanned” on makespan in the Depots domain, but

not with ZenoTravel and DriverLog. With the plan cost feature, Hybrid shows its positive

impact on all three domains, whereas Sampling shows it with the ZenoTravel and Depots

domains. Similarly, table 2.13 shows the results comparing the uniform and w08 distribu-

tions. This time, Sampling returns plan sets with better standard deviation on both features

in the ZenoTravel and Depots domains, but not in DriverLog. Hybrid also shows this in

the ZenoTravel domain, but for the remaining two domains, it tends to return plan sets with

expected standard deviation on the plan cost feature only. From all of these results, we

observe that with the uniform distribution, both approaches likely generate plan sets that

span better than with non-uniform distributions, especially on the plan cost feature.

In summary, the experimental results in this section support the following hypotheses:
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SD of makespan SD of cost

Approach Domain U > w08 w08 > U U > w08 w08 > U

Sampling

ZenoTravel 11 8 15 4

DriverLog 5 10 5 9

Depots 12 7 12 6

Hybrid

ZenoTravel 10 9 15 4

DriverLog 7 7 8 6

Depots 5 8 11 4

Table 2.13: Number of problems for each approach, domain and feature where the plan sets

returned with the uniform (w08) distribution with better (i.e., higher) standard deviation of

feature value than that with w08 (uniform), denoted in the table by U > w08 (w08 > U ,

respectively). For each approach and feature, we mark bold the numbers for domains in

which there are more problems whose plan sets returned with the uniform distribution have

better standard deviation value of the feature than those with the w08 distribution.

• Instead of ignoring the user preferences which are partially specified, one should take

them into account while synthesizing plans, as plan sets returned would have better

quality.

• In generating plan sets sequentially to cope with the partial user preferences, the Sam-

pling approach that searches for plans separately and independently of the solution

space tends to return worse quality plan sets than the Hybrid approach.

• The resulting plan sets returned by the Hybrid approach tend to be more sensitive to

the user preferences than those found by the Sampling approach.
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2.7 Discussion

To the best of our knowledge, this work is a first step in domain-independent planning with

preferences when the user preferences are not completely specified, in the same spirit of

model-lite planning (Kambhampati, 2007). Our “language” to represent the partial pref-

erence model assumes a complete set of attributes of interest and a parameterized value

function with unknown parameter values. Although in our work the unknown values are

restricted in a continuous range, they can also be represented by a set of possible discrete

values. These two representations of parameters’ incompleteness are also the ways impre-

cise parameters are modeled in bounded-parameter MDPs (Givan et al., 2000) and MDPs

with imprecise reward functions (Regan and Boutilier, 2009, 2010; Xu and Mannor, 2009).

Boutilier et al. (2010) consider the preference elicitation problem with a more general

framework where both the set of attributes and the utility function are incomplete.

Our current representation and plan synthesis approach do have some limitations:

• The representation of the underlying complete preference model in our setting, i.e.,

the convex combination of metric quantities, is a subset of the preference language

defined by PDDL3 (Gerevini et al. (2009)), which has been commonly used to rep-

resent preferences in planning domains. In PDDL3, preferences are constraints on

the state trajectory of plans with “penalty” values (or weights) of being violated, and

a plan is more preferable if it has lower total penalty value. While one can model

partially specified “penalty” for preferences in PDDL3 with a distribution over con-

tinuous range or set of discrete values, it is unclear how to represent incompleteness

for other constructs of the language. Similarly, it is an interesting question on how

incompleteness can be extended for conditional preferences (Boutilier et al., 2004).

• Using a convex combination of attributes as a utility function in our setting assumes

that the criteria of interest are mutual preferential independence: although each at-
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tribute is important, it does not affect how the user trades off one other objectives to

the other. This property may be violated, for instance when we want to extend this

setting to include preference statements in PDDL3 as attributes of interest. In a travel

domain, for example, a passenger might be more willing to accept a more expensive

ticket for a non-stop flight if she has to fly at night (i.e., the weight on the importance

of “cost” is smaller).

• Our current implementation ignores the fact that changing the scale on objectives

(e.g. from “hours” to “minutes” in the makespan of plans) may change the bias of

the distribution of the Pareto set of plans on the objective axis. In other words, the

set may look more uniform on the objective space using one scale than it is with a

different scale (Branke, 2008). Although the ICP value agrees with the set Pareto

dominance relation regardless of the scaling mechanism used (Fowler et al., 2005),

this effect can introduce a wrong evaluation about the distribution of the entire Pareto

set of plans in the objective space to a user observing the representative set of plans

(which may be biased towards some region of an axis due to the scaling mechanism

used).

• Given that IPF is a nonlinear function, it is a challenge to modify the Metric-LPG

planner to efficiently search for a set of plans optimizing such a quality measure. We

believe that the current modification of Metric-LPG used for our experiments can be

improved by designing new specific heuristics that are more effective for optimizing

the measure. In addition, as observed by Kim et al. (2006), the computation time for

IPF measure increases roughly exponentially with the number of objectives, and thus

it is also challenging as to how to effectively incorporate the measure into the search

for planning problems with a high number of criteria.
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2.8 Summary

In the first part of the dissertation, we consider planning problems with incomplete user

preferences in two scenarios where the knowledge about preference is completely unknown

or only part of it is given. We propose a general approach to this problem where a set of

plans is presented to the user from which she can select. For each situation of the incom-

pleteness, we define a different quality measure for plan sets and investigate approaches to

generating plan sets with respect to the quality measure. In the first scenario when the user

is known to have preferences over plans, but the details are completely unknown, we define

the quality of plan sets as their diversity value, specified with syntactic features of plans (its

action set, sequence of states, and set of causal links). We then consider generating diverse

set of plans using two state-of-the-art planners, GP-CSP and LPG. The approaches we de-

veloped for supporting the generation of diverse plans in GP-CSP are broadly applicable to

other planners based on bounded horizon compilation approaches for planning. Similarly,

the techniques we developed for LPG, such as biasing the relaxed plan heuristics in terms

of distance measures, could be applied to other heuristic planners. The experimental results

with GP-CSP explicate the relative difficulty of enforcing the various distance measures, as

well as the correlation among the individual distance measures (as assessed in terms of the

sets of plans they find). The experiments with LPG demonstrate the potential of planning

using heuristic local search in producing large sets of highly diverse plans.

When part of the user preferences is given, in particular the set of features that the user

is interested in and the distribution of weights representing their relative importance, we

propose the usage of Integrated Preference Function, and its special case Integrated Convex

Preference function, to measure the quality of plan sets, and propose various heuristic

approaches based on the Metric-LPG planner (Gerevini et al., 2008) to find a good plan

set with respect to this measure. We show empirically that taking partial knowledge of
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user preferences into account does improve the quality of plan set returned to the users,

and that our proposed approaches are sensitive to the degree of preference incompleteness,

represented by the distribution.
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Variables: G1, ..., G4, P1, ..., P6

Domains:

G1 : {A1,⊥}, G2 : {A2,⊥}, G3 : {A3,⊥}, G4 : {A4,⊥}

P1 : {A5,⊥}, P2 : {A6, A11,⊥}, P3 : {A7,⊥}

P4 : {A8, A9,⊥}, P5 : {A10,⊥}, P6 : {A10,⊥}

Constraints (Mutex):

P1 = A5 =⇒ P4 6= A9

P2 = A6 =⇒ P4 6= A8

P2 = A11 =⇒ P3 6= A7

Constraints (Activity):

G1 = A1 =⇒ P1 6= ⊥ ∧ P2 6= ⊥ ∧ P3 6= ⊥

G2 = A2 =⇒ P4 6= ⊥

G3 = A3 =⇒ P5 6= ⊥

G4 = A4 =⇒ P1 6= ⊥ ∧ P6 6= ⊥

Initial state: G1 6= ⊥ ∧G2 6= ⊥ ∧G3 6= ⊥ ∧G4 6= ⊥

Figure 2.7: The CSP encoding for the example planning graph.
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Figure 2.8: Performance of LPG-d (CPU-time and plan distance) for the problem pfile20

in the DriverLog-Time domain.
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Figure 2.9: Performance of LPG-d (CPU-time and plan distance) for the problem pfile20

in the Satellite-Strips domain.
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Figure 2.10: Performance of LPG-d (CPU-time and plan distance) for the problem pfile15

in the Storage-Propositional domain.
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Figure 2.11: Performance of LPG-d (CPU-time and plan distance) for the problem pfile20

in the FloorTile-MetricTime domain.
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Figure 2.12: The distributions: (a) uniform, (b) w02, (c) w08 (see text).

Figure 2.13: Results for the ZenoTravel, DriverLog and Depots domains comparing the

Sampling and baseline LPG approaches on the overall ICP value (log scale) with the uni-

form distribution.

Figure 2.14: The contribution into the common lower convex hull of plan sets in the Zeno-

Travel domain with different distributions.
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Figure 2.15: The contribution into the common lower convex hull of plan sets in the Driver-

Log domain with different distributions.

Figure 2.16: The contribution into the common lower convex hull of plan sets in the Depots

domain with different distributions.
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Chapter 3

PLANNING WITH INCOMPLETE DOMAIN MODELS

3.1 Introduction

The second part of the dissertation addresses the planning problems with partially specified

domain models. The incompleteness arises because domain writers do not have the full

knowledge of the domain physics, or when the planner is embedded into an integrated ar-

chitecture where the domain model is being learned incrementally. One tempting idea is to

wait until the models become complete, either by manual revision or by machine learning.

The users however often don’t have the luxury of delaying their decision making. For ex-

ample, although there exist efforts (Amir and Chang, 2008; Yang et al., 2007) that attempt

to either learn models from scratch or revise existing ones, their operation is contingent

on the availability of successful plan traces, or access to execution experience. There is

thus a critical need for planning technology that can get by with partially specified domain

models, and yet generate plans that are “robust” in the sense that they are likely to execute

successfully in the real world.

Although the domain modelers cannot provide complete models, often they are able to

provide “annotations” on the partial model circumscribing the places where it is incom-

plete. In automated planning, Garland & Lesh (2002) was the first, to the best of our

knowledge, to allow annotations on the specification of incomplete actions; these anno-

tations specify parts of the domains not affecting or being affected by the corresponding

actions. The notion of plan quality in their work is defined in terms of four different types of

“risks”, which however has tenuous heuristic connections with the likelihood of successful

execution of plans.
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In this research, annotations on the incompleteness of the domains specify possible pre-

conditions and effects of actions. These annotations facilitate, though only conceptually,

the enumeration of all “candidate” complete models, and thus the counting of models under

which a plan succeeds. The corresponding robustness measure for plans, therefore, cap-

tures exactly the probability of success for plans given such an incompleteness language.

Given an incompletely specified domain model, an action of a plan might fail to apply

during the execution of the plan. Depending on the planning scenario, a user might want

to terminate the current plan (and triggering replanning process) or continue its execution

after an action failure. This work considers two different semantics for plan execution. In

the Generous Execution semantics, the failure to execute of an action does not automat-

ically cause plan failure. Thus additional actions could be inserted into an existing plan

for robustifying against potential action failures. The STRIPS Execution semantics, on the

other hand, follows STRIPS-style planning (Fikes and Nilsson, 1972) preventing a plan

from continuing its execution when one of its actions fails to apply. The problem of assess-

ing robustness of a given plan under the two execution semantics is studied using model

counting techniques, and its complexity is also established.

Two approaches are proposed for synthesizing robust plans. The first one translates

this problem into a conformant probabilistic planning problem (Domshlak and Hoffmann,

2007). While perhaps the most intuitive approach, this compilation method appears to

work only for small planning instances given the state-of-the-art conformant probabilistic

planner, Probabilistic-FF (Domshlak and Hoffmann, 2007). We present the details of the

compilation under the Generous Execution semantics and briefly discuss the approach for

the STRIPS Execution semantics.

The second approach is a heuristic search method that works well in much larger prob-

lem instances. It aims to use the robustness measure directly for estimating heuristic dis-

tance, which is then used to guide the search. In the current work, we fully investigate the
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heuristic approach under the STRIPS Execution semantics. The novel idea is to overcome

the complexity of computing the exact robustness measure by exploiting the structures of

the correctness constraints for plans. This results in the lower and upper bounds for the

robustness measure that can be incorporated in the extraction of robust relaxed plans and

guiding the search for robust plans. The experiments show that the resulting planner, PISA

(Planning with Incomplete STRIPS Actions), outperforms DeFault, a planner that can han-

dle incomplete STRIPS models (Weber and Bryce, 2011), in most of the tested domain

both in terms of plan robustness and in planning time.

