
PLANNING WITH INCOMPLETE

USER PREFERENCES AND

DOMAIN MODELS

Tuan Anh Nguyen

Graduate Committee Members:

Subbarao Kambhampati (Chair)

Chitta Baral

Minh B. Do

Joohyung Lee

David E. Smith

2

MOTIVATION

Automated Planning
Research:

 Actions

 Preconditions

 Effects
 Deterministic

 Non-deterministic

 Stochastic

 Initial situation

 Goal conditions

 What a user wants
about plans

 Find a (best) plan!

In practice…

 Action models are not

available upfront

 Cost of modeling

 Error-prone

 Users usually don’t

exactly know what

they want

 Always want to see

more than one plan

Planning with incomplete user preferences

and domain models

Preferences in Planning – Traditional

View

 Classical Model: “Closed world” assumption
about user preferences.

 All preferences assumed to be fully
specified/available

 Two possibilities

 If no preferences specified —then user is
assumed to be indifferent. Any single feasible
plan considered acceptable.

 If preferences/objectives are specified, find a plan
that is optimal w.r.t. specified objectives.

 Either way, solution is a single plan

Full Knowledge

 of Preferences

3 3

Preferences in Planning—Real

World

 Real World: Preferences not fully known

Full Knowledge

of Preferences is

lacking

4

Unknown preferences
 For all we know, user may care about every thing

--- the flight carrier, the arrival and departure
times, the type of flight, the airport, time of travel
and cost of travel…

Partially known
 We know that users cares only about travel time

and cost. But we don’t know how she combines
them…

4

Domain Models in Planning –

Traditional View

 Classical Model: “Closed world” assumption
about action descriptions.

 Fully specified preconditions and effects

 Known exact probabilities of outcomes

Full Knowledge

 of domain models

5

pick-up
:parameters (?b – ball ?r – room)

:precondition

 (and (at ?b ?r) (at-robot ?r) (free-gripper))

:effect

 (and (carry ?b) (not (at ?b ?r)) (not (free-gripper)))

5

Domain Models in Planning – (More)

Practical View

6

 Completely modeling the domain dynamics

 Time consuming

 Error-prone

 Sometimes impossible

 What does it mean by planning with incompletely
specified domain models?

 Plan could fail! Prefer plans that are more likely to
succeed…

 How to define such a solution concept?

6

Problems and Challenges

7

 Incompleteness representation

7

 Solution concepts

 Planning techniques

DISSERTATION OVERVIEW

8

“Model-lite” Planning

Preference

incompleteness

Domain

incompleteness

 Representation

 Solution concept

 Solving techniques

 Representation

 Solution concept

 Solving techniques

DISSERTATION OVERVIEW

9

“Model-lite” Planning

Preference

incompleteness

Domain

incompleteness

 Representation: two levels
of incompleteness

 User preferences exist, but
totally unknown

 Partially specified

 Complete set of plan
attributes

 Parameterized value
function, unknown
trade-off values

 Representation

 Actions with possible
preconditions / effects

 Optionally with weights
for being the real ones

 Solution concept: plan sets

 Solving techniques:

synthesizing high quality
plan sets

 Solution concept: “robust”
plans

 Solving techniques:
synthesizing robust plans

DISSERTATION OVERVIEW

10

“Model-lite” Planning

Preference

incompleteness

 Representation: two levels
of incompleteness

 User preferences exist, but
totally unknown

 Partially specified

 Full set of plan
attributes

 Parameterized value
function, unknown
trade-off values

 Solution concept: plan sets
with quality

 Solving techniques:
synthesizing quality plan sets

 Distance measures w.r.t.
base-level features of plans
(actions, states, causal links)

 CSP-based and local-search
based planners

  IPF/ICP measure

 Sampling, ICP and Hybrid
approaches

DISSERTATION OVERVIEW

11

“Model-lite” Planning

Preference

incompleteness

Domain

incompleteness

 Representation: two levels
of incompleteness

 User preferences exist, but
totally unknown

 Partially specified

 Full set of plan
attributes

 Parameterized value
function, unknown
trade-off values

 Representation

 Actions with possible
preconditions / effects

 Optionally with weights
for being the real ones

 Solution concept: plan sets

 Solving techniques:

synthesizing high quality
plan sets

 Solution concept: “robust”
plans

 Solving techniques:
synthesizing robust plans

Publication

 Domain independent approaches
for finding diverse plans. IJCAI
(2007)

