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MOTIVATION 

Automated Planning 
Research: 

 Actions 

 Preconditions 

 Effects 
 Deterministic 

 Non-deterministic 

 Stochastic 

 Initial situation 

 Goal conditions 

 What a user wants 
about plans 

 Find a (best) plan! 

 

 

In practice… 

 Action models are not 

available upfront 

 Cost of modeling 

 Error-prone 

 Users usually don’t 

exactly know what 

they want 

 Always want to see 

more than one plan 

 

 

Planning with incomplete user preferences 

and domain models 



Preferences in Planning – Traditional 

View 

 Classical Model: “Closed world” assumption 
about user preferences.  

 All preferences assumed to be fully 
specified/available 

 

         Two possibilities 

 If no preferences specified —then user is 
assumed to be indifferent. Any single feasible 
plan considered acceptable.  

 If preferences/objectives are specified, find a plan 
that is optimal w.r.t. specified objectives. 

 

     Either way, solution is a single  plan 

Full Knowledge 

 of Preferences 

3 3 



Preferences in Planning—Real 

World 

 Real World: Preferences not fully known 

Full Knowledge 

of Preferences is 

lacking 
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Unknown preferences  
 For all we know, user may care about every thing 

--- the flight carrier, the arrival and departure 
times, the type of flight, the airport, time of travel 
and cost of travel… 

Partially known  
 We know that users cares only about travel time 

and cost. But we don’t know how she combines 
them… 
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Domain Models in Planning – 

Traditional View 

 Classical Model: “Closed world” assumption 
about action descriptions.  

 Fully specified preconditions and effects 

 Known exact probabilities of outcomes 

 

         

Full Knowledge 

 of domain models 
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pick-up 
:parameters (?b – ball ?r – room) 

:precondition 

   (and (at ?b ?r) (at-robot ?r) (free-gripper)) 

:effect 

   (and (carry ?b) (not (at ?b ?r)) (not (free-gripper))) 
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Domain Models in Planning – (More) 

Practical View 

6 

 Completely modeling the domain dynamics 

 Time consuming 

 Error-prone 

 Sometimes impossible 

 

 

 What does it mean by planning with incompletely 
specified domain models? 

 Plan could fail! Prefer plans that are more likely to 
succeed…  

 How to define such a solution concept? 
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Problems and Challenges 

7 

 Incompleteness representation 

7 

 Solution concepts 

 Planning techniques 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation 

 

 

 Solution concept 

 

 

 Solving techniques 

         

 Representation 

 

 

 Solution concept 

 

 

 Solving techniques 

         



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Complete set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

 Solution concept: plan sets 
with quality 

 Solving techniques: 
synthesizing quality plan sets 

 

         

 Distance measures w.r.t. 
base-level features of plans 
(actions, states, causal links) 

 CSP-based and local-search 
based planners 

 

          IPF/ICP measure 

 Sampling, ICP and Hybrid 
approaches 

 

         



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 

Publication 

 Domain independent approaches 
for finding diverse plans. IJCAI 
(2007) 

 Planning with partial preference 
models. IJCAI (2009) 

 Generating diverse plans to 
handle unknown and partially 
known user preferences. AIJ 190 
(2012) 

(with Biplav Srivastava, Subbarao 

Kambhampati, Minh Do, Alfonso  

Gerevini and Ivan  Serina) 

Publication 

 Assessing and Generating 
Robust Plans with Partial 
Domain Models. ICAPS-WS 
(2010) 

 Synthesizing Robust Plans under 
Incomplete Domain Models. 
AAAI-WS(2011), NIPS (2013) 

 A Heuristic Approach to 
Planning with Incomplete 
STRIPS Action Models. ICAPS 
(2014) 

(with Subbarao Kambhampati,  

 Minh Do) 