This chapter discusses the related work in Section 3.2. Section 3.3 formulates the plan-

ning problems with incomplete domain models. Section 3.4 formalized the robustness

measure for plans under incomplete domain models. Section 3.5 presents a spectrum of

problems given an incomplete domain model. Section 3.6 shows a method to assess the

plan robustness measure for the two execution semantics using weighted model counting,

and then establishes the complexity of the plan robustness assessment problem. Section 3.7

presents a compilation approach to synthesizing robust plans under the Generous Exeuc-

tion semantics. Section 3.8 presents a heuristic approach to synthesizing robust plans given

incomplete STRIPS domain models, which includes a method to approximate plan robust-

ness and a procedure for extracting robust relaxed plans. This work is summarized in

Section 3.9.

3.2 Related Work

As mentioned earlier, Garland & Lesh (2002) share the same objective with us on gener-

ating robust plans under incomplete domain models. However, their notion of robustness,

which is defined in terms of four different types of risks, only has tenuous heuristic con-

nections with the likelihood of successful execution of plans. Robertson & Bryce (2009)

focuses on the plan generation in Garland & Lesh model, but their approach still relies on
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the same unsatisfactory formulation of robustness. Weber and Bryce (2011) use the same

formulation with (Nguyen et al., 2010) and propose a heuristic approach to search for plans

minimizing their risks, which is essentially one minus plan robustness. Their planner, De-

Fault, employs a systematic search guided by an FF-like heuristic, breaking ties on a so

called “prime implicant” heuristic. It however does not directly estimate the risk or robust-

ness measures that are supposed to be optimized, but rather uses them indirectly to break

ties over the standard FF heuristic. Using this tie breaking heuristic as the main guidance

for the search, as observed by Weber and Bryce, does not result in an informative heuristic

for generating low risk plans. Zhuo et al. (2013a; 2013b) consider planning and learning

problems with action models known to be incomplete but without any annotations on the

incompleteness; they assume instead a set of successful plan cases.

The work by Fox et al (2006b) also explores robustness of plans, but their focus is

on temporal plans under unforeseen execution-time variations rather than on incompletely

specified domains. Although there has been some work on reducing the “faults” in plan ex-

ecution, e.g., the work on k-fault plans for non-deterministic planning (Jensen et al., 2004),

it is based in the context of stochastic/non-deterministic actions rather than incompletely

specified ones. The semantics of the possible preconditions/effects in the incomplete do-

main models of this work differs fundamentally from non-deterministic and stochastic ef-

fects. Executing different instances of the same pick-up action in the Gripper example

above would either all fail or all succeed, since there is no uncertainty but the informa-

tion is unknown at the time the model is built. In contrast, if the pick-up action’s effects

are stochastic, then trying the same picking action multiple times increases the chances of

success.

In the context of decision-theoretic planning, a domain model is defined with a tran-

sition function mapping each pair of current state and action to a probability distribution

of successor states. Much work has also been done for “uncertainty incompleteness”, in
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particular with imprecise parameters representing incomplete transition probabilities. In

(Satia and Lave Jr, 1973), incomplete transition probabilities are modeled for each vector

of probabilities representing a transition function from each pair of current state and action

to a next state. They can be modeled either by a set (described with lower and upper bounds

on component probabilities of the vector), or a prior distribution of probability values. For

each of which, different optimal criteria were considered for quality of policies. Similar

set-based representation and more efficient algorithm for computing max-min policy can

also be found in (White III and Eldeib, 1994). With similar incompleteness representation,

Givan et al. (Givan et al., 2000) considered bounded parameter Markov Desion Process

(MDP) and propose a new value function representing values of states using closed real

value intervals. The authors also devise algorithms for evaluating policies and computing

optimal policies in this setting. Delgado et al. (2011) introduce factored MDPs with sim-

ilar incompleteness representation and propose efficient dynamic programming exploiting

their structures.

This work can also be categorized as one particular instance of the general model-lite

planning problem, as defined in (Kambhampati, 2007), in which the author points out a

large class of applications where handling incomplete models is unavoidable due to the

difficulty in getting a complete model.

3.3 Problem Formulation

We define an incomplete action model D̃ as D̃ = 〈R,O〉, where R is a set of predicates

with typed variables, O is a set of operators, each might be incompletely specified. In

particular, in addition to the sets of known precoditions Pre(o) ⊆ R, add effects Add(o) ⊆

R and delete effects Del(o) ⊆ R, each operator o ∈ O also contains:

• possible precondition set P̃ re(o) ⊆ R that operator o might need as its preconditions;
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• possible add (delete) effect set Ãdd(o) ⊆ R (D̃el(o) ⊆ R) that o might add (delete,

respectively) during execution.

In addition, each possible precondition, add and delete effect r ∈ R of an operator o is

(optionally) associated with a weight wpre
o (r), wadd

o (r) and wdel
o (r) (0 < wpre

o (r), wadd
o (r),

wdel
o (r) < 1) representing the domain modeler’s assessment of the likelihood that r will

actually be realized as a precondition, add and delete effect of o, respectively.1 We assume

that the “annotations” on possible preconditions and effects are uncorrelated, thus can be

realized independently (both within each operator and across different ones).2

Given an incomplete domain D̃, we define its completion set 〈〈D̃〉〉 as the set of com-

plete domain models whose operators have all the known and “realized” preconditions

and effects. Since any subset of P̃ re(o), Ãdd(o) and D̃el(o) can be realized as precon-

ditions and effects of o, there are 2K possible complete domain models in 〈〈D̃〉〉, where

K =
∑

o∈O(|P̃ re(o)| + |Ãdd(o)| + |D̃el(o)|). There is exactly one (unknown) complete

model, denoted by D∗, that is the ground truth. For each complete model D, we denote the

complete sets of preconditions and effects for each operator o as PreD(o), AddD(o) and

DelD(o).

A planning problem P̃ with respect to an incomplete domain D̃ and a set of typed

objects O is defined as P̃ = 〈F,A, I,G〉 where F is the set of propositions instantiated

from predicatesR and objects O, A is the set of actions instantiated from O and O, I ⊆ F

is the initial state, and G ⊆ F is the set of goal propositions. In a specific complete model

D, actions instantiated from one operator have the same realized preconditions and effects.

The complete sets of preconditions and effects for action a ∈ A in complete model D are

1Possible preconditions and effects whose likelihood of realization is not given are assumed to have

weights of 1

2
.

2While we cannot completely rule out a domain modeler capable of making annotations about correlated

sources of incompleteness, we assume that this is less likely.
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denoted by PreD(a), AddD(a) and DelD(a).

A state is defined as either a set of propositions s ⊆ F that are true (T), and all the

remaining are false (F), or a special state s⊥ = {⊥} where ⊥ 6∈ F is a proposition used

exclusively to define this “dead end” state. Since s⊥ 6⊆ F , PreD(a) 6⊆ s⊥, (∀a ∈ A,D ∈

〈〈D̃〉〉), and s⊥ 6|= G.

The resulting state after executing a sequence of actions π in a state s under a complete

model D ∈ 〈〈D̃〉〉 is denoted by γD(π, s). The projection of π in s with respect to the

incomplete model D̃, γ(π, s), is defined as the union of all projection of π from s with

respect to each and every complete models in 〈〈D̃〉〉:

γ(π, s) =
⋃

D∈〈〈D̃〉〉

γD(π, s). (3.1)

The transition function γD(π, s) with respect to a complete model D ∈ 〈〈D̃〉〉 is defined

recursively as follows:

γD(π, s) =





s if π = 〈〉;

γD(〈a〉, γD(π′, s)) if π = π′ ◦ 〈a〉.
(3.2)

In order to complete the definition of γ(s, π), it is necessary to define γD(〈a〉, s), the re-

sulting state after applying action a in state s with respect to a complete model D. Given

that the domain model D̃ used during planning is incomplete, it is quite expected that some

action of a synthesized plan might fail to be applied during execution. We consider two

execution semantics with different ways in defining resulting states after executing an “in-

applicable” action. In the first one, called Generous execution (GE) semantics, executing

an action with unsatisfied preconditions does not change the world state. The transition

function following this semantics is denoted with γGE, and the resulting state γD
GE

(〈a〉, s) is

defined as follows:

γD
GE

(〈a〉, s) =





(s \DelD(a)) ∪ AddD(a) if PreD(a) ⊆ s;

s otherwise.
(3.3)
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The STRIPS execution (SE) semantics follows the definition in STRIPS-style plan-

ning (Fikes and Nilsson, 1972), making the resulting state “undefined” if action a is not

executable in state s—the plan is considered failed with respect to the complete model D.

The transition function γD
SE

for a single action sequence with respect to a complete model

D is defined for action a ∈ A and state s ∈ 2F ∪ {s⊥} as follows:

γD
SE

(〈a〉, s) =





(s \DelD(a)) ∪ AddD(a) if PreD(a) ⊆ s;

s⊥ otherwise.
(3.4)

The definition of γ(π, s) in Eq. 3.1 is now complete with the definitions of γD(〈a〉, s) for

the two semantics, γD
GE

(〈a〉, s) and γD
SE

(〈a〉, s). In the following, we use γ(π, s), γD(π, s)

in the discussion that applies for both semantics, and the notation with subscripts γGE(π, s),

γD
GE

(π, s), γSE(π, s), γD
SE

(π, s) when the discussion limits to a particular execution seman-

tics.

Given the transition function γ(π, s), a sequence of actions π is a valid plan for P̃ if,

after executing in the state I , it achieves the goals G with respect to at least one complete

model: ∃D∈〈〈D̃〉〉γ
D(π, I) |= G. Given that 〈〈D̃〉〉 can be exponentially large in terms of

possible preconditions and effects, validity is too weak to guarantee on the quality of plans.

The quality of a plan, therefore, will be measured with its robustness value, which will be

presented in the next section.

Example: Figure 3.1 shows the description of incomplete action pick-up(?b - ball,?r -

room) as described above. In addition to the possible precondition (light ?b) on the weight

of the ball ?b, we also assume that since the modeler is unsure if the gripper has been

cleaned or not, she models it with a possible add effect (dirty ?b) indicating that the action

might make the ball dirty. Those two possible preconditions and effects can be realized

independently, resulting in four possible candidate complete domains (assuming all other

action schemas in the domain are completely described).
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Figure 3.1: Decription of the incomplete operator pick-up(?b - ball,?r - room) in the Grip-

per domain.

3.4 A Robustness Measure for Plans

The robustness of a plan π for the problem P̃ is defined as the cumulative probability mass

of the completions of D̃ under which π succeeds (in achieving the goals). More formally,

let Pr(D) be the modeler’s estimate of the probability that a given model D in 〈〈D̃〉〉 is

the real model of the world (0 < Pr(D) < 1,∀D ∈ 〈〈D̃〉〉;
∑

D∈〈〈D̃〉〉 Pr(D) = 1). The

robustness of π is defined as follows:

R(π)
def
≡

∑

D∈〈〈D̃〉〉,γD(π,I)|=G

Pr(D) (3.5)

Note that given the uncorrelated incompleteness assumption, the probability Pr(D) for

a model D ∈ 〈〈D̃〉〉 can be computed as the product of the weights wpre
o (r), wadd

o (r), and

wdel
o (r) for all o ∈ O and its possible preconditions/effects r if r is realized as a precon-

dition, add and delete effect of the operator in D (or the product of their “complement”

1− wpre
o (r), 1− wadd

o (r), and 1− wdel
o (r) if r is not realized).

It is easy to see that if R(π) > 0, then π is a valid plan for P̃ . The definition of plan

robustness introduced here applies for both two execution semantics. The robustness of a

given plan under the SE semantics is no greater than it is under the GE semantics—any

plan that succeeds under SE semantics does so under the GE semantics.