 Planning with partial preference
models. IJCAI (2009)

 Generating diverse plans to
handle unknown and partially
known user preferences. AIJ 190
(2012)

(with Biplav Srivastava, Subbarao

Kambhampati, Minh Do, Alfonso

Gerevini and Ivan Serina)

Publication

 Assessing and Generating
Robust Plans with Partial
Domain Models. ICAPS-WS
(2010)

 Synthesizing Robust Plans under
Incomplete Domain Models.
AAAI-WS(2011), NIPS (2013)

 A Heuristic Approach to
Planning with Incomplete
STRIPS Action Models. ICAPS
(2014)

(with Subbarao Kambhampati,

 Minh Do)

PLANNING WITH INCOMPLETE DOMAIN

MODELS

12

REVIEW: STRIPS

Predicate set R: clear(x – object), on-
table(x – object), on(x – object, y – object),
holding(x – object), hand-empty

Operators O:

 Name (signature): pick-up(x – object)

 Preconditions: hand-empty, clear(x)

 Effects: ~hand-empty, holding(x), ~clear(x)

A single complete model!
13

PLANNING PROBLEM WITH STRIPS

Set of typed objects {𝑜1, … , 𝑜𝑘}

 Together with predicate set 𝑃, we have a set of

grounded propositions 𝐹

 Together with operators 𝑂, we have a set of

grounded actions 𝐴

 Initial state: 𝐼 ∈ 𝐹

Goals: 𝐺 ⊆ 𝐹

14

PLANNING PROBLEM WITH STRIPS (2)

Find: a plan 𝜋 achieves 𝐺 starting from 𝐼:
𝛾 𝜋, 𝐼 ⊇ 𝐺.

 Transition function:

 𝛾 𝑎 , 𝑠 = 𝑠 ∪ 𝐴𝑑𝑑 𝑎 ∖ 𝐷𝑒𝑙(𝑎) for applying 𝑎 ∈ 𝐴
in 𝑠 ⊆ 𝐹 s.t. 𝑃𝑟𝑒 𝑎 ⊆ 𝑠.

 Applying 𝜋 = 〈𝑎1, … , 𝑎𝑛〉 at state 𝑠: 𝛾 𝜋, 𝑠 =
𝛾(𝑎𝑛 , 𝛾(𝑎2, … , 𝑎𝑛−1 , 𝑠))

15

INCOMPLETE DOMAIN MODELS

 Predicate set 𝑹: clear(x – object), on-table(x – object),
on(x – object, y – object), holding(x – object), hand-
empty, light(x – object), dirty(x – object)

 Operators 𝑶
 Name (signature): pick-up(x – object)

 Preconditions: hand-empty, clear(x)

 Possible preconditions: light(x)

 Effects: ~hand-empty, holding(x), ~clear(x)

 Possible effects: dirty(x)

 Incomplete domain 𝑫 = 〈𝑹,𝑶〉
 At “schema” level with typed variables (no objects)

 With K “annotations”, we have 2𝐾 possible complete models,
one of which is the true model.

 16

Incompleteness

in deterministic

domains

Stochastic domains

PLANNING PROBLEM WITH INCOMPLETE

DOMAIN

Set of typed objects {𝑜1, … , 𝑜𝑘}
 Together with predicate set 𝑃, we have a

set of grounded propositions 𝐹

 Together with operators 𝑂, we have a set of
grounded actions 𝐴

Initial state: 𝐼 ∈ 𝐹

Goals: 𝐺 ⊆ 𝐹

Find: a plan 𝜋 “achieves” 𝐺 starting
from 𝐼
 An ill-defined solution concept!