PLANNING WITH INCOMPLETE DOMAIN 

MODELS 

12 



REVIEW: STRIPS 

Predicate set R: clear(x – object), on-
table(x – object), on(x – object, y – object), 
holding(x – object), hand-empty 

 

Operators O: 

 Name (signature): pick-up(x – object) 

 Preconditions: hand-empty, clear(x) 

 Effects: ~hand-empty, holding(x), ~clear(x) 

 

A single complete model! 
13 



PLANNING PROBLEM WITH STRIPS 

Set of typed objects {𝑜1, … , 𝑜𝑘} 

 Together with predicate set 𝑃, we have a set of 

grounded propositions 𝐹 

 Together with operators 𝑂, we have a set of 

grounded actions 𝐴 

 

 Initial state: 𝐼 ∈ 𝐹 

 

Goals: 𝐺 ⊆ 𝐹 
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PLANNING PROBLEM WITH STRIPS (2) 

Find: a plan 𝜋 achieves 𝐺 starting from 𝐼: 
𝛾 𝜋, 𝐼 ⊇ 𝐺. 
 

 Transition function: 
 

 𝛾 𝑎 , 𝑠 = 𝑠 ∪ 𝐴𝑑𝑑 𝑎 ∖ 𝐷𝑒𝑙(𝑎) for applying 𝑎 ∈ 𝐴 
in 𝑠 ⊆ 𝐹 s.t. 𝑃𝑟𝑒 𝑎 ⊆ 𝑠. 
 

 Applying 𝜋 = 〈𝑎1, … , 𝑎𝑛〉 at state 𝑠: 𝛾 𝜋, 𝑠 =
𝛾( 𝑎𝑛 , 𝛾( 𝑎2, … , 𝑎𝑛−1 , 𝑠)) 
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INCOMPLETE DOMAIN MODELS 

 Predicate set 𝑹: clear(x – object), on-table(x – object), 
on(x – object, y – object), holding(x – object), hand-
empty, light(x – object), dirty(x – object) 

 Operators 𝑶 
 Name (signature): pick-up(x – object) 

 Preconditions: hand-empty, clear(x) 

 Possible preconditions: light(x) 

 Effects: ~hand-empty, holding(x), ~clear(x) 

 Possible effects: dirty(x) 

 Incomplete domain 𝑫 = 〈𝑹,𝑶〉 
 At “schema” level with typed variables (no objects) 

 With K “annotations”, we have 2𝐾 possible complete models, 
one of which is the true model. 
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Incompleteness 

in deterministic 

domains 

Stochastic domains 



PLANNING PROBLEM WITH INCOMPLETE 

DOMAIN 

Set of typed objects {𝑜1, … , 𝑜𝑘} 
 Together with predicate set 𝑃, we have a 

set of grounded propositions 𝐹 

 Together with operators 𝑂, we have a set of 
grounded actions 𝐴 

Initial state: 𝐼 ∈ 𝐹 

Goals: 𝐺 ⊆ 𝐹 

Find: a plan 𝜋 “achieves” 𝐺 starting 
from 𝐼 
 An ill-defined solution concept! 

 Need a definition for “goal achievement” 
17 



TRANSITION FUNCTION 

18 

 Under 𝑫 , applying  𝝅 in s results in a set of possible 

states: 

 

𝜸 𝝅, 𝒔 =  𝜸𝑫𝒊(𝝅, 𝒔)

𝑫𝒊∈≪𝑫 ≫

 

 

 The probability of ending up in 𝒔′ ∈ 𝜸(𝝅, 𝒔) is equal 

to 

 𝑷𝒓(𝑫𝒊)

𝑫𝒊∈≪𝑫 ≫, 𝒔
′=𝜸𝑫𝒊(𝝅,𝒔)

 

where 𝑷𝒓 (𝑫𝒊) is the probability of 𝑫𝒊 being the true 

model.  