Example: Figure 3.2 shows an example with an incomplete domain model D̃ = 〈F,A〉
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Figure 3.2: Example for a set of complete candidate domain models, and the corresponding

plan status under two semantics. Circles with solid and dash boundary respectively are

propositions that are known to be T and might be F when the plan executes (see more in

text).

with F = {p1, p2, p3} and A = {a1, a2} and a solution plan π = 〈a1, a2〉 for the problem

P̃ = 〈F,A, I = {p2}, G = {p3}〉. The incomplete model is: Pre(a1) = ∅, P̃ re(a1) =

{p1}, Add(a1) = {p2, p3}, Ãdd(a1) = ∅, Del(a1) = ∅, D̃el(a1) = ∅; Pre(a2) = {p2},

P̃ re(a2) = ∅, Add(a2) = ∅, Ãdd(a2) = {p3}, Del(a2) = ∅, D̃el(a2) = {p1}. Given that

the total number of possible preconditions and effects is 3, the total number of completions

(|〈〈D̃〉〉|) is 23 = 8, for each of which the plan π may succeed or fail to achieve G, as

shown in the table. In the fifth candidate model, for instance, p1 and p3 are realized as

precondition and add effect of a1 and a2, whereas p1 is not a delete effect of action a2.

Even though a1 could not execute (and thus p3 remains false in the second state), the goal

eventually is achieved according to the GE semantics by action a2 with respects to this

candidate model. Overall, with the GE semantics there are two of eight candidate models

where π fails and six for which it succeeds. The robustness value of the plan is R(π) = 3
4

87



if Pr(Di) is the uniform distribution. However, if the domain writer thinks that p1 is very

likely to be a precondition of a1 and provides wpre
a1

(p1) = 0.9, the robustness of π decreases

to R(π) = 2× (0.9× 0.5× 0.5) + 4× (0.1× 0.5× 0.5) = 0.55 (as intutively, the last four

models with which π succeeds are very unlikely to be the real one). Note that according

to the SE semantics, the plan π would be considered failing to achieve G in the first four

complete models since a1 fails to apply (and thus a2 is prevented from execution).

3.5 A Spectrum of Robust Planning Problems

Given this set up, we can now talk about a spectrum of problems related to planning

under incomplete domain models:

Robustness Assessment (RA): Given a plan π for the problem P̃ , assess the robustness

of π.

Maximally Robust Plan Generation (RG∗): Given a problem P̃ , generate the maximally

robust plan π∗.

Generating Plan with Desired Level of Robustness (RGρ): Given a problem P̃ and a ro-

bustness threshold ρ (0 < ρ ≤ 1), generate a plan π with robustness greater than or

equal to ρ.

Cost-sensitive Robust Plan Generation (RG∗
c): Given a problem P̃ and a cost bound c,

generate a plan π of maximal robustness subject to cost bound c (where the cost of a

plan π is defined as the cumulative costs of the actions in π).

Incremental Robustification (RIc): Given a plan π for the problem P̃ , improve the ro-

bustness of π, subject to a cost budget c.

The problem of assessing robustness of plans, RA, can be tackled by compiling it into a

weighted model-counting problem. We will also show in Section 3.6 that RA with uniform
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distribution of candidate complete models is complete for #P complexity class (Valiant,

1979a), and thus the robustness assessment problem is at least as hard as NP-complete.

For plan synthesis problems, we can talk about either generating a maximally robust

plan, RG∗, or finding a plan with a robustness value above the given threshold, RGρ. A

related issue is that of the interaction between plan cost and robustness. Increasing robust-

ness might involve using additional or costlier actions to support the desired goals, and thus

comes at the expense of increased plan cost. We can also talk about cost-constrained robust

plan generation, RG∗
c . Finally, in practice, we are often interested in increasing the robust-

ness of a given plan (either during iterative search, or during mixed-initiative planning).

We thus also have the incremental variant RIc. In the next sections, we will focus on the

problems of assessing plan robustness and synthesizing robust plans, ignoring plan cost.

3.6 Assessing Plan Robustness

Given an incomplete domain model D̃ and a plan π = 〈a1, ..., an〉, a naive approach to

compute the robustness of π is to enumerate all domain modelsD ∈ 〈〈D̃〉〉 and check for the

success of π with respect toD. This is prohibitively expensive when the number of possible

preconditions and effects is large. In this section, we show that the problem of assessing

plan robustness can be reduced to the weighted model counting problem (c.f. Sang et al.

(2005)). At a high level, we set up a set of logical constraints Σπ such that there is a one-

to-one mapping between each of its models and a candidate domain model under which

the plan succeeds. In the rest of this section, we assume a0 ≡ aI and an+1 ≡ aG for any

sequence π of length n, where aI and aG are two dummy complete actions representing the

initial and goal state: Pre(aI) = ∅, Add(aI) = I , Pre(aG) = G, Add(aG) = {⊤} , where

⊤ 6∈ F denotes a dummy proposition representing goal achievement (those precondition

and effect sets not specified are empty). We also denote 〈s0 ≡ I, s1, ..., sn, sn+1 ≡ {⊤}〉

as the sequence of states generated from the execution of π.
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3.6.0.1 GE Semantics

Boolean variables: First, we create variables representing whether a possible precondition

or effect of an operator o ∈ O is realized: rpre
o , radd

o and rdel
o with the associated weights

wpre
o (r), wadd

o (r) and wdel
o (r) for each predicate r respectively in P̃ re(o), Ãdd(o) and

D̃el(o). Abusing notation, we often write ppre
a and wpre

a (p) for action a ∈ A, p ∈ P̃ re(a),

and similarly for p ∈ Ãdd(a) or D̃el(a), to refer to the boolean variables and weights de-

fined for the unique predicate and operator from which they are instantiated. We denote Z̃

as the set of those boolean variables.

Second, for each action instance ai in the solution plan π we create one variable with

weight 1
2

representing whether the action can execute or not. Abusing notation, we denote

this boolean variable ai.

Finally, for each proposition p ∈ F and state index i ∈ {0, 1, ..., n}, we create a boolean

variable pi with weight 1
2
.

We denote Z as the set of all boolean variables defined; thus Z \ Z̃ is the set of those

representing action instances ai’s and propositions pi’s over time steps.

Constraints:

Initial and goal states constraints: for each proposition p that presents in the initial

state, we set p0 = T; otherwise, p0 = F. Similarly, if p ∈ G then pn = T.

Action execution constraints: for each action ai (1 ≤ i ≤ n+1), we create a constraint:

ai ⇔ exe(ai), (3.6)

specifying the necessary and sufficient conditions under which the action can and will

execute:

exe(ai) ≡
∧

p∈Pre(ai)

pi−1 ∧
∧

p∈P̃ re(ai)

(ppre
ai
⇒ pi−1). (3.7)
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We note that, slightly different from a state-based encoding for plan synthesis (c.f.,

Rintanen et al. (2004)), we need ai ⇐ exe(ai) to correctly capture our semantics of ac-

tion execution: when an action is executable (i.e., when all of its preconditions, including

realized ones, are satisfied), its effects will take place in the successor state.

Effect constraints: we create constraints specifying that if action ai executes, then its

effects are true in the next state:

ai ⇒
∧

p∈Add(ai)

pi ∧
∧

p∈Del(ai)

¬pi ∧
∧

p∈Ãdd(ai)

(padd
ai
⇒ pi) ∧

∧

p∈D̃el(ai)

(pdel
ai
⇒ ¬pi). (3.8)

State change constraints: for every proposition p ∈ F , we add constraints specifying

conditions under which the value of p being changed in two consecutive time steps (i−1)-th

and i-th (1 ≤ i ≤ n). For the changes from F to T:

¬pi−1 ∧ pi ⇒ ai ∧ φi, (3.9)

in which φi is defined as follows:

φi =





T if p ∈ Add(ai);

padd
ai

if p ∈ Ãdd(ai);

F otherwise.

(3.10)

The constraints for changing from T to F are defined similarly.

Let Σπ be the set of all constraints above. For each assigment σ for variables Z, we

denote Dσ ∈ 〈〈D̃〉〉 as the candidate domain model in which the realization of possible

preconditions and effects is determined by the truth assignment for variables Z̃ in σ. Let

M(Σπ) be the set of all models satisfying Σπ.

Theorem 1. For each σ ∈M(Σπ), γDσ
GE

(π, I) |= G.

Proof. Each model σ ∈ M(Σπ) assigns truth values to variables Z̃. With those truth val-

ues, all constraints in which variables in Z̃ are involved are similar to those for synthesizing
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plans with SAT-based approach (for instance, in (Rintanen et al., 2004)), except that there

is only one action instance of π at each time step. Following the correctness of encoding

for those SAT-based approaches, π must achieve G with respect to the model σ.

The following theorem establishes the connection between the robustness of π with the

weighted model count of Σπ.

Theorem 2. The robustness of π in the GE semantics is

R(π) = 2|Z\Z̃| ×WMC(Σπ),

where WMC(Σπ) is the weighted model count of Σπ.

Proof. Let w(σ) be the weight of an assignment σ. We have:

w(σ) = (
1

2
)|Z\Z̃| × Pr(Dσ).

By definition:

WMC(Σπ) =
∑

σ∈M(Σπ)

w(σ)

= (
1

2
)|Z\Z̃| ×

∑

σ∈M(Σπ)

Pr(Dσ)

= (
1

2
)|Z\Z̃| ×R(π).

The last equality is due to both Theorem 1 and the definition of plan robustness.

3.6.0.2 SE Semantics

Variables: The variables are similar to the first set of variables in the correctness con-

straints under the GE semantics; we list them here again to make the discussion complete.

They represent whether a possible precondition or effect of an operator o ∈ O is realized:

rpre
o , radd

o and rdel
o with the associated weights wpre

o (r), wadd
o (r) and wdel

o (r) for each pred-

icate r respectively in P̃ re(o), Ãdd(o) and D̃el(o). An assignment of these K variables
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corresponds to a complete domain D ∈ 〈〈D̃〉〉, and those assignments satisfying the follow-

ing constraints determine the complete models under which the plan succeeds. Again, we

often write ppre
a and wpre

a (p) for action a ∈ A, p ∈ P̃ re(a), and similarly for p ∈ Ãdd(a) or

D̃el(a), to refer to the boolean variables and weights defined for the unique predicate and

operator from which they are instantiated.

Constraints: Given that all actions must be executable, and that the initial state at the

first step is complete, the truth value of any proposition p at level i (1 < i ≤ n + 1) can

only be affected by actions at steps k ∈ {C i
p, ..., i − 1}. Here, C i

p ∈ {1, ..., i − 1} is the

latest level before i at which the truth value of p at C i
p is completely “confirmed” by the

success of either action aCi
p

or aCi
p−1. Specifically, it is confirmed T if p ∈ Pre(aCi

p
) or

p ∈ Add(aCi
p−1); and confirmed F if p ∈ Del(aCi

p−1).

Precondition establishment and protection: for each p ∈ Pre(ai) (1 ≤ i ≤ n + 1), we

create constraints establishing and protecting the T value of this precondition. If p = F at

level C i
p, we add the following constraints to ensure that it is supported before level i:

∨

Ci
p≤k≤i−1,p∈Ãdd(ak)

padd
ak

. (3.11)

Note that there exists at least one such action ak for ai to be executable. If there ex-

ists actions am (C i
p ≤ m ≤ i − 1) that possibly deletes p, we protect its value with the

constraints:

pdel
am
⇒

∨

m<k<i,p∈Ãdd(ak)

padd
ak

, (3.12)

or ¬pdel
am

if there is no such action ak possibly support p. Note that the constraints for known

preconditions of an+1 ensure that goals G are achieved after the plan execution.

Possible precondition establishment and protection: when a possible precondition p of

action ai (1 ≤ i ≤ n) is realized, its value also needs to be established to T and protected.

93



Specifically, for p = F at level C i
p, we add the constraints:

ppre
ai
⇒

∨

Ci
p≤k≤i−1,p∈Ãdd(ak)

padd
ak

. (3.13)

Finally, with actions am (C i
p ≤ m ≤ i−1) having p as a possible delete effect, we must

ensure that:

ppre
ai
⇒


pdel

am
⇒

∨

m<k<i,p∈Ãdd(ak)

padd
ak


 . (3.14)

We again denote the set of constraints (3.11) - (3.14) established for π as Σπ. It can be

shown that any assignment to Boolean variables ppre
a , padd

a and pdel
a satisfying all constraints

above corresponds to a complete domain model D ∈ 〈〈D̃〉〉 under which all actions a1, ...,

an and an+1 succeeds to execute. The weighted model count of Σπ is thus the robustness

of the plan. We will therefore use R(π) and WMC(Σπ) interchangeably under the SE

semantics.