 Need a definition for “goal achievement”
17

TRANSITION FUNCTION

18

 Under 𝑫 , applying 𝝅 in s results in a set of possible

states:

𝜸 𝝅, 𝒔 = 𝜸𝑫𝒊(𝝅, 𝒔)

𝑫𝒊∈≪𝑫 ≫

 The probability of ending up in 𝒔′ ∈ 𝜸(𝝅, 𝒔) is equal

to

 𝑷𝒓(𝑫𝒊)

𝑫𝒊∈≪𝑫 ≫, 𝒔
′=𝜸𝑫𝒊(𝝅,𝒔)

where 𝑷𝒓 (𝑫𝒊) is the probability of 𝑫𝒊 being the true

model.

TRANSITION FUNCTION

20

 STRIPS Execution (SE):

 Generous Execution (GE):

𝜸𝑫(𝒂 , 𝒔):

𝛾𝐺𝐸
𝐷 (〈𝑎〉, 𝑠) =

 𝑠 ∖ 𝐷𝑒𝑙𝐷 𝑎 ∪ 𝐴𝑑𝑑𝐷 𝑎 , 𝑖𝑓 𝑃𝑟𝑒𝐷 𝑎 ⊆ 𝑠
𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝛾𝑆𝐸
𝐷 (〈𝑎〉, 𝑠) =

 𝑠 ∖ 𝐷𝑒𝑙𝐷 𝑎 ∪ 𝐴𝑑𝑑𝐷 𝑎 , 𝑖𝑓 𝑃𝑟𝑒𝐷 𝑎 ⊆ 𝑠
𝑠⊥ = {⊥} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⊥ ∉ 𝐹 𝑃𝑟𝑒𝐷 𝑎 ⊈ 𝑠⊥, 𝐺 ⊈ 𝑠⊥

21
 Proposition set 𝐹 = {𝑝1, 𝑝2, 𝑝3}  Initial state 𝐼 = {𝑝2}

 Goal 𝐺 = {𝑝3}

A MEASURE FOR PLAN ROBUSTNESS

 Naturally, we prefer plan that succeeds in as

many complete models as possible

22

𝑅 𝜋 =
|Π|

2𝐾

RGE 𝜋 = 6/8

RGE 𝜋 = 4/8

𝑹𝑺𝑬 𝝅 ≤ 𝑹𝑮𝑬(𝝅)

A BIT MORE GENERAL…

 Predicate set 𝑹: clear(x – object), on-table(x –

object), on(x – object, y – object), holding(x – object),

hand-empty, light(x – object), dirty(x – object)

 Operators 𝑶

 Name (signature): pick-up(x – object)

 Preconditions: hand-empty, clear(x)

 Possible preconditions: light(x) with a weight of 0.8

 Effects: ~hand-empty, holding(x), ~clear(x)

 Possible effects: dirty(x) with an unspecified weight

 Treat weights as probabilities with random

variables

 Robustness measure:

23 𝑹 𝝅 ≝ 𝐏𝐫 (𝑫𝒊)

𝑫𝒊 ∈ 〈〈𝑫 〉〉:𝜸
𝑫𝒊 𝝅,𝑰 ⊨𝑮

CONTENT

A measure for plan quality

 Robustness of plan 𝑅 𝜋 ∈ [0,1]

Plan robustness assessment

 Reduced to weighted model counting

 Complexity

Synthesizing robust plans

 Compilation approach

 Heuristic search approach

24

PLAN ROBUSTNESS ASSESSMENT

Computation:

 Given 𝐷 , 𝑃 = 〈𝐹, 𝐴, 𝐼, 𝐺〉, a plan 𝜋

 Construct a set of correctness constraints 𝚺(𝝅) for

the execution of 𝜋:
 State transitions caused by actions are correct.

 The goal 𝐺 is satisfied in the last state.

 Then: 𝑅(𝜋) is computed from the weighted

model count of 𝚺(𝝅)
25

26

𝐼 𝐺
𝜋

𝚺(𝝅)

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ 𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝒑𝒂𝒎
𝒅𝒆𝒍 ⇒ 𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ (𝒑𝒂𝒎

𝒅𝒆𝒍 ⇒ 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

)

PLAN ROBUSTNESS ASSESSMENT

Complexity

The problem of computing 𝑅(𝜋) for a plan π to a problem

〈D , I, G〉 is #P-complete.