TRANSITION FUNCTION 

20 

 

 

 STRIPS Execution (SE):  

 

 

 

 

 Generous Execution (GE): 

 

𝜸𝑫( 𝒂 , 𝒔): 

𝛾𝐺𝐸
𝐷 (〈𝑎〉, 𝑠) =  

  𝑠 ∖ 𝐷𝑒𝑙𝐷 𝑎 ∪ 𝐴𝑑𝑑𝐷 𝑎 , 𝑖𝑓 𝑃𝑟𝑒𝐷 𝑎 ⊆ 𝑠
𝑠,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛾𝑆𝐸
𝐷 (〈𝑎〉, 𝑠) =  

  𝑠 ∖ 𝐷𝑒𝑙𝐷 𝑎 ∪ 𝐴𝑑𝑑𝐷 𝑎 , 𝑖𝑓 𝑃𝑟𝑒𝐷 𝑎 ⊆ 𝑠
𝑠⊥ = {⊥} ,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

⊥ ∉ 𝐹 𝑃𝑟𝑒𝐷 𝑎  ⊈ 𝑠⊥, 𝐺 ⊈ 𝑠⊥ 
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 Proposition set 𝐹 = {𝑝1, 𝑝2, 𝑝3}  Initial state 𝐼 = {𝑝2} 

 Goal 𝐺 = {𝑝3} 



A MEASURE FOR PLAN ROBUSTNESS 

 Naturally, we prefer plan that succeeds in as 

many complete models as possible 

22 

𝑅 𝜋 =
|Π|

2𝐾
 

RGE 𝜋 = 6/8 

RGE 𝜋 = 4/8 

𝑹𝑺𝑬 𝝅  ≤ 𝑹𝑮𝑬(𝝅) 



A BIT MORE GENERAL… 

 Predicate set 𝑹: clear(x – object), on-table(x – 

object), on(x – object, y – object), holding(x – object), 

hand-empty, light(x – object), dirty(x – object) 

 Operators 𝑶 

 Name (signature): pick-up(x – object) 

 Preconditions: hand-empty, clear(x) 

 Possible preconditions: light(x) with a weight of 0.8 

 Effects: ~hand-empty, holding(x), ~clear(x) 

 Possible effects: dirty(x) with an unspecified weight 

 Treat weights as probabilities with random 

variables 

 Robustness measure: 

23 𝑹 𝝅 ≝  𝐏𝐫 (𝑫𝒊)

𝑫𝒊 ∈ 〈〈𝑫 〉〉:𝜸
𝑫𝒊 𝝅,𝑰 ⊨𝑮

 



CONTENT 

A measure for plan quality 

 Robustness of plan 𝑅 𝜋 ∈ [0,1] 

Plan robustness assessment 

 Reduced to weighted model counting 

 Complexity 

Synthesizing robust plans 

 Compilation approach 

 Heuristic search approach 
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PLAN ROBUSTNESS ASSESSMENT 

Computation: 

 

 Given 𝐷 , 𝑃 = 〈𝐹, 𝐴, 𝐼, 𝐺〉, a plan 𝜋 

 

 Construct a set of correctness constraints 𝚺(𝝅) for 

the execution of 𝜋: 
  State transitions caused by actions are correct. 

  The goal 𝐺 is satisfied in the last state. 

 

 Then:   𝑅(𝜋) is computed from the weighted 

model count of 𝚺(𝝅) 
25 
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𝐼 𝐺 
𝜋 

𝚺(𝝅) 

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒎
𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ (𝒑𝒂𝒎

𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

) 



PLAN ROBUSTNESS ASSESSMENT 

Complexity 

The problem of computing 𝑅(𝜋) for a plan π to a problem 

〈D , I, G〉 is #P-complete. 

Membership: 

 Have a Counting TM non-deterministically guess a 

complete model, and check the correctness of the plan. 

 The number of accepting branches output: the number 

of complete models under which the plan succeeds. 