3.6.1 Computational Complexity

The fact that weighted model counting can be used to compute plan robustness does not

immediately mean that assessing plan robustness is hard. We now show that it is indeed

#P -complete, the same complexity of model counting problems.

Theorem 3. Given an incomplete model D̃ = 〈R,O〉 with annotations of weights 1
2
, a

planning problem P̃ = 〈F,A, I,G〉 and a plan π. The problem of computing R(π) is

#P -complete, and this holds for both GE and SE semantics.

Proof (sketch). The following proof applies for both two semantics. The membership can

be seen by having a Counting TM nondeterministically guess a complete model, and check

the correctness of the plan. The number of accepting branches output is the number of

complete models under which the plan succeeds. To prove the hardness, we show that
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there is a polynomial-time reduction from an instance 〈X,Σ〉 of MONOTONE 2-SAT, a

#P -complete problem (Valiant, 1979b), to an instance 〈D̃, P̃ , π〉 such that R(π) = |M(Σ)|
2n .

The input of this problem is a set of n Boolean variables X = {x1, ..., xn}, a monotone

CNF formulae Σ = {c1, c2, ..., cm} with m clauses cj = xj1 ∨ xj2, where xj1, xj2 ∈ X .

The required output is |M(Σ)|, the number of assignments of X satisfying Σ.

Let G = 〈V,E〉 be the constraint graph of the clause set Σ, where V = X and

(xi, xj) ∈ E if xi ∨ xj ∈ Σ. We partition this graph into connected components (or

subgraph) G1, ...,Gl. Our set of propositions F then includes propositions pk for each

subgraph Gk (1 ≤ k ≤ l) and propositions gj for each clause cj (1 ≤ j ≤ m): F =

{p1, ..., pl, g1, ..., gm}. We denote k(xi) and k(cj) as the indices of the subgraphs con-

taining xi and the edge (xj1, xj2). The set of actions A consists of n + m actions axi

and bgj
, respectively defined for each variable xi and proposition gj . Action axi

has

Ãdd(axi
) = {pk(xi)} and the other components are empty. Action bgj

is complete and

defined with Pre(bgj
) = Del(bgj

) = {pk(cj)}, Add(bgj
) = {gj}. Given D̃ = 〈F,A〉,3

we define a planning problem P̃ with I = ∅, G = {g1, ..., gm} and a plan π that is the

concatenation of m “subplans”: π = π1 ◦ ... ◦ πm. Each subplan is πj = 〈axj1
, axj2

, bgj
〉

(1 ≤ j ≤ m) such that cj = xj1 ∨ xj2 is the clause corresponding to gj .

From the reduction, there is a one-to-one mapping between the assignments of X to

〈〈D̃〉〉: xi = T if and only if axi
has pk(xi) as its add effect. The relation R(π) = |M(Σ)|

2n can

be established by verifying that an assignment σ satisfies Σ if and only if π succeeds under

the corresponding complete model Dσ.

3.7 Synthesizing Robust Plans with a Compilation Approach

In this section we will show that the problem of generating plans with at least ρ robustness

value can be compiled into a conformant probabilistic planning problem (2007). We focus

3The resulting robustness assessment problem does not have objects, thusR ≡ F and O ≡ A.
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the details only on the GE semantics in this section and then present our experimental re-

sults using Probabilistic-FF, a state-of-the-art planner created by Domshlak and Hoffmann

(2007). We briefly discuss how to adapt the compilation presented for the SE semantics.

3.7.1 Conformant Probabilistic Planning

Following the formalism used by Domshlak and Hoffmann (2007), a domain in confor-

mant probabilistic planning (CPP) is a tuple D′ = 〈F ′, A′〉, where F ′ and A′ are the sets

of propositions and probabilistic actions, respectively. A belief state b : 2F ′

→ [0, 1] is

a distribution of states s ⊆ F ′ (we denote s ∈ b if b(s) > 0). Each action a′ ∈ A′

is specified by a set of preconditions Pre(a′) ⊆ F ′ and conditional effects E(a′). For

each e = (cons(e),O(e)) ∈ E(a′), cons(e) ⊆ F ′ is the condition set and O(e) deter-

mines the set of outcomes ε = (Pr(ε), add(ε), del(ε)) that will add and delete propo-

sition sets add(ε), del(ε) into and from the resulting state with the probability Pr(ε)

(0 ≤ Pr(ε) ≤ 1 ,
∑

ε∈O(e) Pr(ε) = 1). All condition sets of the effects in E(a′) are

assumed to be mutually exclusive and exhaustive. The action a′ is applicable in a belief

state b if Pre(a′) ⊆ s for all s ∈ b, and the probability of a state s′ in the resulting

belief state is ba′(s′) =
∑

s⊇Pre(a′) b(s)
∑

ε∈O′(e) Pr(ε), where e ∈ E(a′) is the condi-

tional effect such that cons(e) ⊆ s, and O′(e) ⊆ O(e) is the set of outcomes ε such that

s′ = s ∪ add(ε) \ del(ε).

Given the domain D′, a problem P ′ is a quadruple P ′ = 〈D′, bI , G
′, ρ′〉, where bI is an

initial belief state, G′ is a set of goal propositions and ρ′ is the acceptable goal satisfaction

probability. A sequence of actions π′ = 〈a′
1, ..., a

′
n〉 is a solution plan for P ′ if a′

i is appli-

cable in the belief state bi (assuming b1 ≡ bI), which results in bi+1 (1 ≤ i ≤ n), and it

achieves all goal propositions with at least ρ′ probability.
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3.7.2 Compilation

Given an incomplete domain model D̃ = 〈R,O〉 and a planning problem P̃ = 〈F,A, I,G〉,

we now describe a compilation that translates the problem of synthesizing a solution plan π

for P̃ such that R(π) ≥ ρ to a CPP problem P ′. At a high level, the realization of possible

preconditions p ∈ P̃ re(a) and effects q ∈ Ãdd(a), r ∈ D̃el(a) of an action a ∈ A can be

understood as being determined by the truth values of hidden propositions ppre
a , qadd

a and

rdel
a that are certain (i.e. unchanged in any world state) but unknown. (These propositions

play the same role with variables Z̃ in Section 3.6.0.1.) Specifically, the applicability of

the action in a state s ⊆ F depends on possible preconditions p that are realized (i.e.

ppre
a = T), and their truth values in s. Similarly, the values of q and r are affected by a

in the resulting state only if they are realized as add and delete effects of the action (i.e.,

qadd
a = T, rdel

a = T). There are totally 2|P̃ re(a)|+|Ãdd(a)|+|D̃el(a)| realizations of the action

a, and all of them should be considered simultaneously in checking the applicability of the

action and in defining corresponding resulting states.

With those observations, we use multiple conditional effects to compile away incom-

plete knowledge on preconditions and effects of the action a. Each conditional effect corre-

sponds to one realization of the action, and can be fired only if p = T whenever ppre
a = T,

and adding (removing) an effect q (r) into (from) the resulting state depending on the values

of qadd
a (rdel

a , respectively) in the realization.

While the partial knowledge can be removed, the hidden propositions introduce uncer-

tainty into the initial state, and therefore making it a belief state. Since the action a may

be applicable in some but rarely all states of a belief state, certain preconditions Pre(a)

should be modeled as conditions of all conditional effects. We are now ready to formally

specify the resulting domain D′ and problem P ′.

For each action a ∈ A, we introduce new propositions ppre
a , qadd

a , rdel
a and their negations
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nppre
a , nqadd

a , nrdel
a for each p ∈ P̃ re(a), q ∈ Ãdd(a) and r ∈ D̃el(a) to determine whether

they are realized as preconditions and effects of a in the real domain.4 Let Fnew be the set

of those new propositions, then F ′ = F ∪ Fnew is the proposition set of D′.

Each action a′ ∈ A′ is made from one action a ∈ A such that Pre(a′) = ∅, and E(a′)

consists of 2|P̃ re(a)|+|Ãdd(a)|+|D̃el(a)| conditional effects e. For each conditional effect e:

• cons(e) is the union of the following sets:

– the certain preconditions Pre(a),

– the set of possible preconditions of a that are realized, and hidden proposi-

tions representing their realization: Pre(a) ∪ {ppre
a |p ∈ Pre(a)} ∪ {nppre

a |p ∈

P̃ re(a) \ Pre(a)},

– the set of hidden propositions corresponding to the realization of possible add

(delete) effects of a: {qadd
a |q ∈ Add(a)} ∪ {nqadd

a |q ∈ Ãdd(a) \ Add(a)}

({rdel
a |r ∈ Del(a)} ∪ {nrdel

a |r ∈ D̃el(a) \Del(a)}, respectively);

• the single outcome ε of e is defined as add(ε) = Add(a)∪Add(a), del(ε) = Del(a)∪

Del(a), and Pr(ε) = 1,

where Pre(a) ⊆ P̃ re(a), Add(a) ⊆ Ãdd(a) and Del(a) ⊆ D̃el(a) represent the sets of

realized preconditions and effects of the action. In other words, we create a conditional

effect for each subset of the union of the possible precondition and effect sets of the action

a. Note that the inclusion of new propositions derived from Pre(a), Add(a), Del(a) and

their “complement” sets P̃ re(a) \ Pre(a), Ãdd(a) \ Add(a), D̃el(a) \ Del(a) makes all

condition sets of the action a′ mutually exclusive. As for other cases (including those in

4These propositions are introduced once, and re-used for all actions instantiated from the same operator

with a.
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which some precondition in Pre(a) is excluded), the action has no effect on the resulting

state, they can be ignored. The condition sets, therefore, are also exhaustive.

The initial belief state bI consists of 2|Fnew| states s′ ⊆ F ′ such that p ∈ s′ iff p ∈ I

(∀p ∈ F ), each represents a complete domain model Di ∈ 〈〈D̃〉〉 and with the probability

Pr(Di). The goal is G′ = G, and the acceptable goal satisfaction probability is ρ′ = ρ.

Theorem 4. Given a plan π = 〈a1, ..., an〉 for the problem P̃ , and π′ = (a′
1, ..., a

′
n) where

a′
k is the compiled version of ak (1 ≤ k ≤ n) in P ′. Then R(π) ≥ ρ iff π′ achieves all goals

with at least ρ probability in P ′.

Proof. According to the compilation, there is one-to-one mapping between each complete

model Di ∈ 〈〈D̃〉〉 in P̃ and a (complete) state s′
i0 ∈ bI in P ′. Moreover, if Di has a

probability of Pr(Di) to be the real model, then s′
i0 also has a probability of Pr(Di) in the

belief state bI of P ′.

Given our projection over complete modelDi, executing π from the state I with respect

toDi results in a sequence of complete states 〈si1, ..., si(n+1)〉. On the other hand, executing

π′ from {s′
i0} in P ′ results in a sequence of belief states ({s′

i1}, ..., {s
′
i(n+1)}). With the

note that p ∈ s′
i0 iff p ∈ I (∀p ∈ F ), by induction it can be shown that p ∈ s′

ij iff p ∈ sij

(∀j ∈ {1, ..., n + 1}, p ∈ F ). Therefore, si(n+1) |= G iff s′
i(n+1) |= G = G′.

Since all actions a′
i are deterministic and s′

i0 has a probability of Pr(Di) in the belief

state bI of P ′, the probability that π′ achieves G′ is
∑

s′

i(n+1)
|=G Pr(Di), which is equal to

R(π) as defined in Equation 3.5. This proves the theorem.

Example: Consider the action pick-up(?b - ball,?r - room) in the Gripper domain as de-

scribed above. In addition to the possible precondition (light ?b) on the weight of the ball

?b, we also assume that since the modeler is unsure if the gripper has been cleaned or not,

she models it with a possible add effect (dirty ?b) indicating that the action might make the

ball dirty. Figure 3.3 shows both the original and the compiled specification of the action.
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Figure 3.3: An example of compiling the action pick-up in an incomplete domain model

(top) into CPP domain (bottom). The hidden propositions ppre
pick−up, qadd

pick−up and their nega-

tions can be interpreted as whether the action requires light balls and makes balls dirty.

Newly introduced and relevant propositions are marked in bold.