Membership:

 Have a Counting TM non-deterministically guess a

complete model, and check the correctness of the plan.

 The number of accepting branches output: the number

of complete models under which the plan succeeds.

Completeness:

 There exists a counting reduction from the problem of

counting satisfying assignments for Monotone-2-SAT

problem to Robustness-Assessment (RA) problem

27

CONTENT

A measure for plan quality

 Robustness of plan 𝑅 𝜋 ∈ [0,1]

Plan robustness assessment

 Reduced to weighted model counting

 Complexity

Synthesizing robust plans

 Compilation approach

 Heuristic search approach

28

COMPILATION APPROACH

 The realization of possible preconditions / effects is

determined by unknown variables 𝑝𝑎
𝑝𝑟𝑒

, 𝑝𝑎
𝑎𝑑𝑑, 𝑝𝑎

𝑑𝑒𝑙

 Thus, can be compiled away using “conditional effects”

 If 𝑝𝑎
𝑝𝑟𝑒
= 𝑡𝑟𝑢𝑒 then 𝑝 is a precondition of 𝑎.

 Domain incompleteness  State incompleteness

 Conformant probabilistic planning problem!

29

COMPILATION EXAMPLE

Compiled “pick-up”

30

COMPILATION: EXPERIMENTAL RESULTS

 Using Probabilistic-FF planner (Domshlak &

Hoffmann, 2006)

 Synthesizing Robust Plans under Incomplete Domain Models

 (NIPS 2013)

 Normally fails with large problem instances
31

Incomplete

Logistics

domain

CONTENT

A measure for plan quality

 Robustness of plan 𝑅 𝜋 ∈ [0,1]

Plan robustness assessment

 Reduced to weighted model counting

 Complexity

Synthesizing robust plans

 Compilation approach

 Heuristic search approach

32

APPROXIMATE TRANSITION FUNCTION

33

 Not explicitly maintain set of resulting states

 Successor state:

𝛾 𝑆𝐸 𝑎 , 𝑠 = 𝑠 ∪ 𝐴𝑑𝑑 𝑎 ∪ 𝐴𝑑𝑑 𝑎 ∖ 𝐷𝑒𝑙 𝑎 , 𝑖𝑓 𝑃𝑟𝑒 𝑎 ⊆ 𝑠

 Possible delete effects might not take effects!

 Recursive definition for 𝛾 𝑆𝐸(𝜋, 𝑠)

Completeness: Any solution in the complete STRIPS

action model exists in the solution space of the problem with

incomplete domain.

Soundness: For any plan returned under incomplete

STRIPS domain semantics, there is one complete STRIPS

model under which the plan succeeds.

𝜸 𝝅, 𝒔 = 𝜸𝑫𝒊(𝝅, 𝒔)

𝑫𝒊∈≪𝑫 ≫

ANYTIME APPROACH FOR GENERATING

ROBUST PLANS

1. Initialize: 𝛿 = 0

2. Repeat

 Find plan 𝜋 s.t. 𝑅 𝜋 > 𝛿 (Stochastic)

 If plan found: 𝛿 = 𝑅(𝜋)

 Until time bound reaches

3. Return 𝜋 and 𝑅(𝜋) if plan found

34

USE OF UPPER BOUND

 Reduce exact weighted model counting

35

𝐼

𝑠

𝜋

If (𝐺 ⊆ 𝑠) and 𝑈 𝜋 > 𝛿
then 𝑤𝑚𝑐(𝜋)

𝑼 𝝅 ≥ 𝒘𝒎𝒄(𝝅) (Upper bound for 𝑅(𝜋))

USE OF LOWER BOUND

 How to…

 Compute ℎ 𝑠, 𝛿 = |𝜋 |

37

𝐼
𝑠 𝑠G 𝜋𝑘 𝜋

Find: 𝝅 s.t. wmc 𝜋𝑘 ∘ 𝜋 > 𝛿

Avoid invoking 𝑤𝑚𝑐 ∘ during the construction of 𝜋 !