Completeness: 

 There exists a counting reduction from the problem of 

counting satisfying assignments for Monotone-2-SAT 

problem to Robustness-Assessment (RA) problem 

27 



CONTENT 

A measure for plan quality 

 Robustness of plan 𝑅 𝜋 ∈ [0,1] 

Plan robustness assessment 

 Reduced to weighted model counting 

 Complexity 

Synthesizing robust plans 

 Compilation approach 

 Heuristic search approach 
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COMPILATION APPROACH 

 The realization of possible preconditions / effects is 

determined by unknown variables 𝑝𝑎
𝑝𝑟𝑒

, 𝑝𝑎
𝑎𝑑𝑑, 𝑝𝑎

𝑑𝑒𝑙 

 

 Thus, can be compiled away using “conditional effects” 

 

 If 𝑝𝑎
𝑝𝑟𝑒
= 𝑡𝑟𝑢𝑒 then 𝑝 is a precondition of 𝑎. 

 

 Domain incompleteness  State incompleteness 

 

 Conformant probabilistic planning problem! 

29 



COMPILATION EXAMPLE 

Compiled “pick-up” 
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COMPILATION: EXPERIMENTAL RESULTS 

 Using Probabilistic-FF planner (Domshlak & 

Hoffmann, 2006) 

 

 

 

 

 

 

    Synthesizing Robust Plans under Incomplete Domain Models 

    (NIPS 2013) 

 Normally fails with large problem instances 
31 

Incomplete 

Logistics 

domain 



CONTENT 

A measure for plan quality 

 Robustness of plan 𝑅 𝜋 ∈ [0,1] 

Plan robustness assessment 

 Reduced to weighted model counting 

 Complexity 

Synthesizing robust plans 

 Compilation approach 

 Heuristic search approach 
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APPROXIMATE TRANSITION FUNCTION 

33 

 Not explicitly maintain set of resulting states 

 

 

 Successor state: 

𝛾 𝑆𝐸 𝑎 , 𝑠 = 𝑠 ∪ 𝐴𝑑𝑑 𝑎 ∪ 𝐴𝑑𝑑 𝑎 ∖ 𝐷𝑒𝑙 𝑎 , 𝑖𝑓 𝑃𝑟𝑒 𝑎 ⊆ 𝑠 

 Possible delete effects might not take effects! 

 Recursive definition for 𝛾 𝑆𝐸(𝜋, 𝑠) 

Completeness: Any solution in the complete STRIPS 

action model exists in the solution space of the problem with 

incomplete domain. 

Soundness: For any plan returned under incomplete 

STRIPS domain semantics, there is one complete STRIPS 

model under which the plan succeeds. 

𝜸 𝝅, 𝒔 =  𝜸𝑫𝒊(𝝅, 𝒔)

𝑫𝒊∈≪𝑫 ≫

 



ANYTIME APPROACH FOR GENERATING 

ROBUST PLANS 

1. Initialize: 𝛿 = 0 

2. Repeat 

 Find plan 𝜋 s.t. 𝑅 𝜋 > 𝛿           (Stochastic) 

 If plan found: 𝛿 = 𝑅(𝜋) 

      Until time bound reaches 

3. Return 𝜋 and 𝑅(𝜋) if plan found 

34 



USE OF UPPER BOUND 

 Reduce exact weighted model counting 

35 

𝐼 

𝑠 

𝜋 

If  (𝐺 ⊆ 𝑠) and 𝑈 𝜋 > 𝛿 
then  𝑤𝑚𝑐(𝜋)   

𝑼 𝝅 ≥ 𝒘𝒎𝒄(𝝅) (Upper bound for 𝑅(𝜋)) 



USE OF LOWER BOUND 

 How to… 

 Compute ℎ 𝑠, 𝛿 = |𝜋 | 
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𝐼 
𝑠 𝑠G 𝜋𝑘 𝜋  

Find:  𝝅   s.t.  wmc 𝜋𝑘 ∘ 𝜋 > 𝛿 

Avoid invoking 𝑤𝑚𝑐 ∘  during the construction of 𝜋 ! 