3.7.3 Experimental Results

We tested the compilation with Probabilistic-FF (PFF), a state-of-the-art planner, on a range

of domains in the International Planning Competition.We first discuss the results on the

variants of the Logistics and Satellite domains, where domain incompleteness is deliber-

ately modeled on the preconditions and effects of actions (respectively). Our purpose here

is to observe how generated plans are robustified to satisfy a given robustness threshold,
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and how the amount of incompleteness in the domains affects the plan generation phase.

We then describe the second experimental setting in which we randomly introduce incom-

pleteness into IPC domains, and discuss the feasibility of our approach in this setting.5

Domains with deliberate incompleteness

Logistics: In this domain, each of the two cities C1 and C2 has an airport and a downtown

area. The transportation between the two distant cities can only be done by two airplanes

A1 and A2. In the downtown area of Ci (i ∈ {1, 2}), there are three heavy containers

Pi1, ..., Pi3 that can be moved to the airport by a truck Ti. Loading those containers onto

the truck in the city Ci, however, requires moving a team of m robots Ri1, ..., Rim (m ≥ 1),

initially located in the airport, to the downtown area. The source of incompleteness in this

domain comes from the assumption that each pair of robots R1j and R2j (1 ≤ j ≤ m) are

made by the same manufacturer Mj , both therefore might fail to load a heavy container.6

The actions loading containers onto trucks using robots made by a particular manufacturer

(e.g., the action schema load-truck-with-robots-of-M1 using robots of manufacturer M1),

therefore, have a possible precondition requiring that containers should not be heavy. To

simplify discussion (see below), we assume that robots of different manufacturers may fail

to load heavy containers, though independently, with the same probability of 0.7. The goal

is to transport all three containers in the city C1 to C2, and vice versa. For this domain, a

plan to ship a container to another city involves a step of loading it onto the truck, which

can be done by a robot (after moving it from the airport to the downtown). Plans can be

made more robust by using additional robots of different manufacturer after moving them

into the downtown areas, with the cost of increasing plan length.

5The experiments were conducted using an Intel Core2 Duo 3.16GHz machine with 4Gb of RAM, and

the time limit is 15 minutes.
6The uncorrelated incompleteness assumption applies for possible preconditions of action schemas spec-

ified for different manufacturers. It should not be confused here that robots R1j and R2j of the same manu-

facturer Mj can independently have fault.
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ρ m = 1 m = 2 m = 3 m = 4 m = 5

0.1 32/10.9 36/26.2 40/57.8 44/121.8 48/245.6

0.2 32/10.9 36/25.9 40/57.8 44/121.8 48/245.6

0.3 32/10.9 36/26.2 40/57.7 44/122.2 48/245.6

0.4 ⊥ 42/42.1 50/107.9 58/252.8 66/551.4

0.5 ⊥ 42/42.0 50/107.9 58/253.1 66/551.1

0.6 ⊥ ⊥ 50/108.2 58/252.8 66/551.1

0.7 ⊥ ⊥ ⊥ 58/253.1 66/551.6

0.8 ⊥ ⊥ ⊥ ⊥ 66/550.9

0.9 ⊥ ⊥ ⊥ ⊥ ⊥

Table 3.1: The results of generating robust plans in Logistics domain (see text).

Satellite: In this domain, there are two satellites S1 and S2 orbiting the planet Earth, on

each of which there are m instruments Li1, ..., Lim (i ∈ {1, 2}, m ≥ 1) used to take

images of interested modes at some direction in the space. For each j ∈ {1, ...,m}, the

lenses of instruments Lij’s were made from a type of material Mj , which might have an

error affecting the quality of images that they take. If the material Mj actually has error,

all instruments Lij’s produce mangled images. The knowledge of this incompleteness is

modeled as a possible add effect of the action taking images using instruments made from

Mj (for instance, the action schema take-image-with-instruments-M1 using instruments of

type M1) with a probability of pj , asserting that images taken might be in a bad condition.

A typical plan to take an image using an instrument, e.g. L14 of type M4 on the satellite

S1, is first to switch on L14, turning the satellite S1 to a ground direction from which

L14 can be calibrated, and then taking image. Plans can be made more robust by using

additional instruments, which might be on a different satellite, but should be of different

type of materials and can also take an image of the interested mode at the same direction.

Table 3.1 and 3.2 shows respectively the results in the Logistics and Satellite domains

with ρ ∈ {0.1, 0.2, ..., 0.9} and m = {1, 2, ..., 5}. The number of complete domain models
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ρ m = 1 m = 2 m = 3 m = 4 m = 5

0.1 10/0.1 10/0.1 10/0.2 10/0.2 10/0.2

0.2 10/0.1 10/0.1 10/0.1 10/0.2 10/0.2

0.3 ⊥ 10/0.1 10/0.1 10/0.2 10/0.2

0.4 ⊥ 37/17.7 37/25.1 10/0.2 10/0.3

0.5 ⊥ ⊥ 37/25.5 37/79.2 37/199.2

0.6 ⊥ ⊥ 53/216.7 37/94.1 37/216.7

0.7 ⊥ ⊥ ⊥ 53/462.0 –

0.8 ⊥ ⊥ ⊥ ⊥ –

0.9 ⊥ ⊥ ⊥ ⊥ ⊥

Table 3.2: The results of generating robust plans in Satellite domain (see text).

in the two domains is 2m. For Satellite domain, the probabilities pj’s range from 0.25,

0.3,... to 0.45 when m increases from 1, 2, ... to 5. For each specific value of ρ and m,

we report l/t where l is the length of plan and t is the running time (in seconds). Cases

in which no plan is found within the time limit are denoted by “–”, and those where it is

provable that no plan with the desired robustness exists are denoted by “⊥”.

Observations on fixed value of m: In both domains, for a fixed value of m we observe

that the solution plans tend to be longer with higher robustness threshold ρ, and the time

to synthesize plans is also larger. For instance, in Logistics with m = 5, the plan returned

has 48 actions if ρ = 0.3, whereas 66-length plan is needed if ρ increases to 0.4. Since

loading containers using the same robot multiple times does not increase the chance of

success, more robots of different manufacturers need to move into the downtown area for

loading containers, which causes an increase in plan length. In the Satellite domain with

m = 3, similarly, the returned plan has 37 actions when ρ = 0.5, but requires 53 actions if

ρ = 0.6—more actions need to calibrate an instrument of different material types in order

to increase the chance of having a good image of interested mode at the same direction.

Since the cost of actions is currently ignored in the compilation approach, we also ob-

serve that more than the needed number of actions have been used in many solution plans.
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In the Logistics domain, specifically, it is easy to see that the probability of successfully

loading a container onto a truck using robots of k (1 ≤ k ≤ m) different manufacturers

is (1 − 0.7k). As an example, however, robots of all five manufacturers are used in a plan

when ρ = 0.4, whereas using those of three manufacturers is enough.

Observations on fixed value of ρ: In both domains, we observe that the maximal ro-

bustness value of plans that can be returned increases with higher number of manufacturers

(though the higher the value of m is, the higher number of complete models is). For in-

stance, when m = 2 there is not any plan returned with at least ρ = 0.6 in the Logistics

domain, and with ρ = 0.4 in the Satellite domain. Intuitively, more robots of different

manufacturers offer higher probability of successfully loading a container in the Logistics

domain (and similarly for instruments of different materials in the Satellite domain).

Finally, it may take longer time to synthesize plans with the same length when m is

higher—in other words, the increasing amount of incompleteness of the domain makes the

plan generation phase harder. As an example, in the Satellite domain, with ρ = 0.6 it takes

216.7 seconds to synthesize a 37-length plan when there are m = 5 possible add effects

at the schema level of the domain, whereas the search time is only 94.1 seconds when

m = 4. With ρ = 0.7, no plan is found within the time limit when m = 5, although a plan

with robustness of 0.7075 exists in the solution space. It is the increase of the branching

factors and the time spent on satisfiability test and weighted model-counting used inside

the planner that affect the search efficiency.

Domains with random incompleteness: We built a program to generate an incomplete

domain model from a deterministic one by introducing M new propositions into each do-

main (all are initially T). Some of those new propositions were randomly added into the

sets of possible preconditions/effects of actions. Some of them were also randomly made

certain add/delete effects of actions. With this strategy, each solution plan in an original de-

terministic domain is also a valid plan, as defined earlier, in the corresponding incomplete
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domain. Our experiments with the Depots, Driverlog, Satellite and ZenoTravel domains

indicate that because the annotations are random, there are often fewer opportunities for

the PFF planner to increase the robustness of a plan prefix during the search. This makes it

hard to generate plans with a desired level of robustness under given time constraint.

Discussion: The techniques presented in this section for the GE semantics can be adapted

for the compilation approach under the SE semantics. The compiled actions must have

additional conditional effects to capture execution scenarios where either a known precon-

dition or a possible precondition being realized is not satisfied in the current state. The

effects in those cases must result in ⊥, thus leading the system to the dead end state s⊥.

We however note that the requirement for mutually exclusive and exhaustive conditions

in each conditional effect of the CPP formulation can significantly increase the number of

conditional effects in the compiled actions.

3.8 Synthesizing Robust Plans with Heuristic Search

We now present an anytime forward search approach to synthesizing robust plans under the

STRIPS execution semantics. Although the solution space is more limited than that of the

GE semantics, the proposed approach is much more scalable than the compilation approach

in the previous section. At a high level, in each iteration it searches for a plan π with the

robustness R(π) greater than a threshold δ, which is set to zero initially. The threshold is

then updated with R(π), preparing for the next iteration. The last plan produced is the most

robust plan. We will briefly discuss a similar idea for the Generous Execution semantics at

the end of this section.

The main technical part of our approach is a procedure to extract a relaxed plan π̃, given

the current plan prefix πk of k actions and threshold δ, such that WMC(Σπk
∧Σπ̃) > δ. (We

note that all the correctness constraints for plans π, Σπ, plan prefixes πk, Σπk
and relaxed

plans π̃, Σπ̃ used in this approach for the SE semantics are presented in Section 3.6.0.2.)
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The length of π̃ estimates the additional search cost h(πk, δ) to reach goals G, starting

from πk, with more than δ probability of success. Since WMC(·) is costly to compute,

we approximate it with a lower bound l(·) and upper bound u(·), which will then be used

during the relaxed plan extraction. In particular, we look for the relaxed plan π̃ satisfying

l(Σπk
∧Σπ̃) > δ, and compute the exact robustness of a candidate plan π only if u(Σπ) > δ.

In this section, we first introduce an approximate transition function γ̃SE(π, s) that will

be used during the forward search. It defines a set of propositions that might be T dur-

ing the execution phase, thus helps the search in quickly defining applicable actions and

checking potential goal satisfaction at each search step. The set will also be used as the

first propositional layer of the relaxed planning graphs for extracting relaxed plans. We

then describe our lower and upper bound for WMC(Σ) of a clause set Σ, presents our pro-

cedure for extracting relaxed plan, and then discuss our choice for the underlying search

algorithm.

3.8.1 An Approximate Transition Function

In our approximate transition function, the resulting state from applying action a in state s

is defined as follows:

γ̃SE(〈a〉, s) =





(s \Del(a)) ∪ Add(a) ∪ Ãdd(a) if Pre(a) ⊆ s;

s⊥ otherwise.
(3.15)

The projection of an action sequence π from a state s is defined as γ̃SE(π, s) = s if π = 〈〉,

and γ̃SE(π, s) = γ̃SE(〈a〉, γ̃SE(π′, s)) if π = π′ ◦ 〈a〉. The sequence π is a valid plan for a

planning problem P̃ under the approximate transition function if γ̃SE(π, I) ⊇ G.

Proposition 1. For any complete modelD ∈ 〈〈D̃〉〉, action sequence π and state s such that

γD
SE

(π, s) 6= s⊥, γD
SE

(π, s) ⊆ γ̃SE(π, s).