Find: 𝝅 s.t. L 𝜋𝑘 ∘ 𝜋 > 𝛿

𝐋 𝝅 ≤ 𝒘𝒎𝒄(𝝅) (Lower bound for 𝑅(𝜋))

LOWER BOUND FOR 𝑹(𝝅)

38

𝚺(𝝅)

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ 𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝒑𝒂𝒎
𝒅𝒆𝒍 ⇒ 𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ (𝒑𝒂𝒎

𝒅𝒆𝒍 ⇒ 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

)

LOWER BOUND FOR 𝑹(𝝅)

39

𝚺(𝝅)

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

¬𝒑𝒂𝒊
𝒑𝒓𝒆
 ∨ 𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

¬𝒑𝒂𝒎
𝒅𝒆𝒍 ∨ 𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

¬𝒑𝒂𝒊
𝒑𝒓𝒆
∨ ¬𝒑𝒂𝒎

𝒅𝒆𝒍 ∨ 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝒘 ¬𝒑 = 𝟏 −𝒘(𝒑)

 Σ(𝜋) as a set of clauses with positive literals.

LOWER BOUND FOR 𝑹(𝝅)

40

Given positive clauses 𝑐, 𝑐′ : Pr 𝑐 𝑐′) ≥ Pr(𝑐)

Given Σ 𝜋 = {𝑐1, 𝑐2, … , 𝑐𝑛} :

𝑤𝑚𝑐 Σ 𝜋 = Pr 𝑐1 ∧ 𝑐2 ∧ ⋯∧ 𝑐𝑛

 = Pr 𝑐1 Pr 𝑐2 𝑐1 …Pr 𝑐𝑛 𝑐𝑛−1, … , 𝑐1

 ≥ Pr(𝑐𝑖)

𝑐𝑖∈Σ(𝜋)

𝐿 𝜋 = Pr (𝑐𝑖)

𝑐𝑖∈Σ(𝜋)

 ≤ 𝑅(𝜋)

(Equality holds when all

clauses are independent)

UPPER BOUND FOR 𝑅(𝜋)

41

Σ 𝜋 = {𝑐1, … , 𝑐𝑛}

An (trivial) upper bound:

 𝑈 𝜋 ≥ min
𝑐𝑖∈Σ(𝜋)

Pr (𝑐𝑖)

A much tighter bound:

¬𝑝 𝑝

𝑎𝑖

 𝑝𝑎𝑘
𝑎𝑑𝑑

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

𝑎𝑘

𝑝

𝐼 𝐺

• Clauses contains variables

corresponding to one specific

predicate

• Thus, Σ(𝜋) is highly

decomposable into “connected

components”

𝑈 𝜋 = min
𝑐∈Σ𝑗
Pr (𝑐)

𝑗

{𝒙𝟏, 𝒙𝟐} {𝒙𝟐, 𝒙𝟑} {𝒙𝟒, 𝒙𝟓}

FIND: 𝝅 S.T. 𝐋 𝝅𝒌 ∘ 𝝅 > 𝜹

 Build relaxed planning graph

 Ignoring known & possible delete effects

 Propagate clauses for propositions and actions

 Extract relaxed plan

42

𝐼
𝑠 𝑠G 𝜋𝑘 𝜋

RELAXED PLANNING GRAPH
PROPOSITIONAL LAYER 𝑳𝟏

43

𝑝𝑗 ¬𝑝𝑗

𝑰

𝐿1 = 𝑠𝑘+1 = 𝛾 𝑆𝐸(𝜋𝑘 , 𝐼)

𝜋𝑘

𝑎1 𝑎𝑘

Establishment

constraints (if

needed) and

protection

constraints for

𝑝𝑗 at state 𝑠𝑘+1

𝚺𝒑𝒋(𝟏)

RELAXED PLANNING GRAPH
ACTION LAYER 𝑨𝒕

44

𝑳𝒕

𝐴𝑡 = {𝑎 𝑎 ∈ 𝐴, 𝑃𝑟𝑒 𝑎 ⊆ 𝐿𝑡} ∪ {𝑛𝑜𝑜𝑝𝑝 𝑝 ∈ 𝐿𝑡}

𝑝𝑖

𝑝𝑗

𝑨𝒕

𝑎𝑚

𝚺𝒑𝒊(𝒕)