Find:  𝝅   s.t.  L 𝜋𝑘 ∘ 𝜋 > 𝛿 

𝐋 𝝅 ≤ 𝒘𝒎𝒄(𝝅)  (Lower bound for 𝑅(𝜋)) 



LOWER BOUND FOR 𝑹(𝝅) 
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𝚺(𝝅) 

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒎
𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ (𝒑𝒂𝒎

𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

) 



LOWER BOUND FOR 𝑹(𝝅) 
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𝚺(𝝅) 

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

¬𝒑𝒂𝒊
𝒑𝒓𝒆
 ∨  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

¬𝒑𝒂𝒎
𝒅𝒆𝒍  ∨  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

¬𝒑𝒂𝒊
𝒑𝒓𝒆
∨ ¬𝒑𝒂𝒎

𝒅𝒆𝒍  ∨  𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒘 ¬𝒑 = 𝟏 −𝒘(𝒑) 

 Σ(𝜋) as a set of clauses with positive literals.   



LOWER BOUND FOR 𝑹(𝝅) 

40 

Given positive clauses 𝑐, 𝑐′ :    Pr 𝑐 𝑐′) ≥ Pr(𝑐) 

Given Σ 𝜋 = {𝑐1, 𝑐2, … , 𝑐𝑛} :  
 

𝑤𝑚𝑐 Σ 𝜋 = Pr 𝑐1 ∧ 𝑐2 ∧ ⋯∧ 𝑐𝑛  

                        = Pr 𝑐1 Pr 𝑐2 𝑐1 …Pr 𝑐𝑛 𝑐𝑛−1, … , 𝑐1  

                        ≥   Pr(𝑐𝑖)

𝑐𝑖∈Σ(𝜋)

 

𝐿 𝜋 =   Pr (𝑐𝑖)

𝑐𝑖∈Σ(𝜋)

 ≤ 𝑅(𝜋) 

(Equality holds when all 

clauses are independent) 



UPPER BOUND FOR 𝑅(𝜋) 
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Σ 𝜋 = {𝑐1, … , 𝑐𝑛} 

An (trivial) upper bound: 

 𝑈 𝜋 ≥ min
𝑐𝑖∈Σ(𝜋)

Pr (𝑐𝑖) 

A much tighter bound: 

¬𝑝 𝑝 

𝑎𝑖 

 𝑝𝑎𝑘
𝑎𝑑𝑑

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝑎𝑘 

𝑝 

𝐼 𝐺 

• Clauses contains variables 

corresponding to one specific 

predicate 

• Thus, Σ(𝜋) is highly 

decomposable into “connected 

components” 

 

𝑈 𝜋 = min
𝑐∈Σ𝑗
Pr (𝑐)

𝑗

 

{𝒙𝟏, 𝒙𝟐} {𝒙𝟐, 𝒙𝟑} {𝒙𝟒, 𝒙𝟓} 



FIND: 𝝅  S.T.  𝐋 𝝅𝒌 ∘ 𝝅 > 𝜹 

 Build relaxed planning graph 

 Ignoring known & possible delete effects 

 

 Propagate clauses for propositions and actions 

 

 Extract relaxed plan  
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𝐼 
𝑠 𝑠G 𝜋𝑘 𝜋  



 

RELAXED PLANNING GRAPH 
PROPOSITIONAL LAYER 𝑳𝟏 

43 

𝑝𝑗 ¬𝑝𝑗 

𝑰 

𝐿1 = 𝑠𝑘+1 = 𝛾 𝑆𝐸(𝜋𝑘 , 𝐼) 

𝜋𝑘 

𝑎1 𝑎𝑘 

Establishment 

constraints (if 

needed) and 

protection 

constraints for 

𝑝𝑗 at state 𝑠𝑘+1 

𝚺𝒑𝒋(𝟏) 