Proof. We prove the theorem by induction on the length of π. For the base case when
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π = 〈〉, γD
SE

(〈〉, s) = γ̃SE(〈〉, s) = s for any complete model D and state s. Assuming

that the theorem holds for any action sequences π of length k (k ≥ 0), complete model D

and state s such that γD
SE

(π, s) 6= s⊥. Consider a complete model D, state s 6= s⊥ and a

sequence π = π′ ◦ 〈a〉 of k + 1 actions such that γD
SE

(π, s) 6= s⊥. Let sD
π′ = γD

SE
(π′, s),

s̃D
π′ = γ̃SE(π′, s). It must hold that sD

π′ 6= s⊥ and Pre(a) ⊆ γD
SE

(π′, s), because otherwise

γD
SE

(π, s) = s⊥. Thus,

γD
SE

(π, s) = (sD
π′ \DelD(a)) ∪ AddD(a). (3.16)

From the inductive hypothesis: sD
π′ ⊆ s̃D

π′ , and since Pre(a) ⊆ γD
SE

(π′, s) we have Pre(a) ⊆

γ̃SE(π′, s). Therefore,

γ̃SE(π, s) = (s̃D
π′ \Del(a)) ∪ Add(a) ∪ Ãdd(a). (3.17)

Since sD
π′ ⊆ s̃D

π′ , DelD(a) ⊇ Del(a), AddD(a) ⊆ Add(a) ∪ Ãdd(a), from Eq. 3.16 and

3.17 we have γD
SE

(π, s) ⊆ γ̃SE(π, s). The theorem thus holds with sequences of k + 1

actions.

Theorem 5. A sequence of actions π is a valid plan under γSE if and only if it is a valid

plan under γ̃SE.

Proof. If: Given that γ̃SE(π, I) |= G, π is a plan under the complete model D0 in which

PreD0(a) = Pre(a), AddD0(a) = Add(a) ∪ Ãdd(a) and DelD0(a) = Del(a) for all

actions a ∈ A. Thus π is a valid plan under γSE.

Only if: Assuming that π is a valid plan under γSE. LetD ∈ 〈〈D̃〉〉 such that γD
SE

(π, I) |= G.

From Proposition 1, γD
SE

(π, I) ⊆ γ̃SE(π, I). Thus, γ̃SE(π, I) |= G, or π is a valid plan

under γ̃SE.

Theorem 5 above implies that using the approximate transition function ensures the

completeness property (that is, any plan achieving goals G in the ground truth model D∗
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is not excluded from the search space), and the soundness property (in the sense that any

valid plan for P̃ is a plan achieving G in at least one complete model D ∈ 〈〈D̃〉〉). The

approximate transition function γ̃SE will therefore be used together with other components

presented below for synthesizing robust plans.

3.8.2 Approximating Weighted Model Count

Our approach for generating robust plans requires the computation for weighted model

counts of clause sets during the search and robust relaxed plan extraction. Given that such

a computation has been proved to be hard, we introduce the lower bound and upper bound

for the exact weighted model count WMC(Σ) of clause set Σ, which can be computed in

polynomial time.

Lower bound: We observe that the set of constraints Σ, constructed as in (3.11)-(3.14), can

be converted into a set of clauses containing only positive literals (or monotone clauses). In

particular, the variables padd
a only appear in positive form in the resulting clauses. Variables

ppre
a and pdel

a , however, are all in negation form, thus can be replaced with nppre
a and npdel

a

having the corresponding weights 1 − wpre
a (p) and 1 − wdel

a (p). As a result, the follow-

ing theorem shows that the quantity lΣ =
∏

ci
Pr(ci) can be used as a lower bound for

WMC(Σ), where Pr(ci) is the probability of ci = T. (Recall that for a monotone clause

c =
∨

i xi, Pr(c) = 1−
∏

i(1− wi), where wi is the probability of xi = T.)

Theorem 6. Given a set of monotone clauses Σ = {c1, ..., ck}, lΣ =
∏

ci∈Σ
Pr(ci) ≤

WMC(Σ).

Proof (sketch). For any two monotone clauses c and c′, we can show that Pr(c|c′) ≥ Pr(c)

holds. (As an intuition, since c and c′ have “positive interaction” only, observing one

of the literals in c′ cannot reduce belief that c is T.) More generally, Pr(c|c′
1 ∧ ... ∧

c′
t) ≥ Pr(c) holds for monotone clauses c, c′

1, ..., c′
t. Therefore, WMC(Σ) = Pr(Σ) =
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Pr(c1)Pr(c2|c1)...P r(ck|c1 ∧ ... ∧ ck−1) ≥
∏

ci
Pr(ci).

Upper bound: One trivial upper bound for Pr(Σ) is minci
Pr(ci). We can however derive

a much tighter bound for WMC(Σ) by observing that literals representing the realization of

preconditions and effects on different predicates would not be present in the same clauses.

This suggests that the set of clauses Σ is essentially decomposable into independent sets

of clauses, each contains literals on one specific predicate. Clauses related to the same

predicate, furthermore, can also be partitioned into smaller sets. Thus, to derive a better

upper bound for Pr(Σ), we first divide it into independent clause sets Σ
1, ...,Σm, and

compute an upper bound uΣ as follows: uΣ =
∏

Σi minc∈Σi Pr(c).

3.8.3 Extracting Robust Relaxed Plan

We now introduce our procedure to extract a relaxed plan π̃ such that l(Σπk
∧ Σπ̃) > δ,

where Σπk
and Σπ̃ are the sets of constraints for the executability of actions in πk and π̃;

note that Σπ̃ also includes constraints for aG, thus for the achievement of G. Our procedure

employs an extension of the common relaxation technique by ignoring both the known and

possible delete effects of actions in constructing π̃.7

Relaxed planning graph construction: we construct the relaxed planning graph G =

〈L1, A1, ..., LT−1, AT−1, LT 〉 for the plan prefix πk, in which each proposition p and action

a at layer t is associated with clause sets Σp(t) and Σa(t).

• L1 ≡ sk+1, where sk+1 = γ̃SE(πk, I). The clause set Σp(1) for each p ∈ L1,

constructed with Constraints (3.11) and (3.12), represents the constraints on actions

of πk under which p = T at the first layer.

• Given proposition layer Lt, At contains all actions a whose known preconditions

7Thus, there are no protecting constraints in Σπ̃ caused by possible delete effects of actions in the relaxed

plan.
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appear in Lt (i.e., Pre(a) ⊆ Lt), and a complete action, noopp, for each p ∈ Lt:

Pre(noopp) = Add(noopp) = {p}, Del(noopp) = ∅ . The constraints for the non-

noop actions:

Σa(t) =
∧

p∈Pre(a)

Σp(t) ∧
∧

q∈P̃ re(a)

(qpre
a ⇒ Σq(t)). (3.18)

All actions noop have the same constraints with their corresponding propositions.

• Given action layer At, the resulting proposition layer Lt+1 contains all known and

possible add effects of actions in At. The clause set of p at layer t + 1 will be con-

structed by considering clause sets of all actions supporting and possibly supporting

it at the previous layer, taking into account correctness constraints for the current

plan prefix, i.e., Σπk
. In particular:

Σp(t + 1) = argmax
Σ∈S1∪S2

l(Σ ∧Σπk
), (3.19)

where S1 = {Σa(t) | p ∈ Add(a)} and S2 = {padd
a′ ∧Σa′(t) | p ∈ Ãdd(a′)}.8

We stop expanding the relaxed planning graph at layer LT satisfying: (1) G ⊆ LT ,

(2) the two layers LT−1 and LT , which include the set of propositions and their associated

clause sets, are exactly the same. If the second condition is met, but not the first, then the

relaxed plan extraction fails. We also recognize an early stopping condition at which (1)

G ⊆ LT and (2) l(ΣG) > δ, where ΣG is the conjunction of clauses attached to goals

g ∈ G at layer T .

Relaxed plan extraction

We now extract actions from G, forming a relaxed plan π̃ such that l(Σπk
∧ Σπ̃) > δ. At

a high level, our procedure at each step will pop a subgoal for being potentially supported.

8Note that the observation about converting constraints into monotone clauses, which faciliates our lower

bound computation, still holds for constraints in (3.18) and (3.19).
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Each subgoal g is either a known or a possible precondition of an action a that has been

inserted into the relaxed plan. The decision as to whether a subgoal should be supported

depends on many factors (see below), all of which reflect our strategy that a new action

is inserted only if the insertion increases the robustness of the current relaxed plan. If a

new action is inserted, all of its known and possible preconditions will be pushed into the

subgoal queue. Our procedure will stop as soon as it reaches a complete relaxed plan (see

below) and its approximated robustness, specifically the value l(Σπk
∧ Σπ̃), exceeds the

current threshold δ (stop with success), or the subgoal queue is empty (stop with failure).

The relaxed plan while being constructed might contain actions a with unsupported

known preconditions p, for which the supporting and protecting constraints cannot be de-

fined. The constraints defining the (potential) executability of actions in such an incomplete

relaxed plan, therefore, are not well-defined.9 This is when the clause sets propagated in

the relaxed planning graph play their role. In particular, we reuse the clause sets Σp(t) as-

sociated with unsupported known preconditions p at the same layer t with a in the relaxed

planning graph. We combine them with the constraints generated from Constraints 3.11-

3.14 for (possibly) supported known and possible preconditions, resulting in constraints

Σπ̃. Together with Σπk
, it is used to define the robustness of the relaxed plan being con-

structed.

The use of propagated clause sets in the relaxed planning graph reflects our intuition as

to what the resulting relaxed plan should be. Given that each propostion p at layer t has a

corresponding “best supporting action” at layer t − 1, defined from Equation 3.19, whose

known and possible preconditions in turn have their best supporting actions, there exists a

set of actions, denoted by Sup(p, t), that can be selected at all layers t′ ∈ {1, ..., t − 1}

to support p at layer t. Taking Σp(t) into defining the robustness of an incomplete relaxed

9Unsupported possible preconditions do not result in incomplete relaxed plan, since they do not have to

be supported.
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plan therefore implies that, in the worst case, we will have to include all actions in Sup(p, t)

into the resulting relaxed plan. Our procedure however will stop as soon as the relaxed plan

is complete (i.e., all known preconditions and goals G are supported) and its lower bound

for the robustness exceeds the threshold.

Algorithm 2 shows the details of our relaxed plan extraction procedure. We initialize the

relaxed plan π̃ with 〈aG〉, the relaxed plan state s→aG
before aG and the set of propositions

s+
→aG

known to be T (Line 4). The set s+
k+1 contains propositions p known to be T after

executing all actions in πk—they are confirmed to be T at some step Ck+1
p < k + 1, and

not being possibly deleted by any other actions at steps after Ck+1
p . Line 5-7 checks if πk is

actually a plan with the robustness exceeding δ. This procedure, presented in Algorithm 3,

uses the bound u(Σπk
∧ Σπ̃) to prevent the exact weighted model counting from being

called unnecessarily.

Line 8 initializes the constraints Σπ̃ and the queue Q of subgoals.10 This procedure,

presented in Algorithm 4, uses the constraints caused by actions of πk for goals g that are

(possibly) supported by πk (Line 6-9), and the clause sets in G for those that are not (Line

11).

Line 10-37 of Algorithm 2 is our greedy process for building the relaxed plan. It first

pops a triple 〈p, a, t〉 from Q to consider for supporting, then checks some conditions under

which this subgoal can simply be skipped. Specifically, if p 6∈ Lt (Line 11), which also

implies that it is a possible precondition of a (otherwise, a cannot be included into At),

then there are not any actions in the layer At−1 that can (possibly) support p. Line 13-15

includes the other two conditions: abest is in fact the last action in πk, or it has already been

inserted into π̃. Here, abest is the best non-noop supporting action for p at layer lbest of G

10In our implementation, subgoals in Q are ordered based on their layers (lower layers are prefered),

breaking ties on the types of preconditions (known preconditions are prefered to possible preconditions), and

then on the number of supporting actions.
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Algorithm 2: Extracting robust relaxed plan.

1 Input: A threshold δ ∈ [0, 1], a plan prefix πk, its correctness constraints Σπk
, the relaxed

planning graph G of T layers.
2 Output: 〈h(πk, δ), r〉 if success, or nothing if failure.
3 begin

4 π̃ ← 〈aG〉, s→aG
← L1, s+

→aG
← s+

k+1.