𝚺𝒑𝒋(𝒕)

𝑝𝑗 𝑎𝑚
𝑝𝑟𝑒

𝚺𝒂𝒎 𝒕 = 𝚺𝐩𝐢 𝐭 ∧ (𝒑𝒋 𝒂𝒎
𝒑𝒓𝒆
⇒ 𝚺𝐩𝐣(𝐭))

RELAXED PLANNING GRAPH
ACTION LAYER 𝑨𝒕

45

𝑳𝒕

𝐴𝑡 = {𝑎 𝑎 ∈ 𝐴, 𝑃𝑟𝑒 𝑎 ⊆ 𝐿𝑡} ∪ {𝑛𝑜𝑜𝑝𝑝 𝑝 ∈ 𝐿𝑡}

𝑝𝑖

𝑝𝑗

𝑨𝒕

𝚺𝒑𝒊(𝒕)

𝚺𝒑𝒋(𝒕)

𝒏𝒐𝒐𝒑𝒑𝒊

𝚺𝒑𝒊(𝒕)

𝒏𝒐𝒐𝒑𝒑𝒋

𝚺𝒑𝒋(𝒕)

RELAXED PLANNING GRAPH
PROPOSITIONAL LAYER 𝑳𝒕+𝟏

46

𝐿𝑡+1 = {𝑝 |𝑎 ∈ 𝐴𝑡, 𝑝 ∈ 𝐴𝑑𝑑 𝑎 ∪ 𝐴𝑑𝑑 𝑎 }

𝑨𝒕

𝑎𝑚

𝑎𝑙

𝑝𝑖

𝚺𝒂𝒎(𝒕)

𝚺𝒂𝒍(𝒕)

𝑳𝒕+𝟏

Σ𝑝𝑖 𝑡 + 1 = 𝑎𝑟𝑔𝑚𝑎𝑥Σ 𝑙(Σ ∧ Σ𝑘)

Σ ∈ {Σ𝑎𝑚 𝑡 , 𝑝𝑖 𝑎𝑙
𝑝𝑟𝑒
⇒ Σ𝑎𝑙(𝑡)}

𝚺𝒑𝒎(𝒕 + 𝟏)

RELAXED PLAN EXTRACTION
OVERVIEW

47

𝒈

𝐿𝑇 𝐿1 𝐴1 𝐴𝑇−1

𝑎5
𝒑𝟖

𝑝6

𝐿𝑇−1

𝑎1

𝑝4
𝑝2

Best supporting action

for 𝑔 at layer T

𝚺𝒑𝒊 𝒕 + 𝟏 = 𝒂𝒓𝒈𝒎𝒂𝒙𝚺 𝒍(𝚺 ∧ 𝚺𝒌)

𝑎3

 𝜋 in total order

 Succeed when:
 All know preconditions are supported

 𝑙 Σ𝑘 ∧ Σ𝜋′ > 𝛿

𝐿2

RELAXED PLAN EXTRACTION
WHEN TO INSERT ACTIONS?

 A supporting action 𝑎𝑏𝑒𝑠𝑡 is inserted only if

needed

 Depending on:

 Relation between: subgoal and “relaxed plan state”

 Robustness of the current 𝜋 and 𝜋 ∪ {𝑎𝑏𝑒𝑠𝑡}

48

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

RELAXED PLAN EXTRACTION
SUBGOAL V.S RP STATE

49

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

𝒑

RELAXED PLAN EXTRACTION

 𝑝 ∈ 𝑃𝑟𝑒 𝑎 , 𝑝 ∉ 𝑠→𝑎: insert 𝑎𝑏𝑒𝑠𝑡 into 𝜋

 This type of subgoal makes the relaxed plan

“incomplete”
50

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑
No actions in 𝜋𝑘
and 𝜋 supporting

this subgoal

RELAXED PLAN EXTRACTION

51

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

𝒔→𝒂
+

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

𝑎

𝒔→𝒂

+

𝒑

 For these subgoals, supporting actions inserted if the

insertion increases the robustness of the current relaxed

plan.