RELAXED PLANNING GRAPH 
ACTION LAYER 𝑨𝒕 

44 

𝑳𝒕 

𝐴𝑡 = {𝑎  𝑎 ∈ 𝐴, 𝑃𝑟𝑒 𝑎 ⊆ 𝐿𝑡} ∪  {𝑛𝑜𝑜𝑝𝑝  𝑝 ∈ 𝐿𝑡} 

𝑝𝑖 

𝑝𝑗 

𝑨𝒕 

𝑎𝑚 

𝚺𝒑𝒊(𝒕) 

𝚺𝒑𝒋(𝒕) 

𝑝𝑗 𝑎𝑚
𝑝𝑟𝑒

 

𝚺𝒂𝒎 𝒕 = 𝚺𝐩𝐢 𝐭 ∧ (𝒑𝒋 𝒂𝒎
𝒑𝒓𝒆
⇒ 𝚺𝐩𝐣(𝐭)) 



RELAXED PLANNING GRAPH 
ACTION LAYER 𝑨𝒕 
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𝑳𝒕 

𝐴𝑡 = {𝑎  𝑎 ∈ 𝐴, 𝑃𝑟𝑒 𝑎 ⊆ 𝐿𝑡} ∪  {𝑛𝑜𝑜𝑝𝑝  𝑝 ∈ 𝐿𝑡} 

𝑝𝑖 

𝑝𝑗 

𝑨𝒕 

𝚺𝒑𝒊(𝒕) 

𝚺𝒑𝒋(𝒕) 

𝒏𝒐𝒐𝒑𝒑𝒊 

𝚺𝒑𝒊(𝒕) 

𝒏𝒐𝒐𝒑𝒑𝒋 

𝚺𝒑𝒋(𝒕) 



RELAXED PLANNING GRAPH 
PROPOSITIONAL LAYER 𝑳𝒕+𝟏 
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𝐿𝑡+1 = {𝑝 |𝑎 ∈ 𝐴𝑡, 𝑝 ∈ 𝐴𝑑𝑑 𝑎 ∪ 𝐴𝑑𝑑 𝑎 } 

𝑨𝒕 

𝑎𝑚 

𝑎𝑙 

𝑝𝑖 

𝚺𝒂𝒎(𝒕) 

𝚺𝒂𝒍(𝒕) 

𝑳𝒕+𝟏 

Σ𝑝𝑖 𝑡 + 1 = 𝑎𝑟𝑔𝑚𝑎𝑥Σ 𝑙(Σ ∧ Σ𝑘) 

Σ ∈ {Σ𝑎𝑚 𝑡 , 𝑝𝑖 𝑎𝑙
𝑝𝑟𝑒
⇒ Σ𝑎𝑙(𝑡)} 

𝚺𝒑𝒎(𝒕 + 𝟏) 



RELAXED PLAN EXTRACTION 
OVERVIEW 
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𝒈 

𝐿𝑇 𝐿1 𝐴1 𝐴𝑇−1 

𝑎5 
𝒑𝟖 

𝑝6 

𝐿𝑇−1 

𝑎1 

𝑝4 
𝑝2 

Best supporting action 

for 𝑔 at layer T 

𝚺𝒑𝒊 𝒕 + 𝟏 = 𝒂𝒓𝒈𝒎𝒂𝒙𝚺 𝒍(𝚺 ∧ 𝚺𝒌) 

𝑎3 

 𝜋  in total order 

 Succeed when: 
 All know preconditions are supported 

 𝑙 Σ𝑘 ∧ Σ𝜋′ > 𝛿 

𝐿2 



RELAXED PLAN EXTRACTION 
WHEN TO INSERT ACTIONS? 