5 if r ← CheckPlan(πk, δ, G) succeeds then
6 return 〈0, r〉, success.
7 end
8 〈Σπ̃, Q〉 ← InitializeConstraintsAndQueue(G,G).
9 r ← l(Σπk

∧Σπ̃).
10 while Q not empty do
11 Pop 〈p, a, t〉 from Q s.t. p ∈ Lt.
12 〈abest, lbest〉 ← best supporting action and its layer in G.
13 if lbest = 0 or π̃ contains 〈abest, lbest〉 then
14 continue.
15 end
16 if p ∈ Pre(a) and p 6∈ s→a then
17 Insert 〈abest, lbest〉 into π̃.
18 end
19 else
20 r′ ← evaluate(abest, lbest, π̃).
21 if r′ > r then
22 Insert 〈abest, lbest〉 into π̃.
23 end

24 end
25 if 〈abest, lbest〉 inserted into π̃ then

26 Update s→abest
, s+

→abest
, s→a′ and s+

→a′ for all a′ succeeding abest in π̃.

27 Update Σπ̃.
28 r ← l(Σπk

∧Σπ̃).
29 count← number of unsupported known preconditions in π̃.
30 if count = 0 and r > δ then
31 return 〈|π̃| − 1, r〉, success.
32 end

33 for q ∈ Pre(abest) ∪ P̃ re(abest) \ s+
→abest

do

34 Push 〈q, abest, lbest〉 into Q.
35 end

36 end

37 end
38 if r > δ then return 〈|π̃| − 1, r〉, success.
39 return failure.

40 end

(retrieved from Equation 3.19 and possibly a backward traversal over noop actions).

Line 16-18 handles a situation where the current relaxed plan π̃ is actually incomplete—
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Algorithm 3: CheckPlan

1 Input: Plan prefix πk, threshold δ ∈ [0, 1], goals G.
2 Output: r ≡ R(πk) if success, or nothing if failure.
3 begin
4 if G ⊆ sk+1 then
5 Construct Σπ̃ using Constraints (3.11)-(3.14).
6 if u(Σπk

∧Σπ̃) > δ then
7 Compute R(πk) = WMC(Σπk

∧Σπ̃).
8 if R(πk) > δ then
9 r ← R(πk); return success.

10 end

11 end

12 end
13 return failure

14 end

Algorithm 4: InitializeConstraintsAndQueue

1 Input: Goals G, relaxed planning graph G.
2 Output: 〈Σπ̃, Q〉
3 begin
4 Σπ̃ ← T.

5 for g ∈ G \ s+
→aG

do

6 if g ∈ s→aG
then

7 c← Constraints (3.11)-(3.14) for g.
8 Σπ̃ ← Σπ̃ ∧ c.

9 end
10 else
11 Σπ̃ ← Σπ̃ ∧Σg(T ).
12 end
13 Push 〈g, aG, T 〉 into Q.

14 end
15 return 〈Σπ̃, Q〉.
16 end

it includes actions having a known precondition p not (possibly) supported; thus πk ◦ π̃

would have (exact) zero robustness. It is therefore reasonable to immediately insert abest

into the current relaxed plan to support p. Note that this insertion means that abest is put

right after all actions at layers before lbest that have been inserted into π̃, maintaining the

total-order of actions in π̃.

In other scenarios (Line 19-24), i.e., p ∈ Pre(a) ∩ s→a or p ∈ P̃ re(a), from the plan

validity perspective we don’t need to add new action (possibly) supporting this subgoal.
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However, since valid relaxed plan might not be robust enough (w.r.t. the current threshold

δ), a new supporting action might be needed. Here, we employ a greedy approach: Line 20

evaluates the approximate robustness r′ of the relaxed plan if abest at layer lbest is inserted. If

inserting this action increases the current approximate robustness of the relaxed plan, i.e.,

r′ > r, then the insertion will take place.

Line 25-36 are works to be done after a new action is inserted into the relaxed plan.

They include the updating of relaxed plan states and set of propositions known to be T

(Line 26),11 the constraints Σπ̃ (Line 27) and the lower bound on the robustness of the

relaxed plan (Line 28). The new approximate robustness will then be checked against the

threshold, and returns the relaxed plan with success if the conditions meet (Line 29-32).

We note that in addition to the condition that the new approximate robustness exceeds δ,

the relaxed plan must also satisfy the validity condition: all known preconditions of actions

must be (possibly) supported. This ensures that all constraints in Σπ̃ come from actions

in π̃, not from the clause set propagated in G. In case the new relaxed plan is not robust

enough, we push known and possible preconditions of the newly inserted action into the

subgoal queue Q, ignoring those known to be T (Line 33-35), and repeat the process.

Finally, we again check if the approximate robustness exceeds δ (Line 38) to return the

relaxed plan length with its approximate robustness; otherwise, our procedure fails (Line

39).

3.8.4 Search

We now discuss our choice for the underlying search algorithm. We note that the search for

our problem, in essence, is performed over a space of belief states—in fact, our usage of the

plan prefix πk, the state sk+1 = γ̃SE(πk, I) and the set of known propositions s+
k+1 in the re-

11They are updated as follows: if aj and aj+1 are two actions at steps j and j + 1 of π̃, then s→aj+1
←

s→aj
∪ Add(aj) ∪ Ãdd(aj) and s+

→aj+1
← s+

→aj
∪ Add(aj).
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laxed plan extraction makes the representation of belief state in our approach implicit, as in

Conformant-FF Hoffmann and Brafman (2006) and Probabilistic-FF Domshlak and Hoff-

mann (2006). Checking duplicate belief states, if needed during the search, is expensive;

to do this, for instance, Probabilistic-FF invokes satisfiability tests for certain propositions

at a state just to check for a sufficient condition.

To avoid such an expensive cost, in searching for a plan π with R(π) > δ we incorporate

our relaxed plan extraction into an extension of the stochastic local search with failed-

bounded restarts (Algorithm 5) proposed by Coles, Fox and Smith (2007). Given a plan

prefix πk (initially empty) and its heuristic estimation h(πk, δ), we look for a sequence of

actions π′ such that the new sequence πk◦π
′ has a better heuristic estimation: h(πk◦π

′, δ) <

h(πk, δ). This is done by performing multiple probes Coles et al. (2007) starting from

sk+1 = γ̃SE(πk, I); the resulting sequence π is a plan with R(π) > δ if h(π, δ) = 0. Since

actions are stochastically sampled during the search, there is no need to perform belief state

duplication detection.

Algorithm 5: Local Search with Restarts (Coles et al., 2007)

1 Data: Smin - a local minimum, failcount, failbound
2 Result: S′ - a state with a strictly better heuristic value, failcount - updated fail count
3 begin
4 depth bound← initial depth bound
5 for i← 1 to iterations do
6 for probes← 1 to probes at depths do
7 S′ ← Smin; for depth← 1 to depth bound do
8 S′ ← a neighbor of S′; if h(S′) < h(Smin) then
9 return S′, failcount

10 end

11 end
12 increment failcount if failcount = failbound then
13 return abort search
14 end

15 end
16 double depthbound;

17 end
18 return abort search

19 end
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3.8.5 Experimental Results

We test our planner, PISA, with incomplete domains generated from IPC domains: Depots,

Driverlog, Freecell, Rover, Satellite and Zenotravel. For each of these IPC domains, we

make them incomplete with np possible preconditions, na possible add and nd possible

delete effects. We make possible lists using the following ways: (1) randomly “moving”

some known preconditions and effects into the possible lists, (2) delete effects that are

not preconditions are randomly made to be possible preconditions of the corresponding

operators, (3) predicates whose parameters fit into the operator signatures, which however

are not parts of the operator, are randomly added into possible lists. For these experiments,

we vary np, na and nd in {0, 1, ..., 5}, resulting in 63−1 = 215 incomplete domains for each

IPC domain mentioned above. We test our planner with the first 10 planning problems in

each domain, thus 2150 instances (i.e., a pair of incomplete domain and planning problem).

In addition, we also test with the Parcprinter incomplete domain available to us from the

distribution of DeFault planner, which contains 300 instances. We restrict our experiments

to incomplete domains with only annotations of weights 1
2
; this is also the only setting that

DeFault can accept. We run them on a cluster of computing nodes, each possesses multiple

Intel(R) Xeon(R) CPU E5440 @ 2.83GHz. For exact model counting, we use Cachet

model counting software (Sang et al., 2005). For the search in PISA, we use the similar

configuration in Coles et al. (2007), except for the size of the neighborhood being 5—our

experiments on small set of instances suggest this is probably the best. All experiments

were limited to the 15 minutes time bound.

Comparing to DeFault: We present our comparison between PISA and DeFault on five

domains: Freecell, Parcprinter, Rover, Satellite and Zenotravel; DeFault cannot parse the

other domains. We note that, although DeFault reads domain files describing operators

with annotations, it assumes all annotations are specified at the grounded (or instantiated)
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level. Thus, we follow the same treatment by assuming possible preconditions and effects

of grounded actions are all independent; the incompleteness amount can go up to, for in-

stance in the Freecell domain, K = 73034 annotations (many of them however might be

irrelevant to the actions in a resulting plan). We use the best configuration of DeFault:

prime implicant heuristics with size k = 2 and 2GB RAM as suggested, running it in the

anytime mode.

Figure 3.4 shows the number of instances for which PISA generates plans having bet-

ter, equal and worse robustness values compared to DeFault.12 Since the planners run in

their anytime mode, returning plans with increasing plan robustness, we use the last plans

produced by them in this comparison. Out of five domains, PISA generates better plans

than DeFault in more instances of the four domains Freecell, Parcprinter, Satellite, Zeno-

travel, and a bit less in the Rover domain. More specifically, the percentage of instances

for which PISA returns plans with equal or better robustness are always more than 50%

in all domains: 61% in Freecell, 65% in Parcprinter, 53% in Rover, 60% in Satellite and

78.5% in Zenotravel. The percentages of instances with strictly better robustness in these

domains respectively are 55.8%, 61.1%, 45.8%, 46.1% and 56.4%.

Robustness ratio: Regarding the robustness value, we calculate the ratio of best robust-

ness values of plans retured by PISA to those by DeFault. Note that in this comparison,

we consider only instances for which both planners return valid plans. These ratios are:

8069.65 in Freecell, 166.36 in Parcprinter, 1.78 in Rover, 135.97 in Satellite and 898.66

in Zenotravel. Thus, on average, PISA produces plans with significantly higher robustness

than DeFault.

Planning time: Not only does PISA produce higher quality for plans, it also takes

much less planning time.13 To demonstrate this, we first consider instances for which the

12We ignore instances for which both planners fail to return any valid plan; for comparing instances with

equal robustness, we only consider those for which both planner return valid plans.
13In running time comparison, we consider only instances in which both planners produce valid plans
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Figure 3.4: Number of instances for which PISA produces better, equal and worse robust

plans than DeFault.

two approaches return best plans with the same robustness values. Figure 3.5 shows the

total time taken by PISA and DeFault in these instances. We observe that in 95 instances of

Freecell domain that the two approaches produce equally robust plans, PISA is faster in 72

instances, and slower in the remaining 23 instances—thus, it wins in 75.8% of instances.

Comparing the ratio of planning times, PISA is actually 654.7x faster, on average, than

DeFault in these 95 instances. These faster vs. slower instances and the planning time ratio

are 8 vs. 2 (80.0%) and 29.6x for Parcprinter, 103 vs. 10 (91.1%) and 1665x for Rover,

281 vs. 28 (90.9%) and 562.7x for Satellite, 329 vs. 86 (79.3%) and 482.9x for Zenotravel.

What is more interesting, in many cases, PISA is faster than Default, even when it

produces significantly more robust plans. To show this, we again considered the last plan

returned by each planner within the time bound, and the time when it was returned. Even for

instances where the plan returned by PISA has strictly better robustness than that returned

by DeFault, PISA often managed to return its plan significantly earlier. For example, in

within the time bound.
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Figure 3.5: Total time in seconds (log scale) to generate plans with the same robustness by

PISA and DeFault. Instances below the red line are those in which PISA is faster.

65.4% of such instances in Freecell domain (315 out of 482), the planning time of PISA is

also faster. These percentanges of instances in Parcprinter, Rover, Satellite and Zenotravel

are 52.8% (28 out of 53), 87.8% (144 out of 164), 55.9% (555 out of 992) and 46.5% (491

out of 1057) respectively. We also notice that PISA is faster than DeFault in synthesizing

the first valid plans (that is, plans π such that γ̃SE(π, I) ⊇ G) for most of the instances in

all domains: 84.9% (960 out of 1130) instances in Freecell domain, 94% (141 out of 150)

in Parcprinter, 98.1% (789 vs. 804) in Rover, 93.4% (1999 out of 2140) in Satellite and

92.4% (1821 out of 1971) in Zenotravel. We think that both the search and the fact that

our heuristic is sensitive to the robustness threshold, so that it can perform pruning during

search, contribute to the performance of PISA in planning time.