𝑙 Σ𝜋 ∧ Σ𝜋 ∪ 𝑎𝑏𝑒𝑠𝑡 > 𝑙(Σ𝜋 ∧ Σ𝜋)

RELAXED PLAN EXTRACTION

52

𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑
𝑎

𝒔→𝒂

+

𝒔→𝒂
+

𝒑

 For these subgoals, no supporting actions needed!

FIND 𝝅 S.T. 𝑹 𝝅 > 𝜹: SEARCH ALGORITHM

 Stochastic local search with failed bounded restarts (Coles et al.,

2007)

53

h s, 𝛿 = 100

𝛿 ∈ (0,1]

Depth bound

reached. Failed.

ℎ 𝑠′, 𝛿 = 55

𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 0

𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 1

𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 0

If 𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 𝑓𝑎𝑖𝑙𝑏𝑜𝑢𝑛𝑑
then double depth bound

ℎ 𝑠′′, 𝛿 = 0

Goal reached

𝑓𝑎𝑖𝑙𝑏𝑜𝑢𝑛𝑑 = 32, 64,128, …

𝒂𝟏𝟎

𝒂𝟏𝟐

𝒂𝟐𝟎
𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 2

If probecount = 𝑝𝑟𝑜𝑏𝑒𝑏𝑜𝑢𝑛𝑑
then increment 𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡

𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 0

Better state found.

𝛿 = 𝑅(𝜋)

ℎ(𝑠, 𝛿): how far it is

approximately from s to a

goal state so that the

resulting plan has

approximate robustness > 𝛿.

EXPERIMENTAL RESULTS

54
Number of instances for which PISA produces better, equal

and worse robust plans compared to DeFault.

 Domains:
 Zenotravel, Freecell, Satellite, Rover (215 domains x 10 problems =

2150 instances)

 Parc Printer (300 instances)

EXPERIMENTAL RESULTS

55

Total time in seconds (log scale) to generate plans with the

same robustness by PISA and DeFault.

DISSERTATION OVERVIEW

56

“Model-lite” Planning

Preference

incompleteness

Domain

incompleteness

 Representation: two levels
of incompleteness

 User preferences exist, but
totally unknown

 Partially specified

 Full set of plan
attributes

 Parameterized value
function, unknown
trade-off values

 Representation

 Actions with possible
preconditions / effects

 Optionally with weights
for being the real ones

 Solution concept: plan sets

 Solving techniques:

synthesizing high quality
plan sets

 Solution concept: “robust”
plans

 Solving techniques:
synthesizing robust plans

DISSERTATION OVERVIEW

57

“Model-lite” Planning

Preference

incompleteness

Domain

incompleteness

 Representation: two levels
of incompleteness

 User preferences exist, but
totally unknown

 Partially specified

 Full set of plan
attributes

 Parameterized value
function, unknown
trade-off values

 Representation

 Actions with possible
preconditions / effects

 Optionally with weights
for being the real ones

 Solution concept: plan sets

 Solving techniques:

synthesizing high quality
plan sets

 Solution concept: “robust”
plans

 Solving techniques:
synthesizing robust plans

Publication

 Domain independent approaches
for finding diverse plans. IJCAI
(2007)

 Planning with partial preference
models. IJCAI (2009)

 Generating diverse plans to
handle unknown and partially
known user preferences. AIJ 190
(2012)

(with Biplav Srivastava, Subbarao

Kambhampati, Minh Do, Alfonso

Gerevini and Ivan Serina)

Publication

 Assessing and Generating
Robust Plans with Partial
Domain Models. ICAPS-WS
(2010)

 Synthesizing Robust Plans under
Incomplete Domain Models.
AAAI-WS (2011), NIPS (2013)

 A Heuristic Approach to
Planning with Incomplete
STRIPS Action Models. ICAPS
(2014)

(with Subbarao Kambhampati,

 Minh Do)

THANK YOU!

Q & A

58