 A supporting action 𝑎𝑏𝑒𝑠𝑡 is inserted only if 

needed 

 Depending on: 

 Relation between: subgoal and “relaxed plan state” 

 Robustness of the current 𝜋  and 𝜋 ∪ {𝑎𝑏𝑒𝑠𝑡} 
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𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  



RELAXED PLAN EXTRACTION 
SUBGOAL V.S RP STATE 
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𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 

𝒑 



RELAXED PLAN EXTRACTION 

 𝑝 ∈ 𝑃𝑟𝑒 𝑎 , 𝑝 ∉ 𝑠→𝑎: insert 𝑎𝑏𝑒𝑠𝑡 into 𝜋  

 

 

 

 

 

 

 

 

 This type of subgoal makes the relaxed plan 

“incomplete” 
50 

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 
No actions in 𝜋𝑘 
and 𝜋  supporting 

this subgoal 



RELAXED PLAN EXTRACTION 
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𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝒔→𝒂
+  

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

+ 

𝒑 

 For these subgoals, supporting actions inserted if the 

insertion increases the robustness of the current relaxed 

plan. 

𝑙 Σ𝜋 ∧ Σ𝜋 ∪ 𝑎𝑏𝑒𝑠𝑡 > 𝑙(Σ𝜋 ∧ Σ𝜋 ) 



RELAXED PLAN EXTRACTION 
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𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 
𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 

 For these subgoals, no supporting actions needed! 



FIND 𝝅 S.T. 𝑹 𝝅 > 𝜹: SEARCH ALGORITHM 

 Stochastic local search with failed bounded restarts (Coles et al., 

2007)  

53 

h s, 𝛿 = 100 

𝛿 ∈ (0,1] 

Depth bound 

reached. Failed. 

ℎ 𝑠′, 𝛿 = 55 

𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 0 

𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 1 

𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 0 

If  𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 𝑓𝑎𝑖𝑙𝑏𝑜𝑢𝑛𝑑 
then double depth bound 

ℎ 𝑠′′, 𝛿 = 0 

Goal reached 

𝑓𝑎𝑖𝑙𝑏𝑜𝑢𝑛𝑑 = 32, 64,128, … 

𝒂𝟏𝟎 

𝒂𝟏𝟐 

𝒂𝟐𝟎 
𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 2 

If  probecount = 𝑝𝑟𝑜𝑏𝑒𝑏𝑜𝑢𝑛𝑑 
then increment 𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 

𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 0 

Better state found. 

𝛿 = 𝑅(𝜋) 

ℎ(𝑠, 𝛿): how far it is 

approximately from s to a 

goal state so that the 

resulting plan has 

approximate robustness > 𝛿. 



EXPERIMENTAL RESULTS 
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Number of instances for which PISA produces better, equal 

and worse robust plans compared to DeFault. 

 Domains:  
 Zenotravel, Freecell, Satellite, Rover (215 domains x 10 problems = 

2150 instances) 

 Parc Printer (300 instances) 

 

 



EXPERIMENTAL RESULTS 
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Total time in seconds (log scale) to generate plans with the 

same robustness by PISA and DeFault. 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 

Publication 

 Domain independent approaches 
for finding diverse plans. IJCAI 
(2007) 

 Planning with partial preference 
models. IJCAI (2009) 

 Generating diverse plans to 
handle unknown and partially 
known user preferences. AIJ 190 
(2012) 

(with Biplav Srivastava, Subbarao 

Kambhampati, Minh Do, Alfonso  

Gerevini and Ivan  Serina) 

Publication 

 Assessing and Generating 
Robust Plans with Partial 
Domain Models. ICAPS-WS 
(2010) 

 Synthesizing Robust Plans under 
Incomplete Domain Models. 
AAAI-WS (2011), NIPS (2013) 

 A Heuristic Approach to 
Planning with Incomplete 
STRIPS Action Models. ICAPS 
(2014) 

(with Subbarao Kambhampati,  

 Minh Do) 



THANK YOU! 

Q & A 
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