Comparing with baseline approaches: We also compare PISA with an approach in which

the relaxed plans are extracted in the similar way used in the FF planner Hoffmann and

Nebel (2001). In this approach, all annotations on possible preconditions and effects are

ignored during the relaxed plan extraction. Note that all the other designs in PISA (such

as checking l(Σπk
∧Σπ̃) against δ and the search algorithm) still remain the same. Unlike

the earlier comparison with DeFault, incompleteness annotations are now applied at the

operator level. PISA outperforms this FF-like heuristic approach in five domains: in partic-

ular, it produces better plans in 72.9% and worse in 8.3% instances of the Depots domain;

similarly, 75.3% and 4.2% instances of Driverlog, 70.2% and 2.9% for Rover, 84.1% and
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1.8% for Satellite, 61% and 8.3% in Zenotravel. PISA however is not as good as this base-

line approach in the other two domains: it returns worse plans in 53.1% and only better in

12.4% instances of Freecell; the corresponding percentages in Parcprinter are 50.5% and

13.1%.

In the second baseline approach, we use exact model counting WMC(Σ) during the ex-

traction of relaxed plans, replacing the approximation l(Σ). This approach, as anticipated,

spends most of the running time for the exact model counting. The results are discouraging,

thus we will not go into the details.

Discussion: The high level ideas of the heuristic approach presented in this section might

also be useful for a similar approach under the GE semantics, however with additional

challenges. In particular, the special property used for approximating plan robustness under

the SE semantic no longer holds for GE semantics, thus the proposed lower and upper

bounds are inapplicable. One might attempt to investigate the application of the work on

approximate model counting, c.f. (Wei and Selman, 2005; Gomes et al., 2006), for the

encoding for plan correctness under the GE semantics in Section 3.6.0.1.

3.9 Summary

This chapter addresses planning problems with incomplete domain models. The incom-

pleteness of the domains is annotated with possible preconditions and effects of actions

with the meaning that some of these will be the real ones. To quantify the quality of plans,

a robustness measure is defined to capture the probability of success for plans during ex-

ecution. We consider two semantics for the execution of plans, and propose two methods

for generating robust plans under these semantics. The first approach which compiles the

synthesis problem into conformant probabilistic planning problems can be used for both

two semantics. The heuristic approach is proposed to directly use the robustness measure

during search, utilizing specific properties of the correctness constraints for plans under
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the STRIPS Execution semantics. The resulting planner is much more scalable than the

compilation approach, and outperforms DeFault, which can handle incomplete STRIPS

models.
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Chapter 4

CONCLUSION AND FUTURE DIRECTIONS

4.1 Conclusion

This dissertation addresses planning problems in which either the user preferences or the

domain models are incompletely specified. For the incomplete user preferences, we con-

sider two scenarios: (1) when the user has preferences about plans but is completely un-

known about her preferences, and (2) when the user can only partially express her prefer-

ences. For the incomplete domain models, we study planning situations when the domain

is annotated with possible preconditions and effects (in addition to the known preconditions

and effects).

For each of these above scenarios, the first issue is how to define the solution of the

planning problems. For the incomplete user preferences, the planner’s job is to present a set

of plans to the user so that she can select one plan, and thus we propose several measures for

evaluating plan sets with respect to the amount of knowledge about the user preferences. In

particular, they are diversity measures for plan sets based on distance measures between two

plans for the case of unknown preferences, and the Integrated Preference Function (IPF)

(Carlyle et al., 2003) in the situations of partially specified preferences. We investigate

methods for generating plan sets with these measures. In particular, approaches based on

GP-CSP (Do and Kambhampati, 2001) and LPG (Gerevini et al., 2003) are discussed for

diversity measure; and a spectrum of approaches for generating plan sets with the IPF

measure is presented and implemented on top of Metric-LPG (Gerevini et al., 2008) for

partially specified user preferences.

The solution concept for planning problems with incomplete domain models is intro-
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duced with the notion of plan robustness. It is computed with the set of candidate complete

models under which the plan succeeds, thus correctly captures the probability of plan suc-

cess. This work considers two execution semantics for plans: the Generous Execution and

STRIPS Execution semantics. The difference between the two semantics is how an action’s

failure affects plan execution. The problem of assessing plan robustness is also considered

and shown to be #P -complete. Two approaches are considerred for synthesizing robust

plans—the compilation approach and the heuristic search approach. While the first one is

more intuitive, its performance appears to be limited to small planning instances only. The

heuristic approach is much more scalable, and in this work we fully develop it under the

STRIPS semantics, exploiting the structures of plan correctness constraints in order to ap-

proximate robustness measures. These approximations are then used during the extraction

of robust relaxed plans to estimate the heuristic distance to goals. The resulting planner,

PISA, outperforms a state-of-the-art planner, DeFault (Weber and Bryce, 2011), in both

plan quality and planning time.

4.2 Future Directions

The discussion in Section 2.7 outlines some limitations, challenges and also opportunities

for further studies on planning with incomplete user preferences. We also presented in

Section 3.5 a spectrum of planning problems given incomplete domain models; this work

addresses two of them, the problems of assessing plan robustness and synthesizing robust

plans. There are still several other interesting problems and directions for further research

on planning with the presence of incomplete user preferences and/or domain models; in

this section we will discuss in more detailed the situations when both the user preferences

and domain models are incompletely specified.

In particular, we discuss an outlook on quality measures for plan sets for planning

scenarios when both the user preferences and domain models are incomplete. The repre-
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sentations of the two types of incompleteness follow the formulations used throughout this

dissertation. In particular, we consider a planning problem with the user preferences and

the domain model specified as follows.

• A user has preferences on solution plans of a problem, however she either does not

know how to express her preferences (“unknown preferences”), or is able to specify

only part of it (“partially specified preferences”). In the latter case, we consider a

situation where the user is interested in minimizing values of a set of plan attributes

such as plan makespan and execution cost, and their trade-off vector α ∈ Λ is un-

known and modeled with a distribution function h(α). A specific vector α represents

the preferences of a particular user in that she will compare plan using a value func-

tion V (π, α)—assuming lower value is better. To make our discussion general, we

do not assume a convex combination value function in this section.

• The domain model D̃ is incompletely specified with incomplete actions a having

possible preconditions and effects P̃ re(a), Ãdd(a), D̃el(a) (in addition to certain

ones Pre(a), Add(a) and Del(a)). Given such an incomplete model, the robustness

of a plan π for a planning problem P̃ is denoted by R(π), which represents the

probability that π succeeds to achieve all goals of P̃ .

Recall that our research proposes plan sets as a solution concept for planning problems

with incomplete user preferences. When the user preferences are completely unknown

and the domain model is known to be incomplete, one can include plan robustness on top

of the current formulation of diversity measures. It results in for example the notion of

dDISTANTkSET for plans with at least a robustness value ρ, which can be chosen by the

user.

We now discuss the case of partially specified preferences. Given a plan set Π =

{π1, ..., π|Π|}, the user selects one plan π∗ in the set based on a value function V (π, α)
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and her unknown trade-off value α∗. The value (or penalty in our “minimization” case)

she pays will be V (π∗, α∗). As described in Section 2.4.2, the IPF measures the expected

penalty the user will pay from a given plan set. When domain incompleteness comes into

play, plan π∗ may not be guaranteed to achieve the goals. We assume that when π∗ turns

out to fail during execution, a penalty M > 0 will be incurred. A “natural” question then

is how the expected penalty of a plan set should be computed.

The presence of domain incompleteness suggests that, in addition to the random vari-

able α, we also need to consider a second random variables eπ for each plan π ∈ Π. The

variables eπ take value 1 for the case that π succeeds with probability Pr(eπ = 1) = R(π),

and 0 for its failure during execution with probability Pr(eπ = 0) = 1 − R(π). Note that

with the assumption that the two sources of incompleteness, user preferences and domain

models, are irrelevant, the two random variables α and eπ are independent.

Using the notations in Section 2.4.2, we denote Π∗ ⊆ Π as the set of plans that are non-

dominated with some value of α, and π−1
α as the non-empty range of α for which π ∈ Π∗ is

the best plan. A plan π ∈ Π∗ will be selected by the user with a probability
∫

α∈π−1
α

h(α) dα.

Since the robustness value of π does not change after it is selected, for a given α ∈ π−1
α ,

the user pays a penalty V (π, α) with a probability R(π), and M with probability 1−R(π);

thus V ′(π, α) = R(π) V (π, α)+ (1−R(π)) M in average (given α). The expected penalty

she will pay when selecting plan π ∈ Π∗ therefore is equal to:

∫

α∈π−1
α

h(α)V ′(π, α) dα. (4.1)

Taking plan robustness into account, our robustness-sensitive IPF measure for a plan-

ning problem with incomplete domain model P̃ , denoted by IPF(Π, P̃), calculates the ex-

pected penalty that a user will pay by selecting one plan in Π. It can be computed as

follows:
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IPF(Π, P̃) =
∑

π∈Π∗

∫

α∈π−1
α

h(α)V ′(π, α) dα

=

[
∑

π∈Π∗

R(π)

∫

α∈π−1
α

h(α) V (π, α) dα

]
+ M

[
1−

∑

π∈Π∗

R(π)

∫

α∈π−1
α

h(α) dα

]
.

The last equation gives an intuition on the two expected penalty quantities that the user

will pay in two different situations: the first term is the expected penalty incurred when the

chosen plan turns out to be successful, and the second term is the expected cost paid when

it fails. Also note that the first equation means that IPF(Π, P̃) is in fact the IPF defined

with new value function V ′, instead of V .

Having established a variant of IPF measure for planning problems with both incom-

plete preferences and domain models, one question arises is what interesting property that

can be guaranteed by the measure. In the following, we will show that under certain condi-

tions, similar to IPF, the robustness-sensitive IPF measure does not contradicts with the set

Pareto dominance relation between plan sets, defined as follows.

Set Pareto Dominance (Carlyle et al., 2003) Let {Ap} and {Bp} be approximate sets

generated by competing heuristics, and {Ap} ∪ {Bp} ≡ {C}. Let {Cp} denote the set of

nondominated solutions from {C}. If {Cp} ≡ {Ap} and {Cp} ∩ {Bp} ⊂ {Ap}, then set

{Ap} is said to dominate set {Bp} in set Pareto dominance sense and vice versa.

Carlyle et al. show, in Theorem 1 (Carlyle et al., 2003), that for regular function

V (π, α) (i.e., if π1 is dominated by π2, then V (π1, α) > V (π2, α) for any α), if solu-

tion set Π1 is dominated by Π2 in the set Pareto dominance sense, then the IPF value of

Π2 is less than or equal to that of Π1. This monotonicity property is desirable for quality

measures for solution sets (Zitzler et al., 2008); there are currently only two set measures

satisfying this property: IPF and Hypervolume. We will show that the robustness-sensitive

IPF measure also has this property under a slightly stronger condition on V and a choice of

M .
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Theorem 7. Given a regular function V (π, α) such that 0 < V (π, α) < Vmax (for all plans

π and vector α), two plan sets Π1 and Π2 for problem P̃ such that Π1 is dominated by Π2

in the set Pareto dominance sense with respect to the plan robustness attribute1 and those

of the user’s interest, then IPF(Π1, P̃) ≥ IPF(Π2, P̃) with M = Vmax.

Proof. Consider the value function V ′(π, α) = R(π) V (π, α) + (1 − R(π)) Vmax. Given

two plans π1, π2 such that π1 is dominated by π2 and R(π1) < R(π2), it can be shown

that V ′(π1, α) > V ′(π2, α). In other words, V ′(π, α) is regular with respect to the plan

robustness and attributes of the user’s interest.

Now following the proof of Theorem 1 (Carlyle et al., 2003) for regular function V ′,

instead of V , we can prove that IPF(Π1, P̃) ≥ IPF(Π2, P̃).

The the extended value function V ′(π, α) is both intuitive (in the sense that it captures

the expected penalty incurred in two scenarios: the plan succeeds or fails), and can be tuned

so that the resulting IPF measure has the nice monotonicity property.

1Different from attributes of the user’s interest, for plan robustness attribute, higher value is consider

better.
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