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MOTIVATION 

Automated Planning 
Research: 

 Actions 

 Preconditions 

 Effects 
 Deterministic 

 Non-deterministic 

 Stochastic 

 Initial situation 

 Goal conditions 

 What a user wants 
about plans 

 Find a (best) plan! 

 

 

In practice… 

 Action models are not 

available upfront 

 Cost of modeling 

 Error-prone 

 Users usually don’t 

exactly know what 

they want 

 Always want to see 

more than one plan 

 

 

Planning with incomplete user preferences 

and domain models 



Preferences in Planning – Traditional 

View 

 Classical Model: “Closed world” assumption 
about user preferences.  

 All preferences assumed to be fully 
specified/available 

 

         Two possibilities 

 If no preferences specified —then user is 
assumed to be indifferent. Any single feasible 
plan considered acceptable.  

 If preferences/objectives are specified, find a plan 
that is optimal w.r.t. specified objectives. 

 

     Either way, solution is a single  plan 

Full Knowledge 

 of Preferences 
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Preferences in Planning—Real 

World 

 Real World: Preferences not fully known 

Full Knowledge 

of Preferences is 

lacking 
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Unknown preferences  
 For all we know, user may care about every thing 

--- the flight carrier, the arrival and departure 
times, the type of flight, the airport, time of travel 
and cost of travel… 

Partially known  
 We know that users cares only about travel time 

and cost. But we don’t know how she combines 
them… 
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Domain Models in Planning – 

Traditional View 

 Classical Model: “Closed world” assumption 
about action descriptions.  

 Fully specified preconditions and effects 

 Known exact probabilities of outcomes 

 

         

Full Knowledge 

 of domain models 

5 

pick-up 
:parameters (?b – ball ?r – room) 

:precondition 

   (and (at ?b ?r) (at-robot ?r) (free-gripper)) 

:effect 

   (and (carry ?b) (not (at ?b ?r)) (not (free-gripper))) 

5 



Domain Models in Planning – (More) 

Practical View 
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 Completely modeling the domain dynamics 

 Time consuming 

 Error-prone 

 Sometimes impossible 

 

 

 What does it mean by planning with incompletely 
specified domain models? 

 Plan could fail! Prefer plans that are more likely to 
succeed…  

 How to define such a solution concept? 
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Problems and Challenges 

7 

 Incompleteness representation 

7 

 Solution concepts 

 Planning techniques 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation 

 

 

 Solution concept 

 

 

 Solving techniques 

         

 Representation 

 

 

 Solution concept 

 

 

 Solving techniques 

         



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Complete set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

 Solution concept: plan sets 
with quality 

 Solving techniques: 
synthesizing quality plan sets 

 

         

 Distance measures w.r.t. 
base-level features of plans 
(actions, states, causal links) 

 CSP-based and local-search 
based planners 

 

          IPF/ICP measure 

 Sampling, ICP and Hybrid 
approaches 

 

         



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 

Publication 

 Domain independent approaches 
for finding diverse plans. IJCAI 
(2007) 

 Planning with partial preference 
models. IJCAI (2009) 

 Generating diverse plans to 
handle unknown and partially 
known user preferences. AIJ 190 
(2012) 

(with Biplav Srivastava, Subbarao 

Kambhampati, Minh Do, Alfonso  

Gerevini and Ivan  Serina) 

Publication 

 Assessing and Generating 
Robust Plans with Partial 
Domain Models. ICAPS-WS 
(2010) 

 Synthesizing Robust Plans under 
Incomplete Domain Models. 
AAAI-WS(2011), NIPS (2013) 

 A Heuristic Approach to 
Planning with Incomplete 
STRIPS Action Models. ICAPS 
(2014) 

(with Subbarao Kambhampati,  

 Minh Do) 



PLANNING WITH INCOMPLETE DOMAIN 

MODELS 

12 



REVIEW: STRIPS 

Predicate set R: clear(x – object), on-
table(x – object), on(x – object, y – object), 
holding(x – object), hand-empty 

 

Operators O: 

 Name (signature): pick-up(x – object) 

 Preconditions: hand-empty, clear(x) 

 Effects: ~hand-empty, holding(x), ~clear(x) 

 

A single complete model! 
13 



PLANNING PROBLEM WITH STRIPS 

Set of typed objects {𝑜1, … , 𝑜𝑘} 

 Together with predicate set 𝑃, we have a set of 

grounded propositions 𝐹 

 Together with operators 𝑂, we have a set of 

grounded actions 𝐴 

 

 Initial state: 𝐼 ∈ 𝐹 

 

Goals: 𝐺 ⊆ 𝐹 
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PLANNING PROBLEM WITH STRIPS (2) 

Find: a plan 𝜋 achieves 𝐺 starting from 𝐼: 
𝛾 𝜋, 𝐼 ⊇ 𝐺. 
 

 Transition function: 
 

 𝛾 𝑎 , 𝑠 = 𝑠 ∪ 𝐴𝑑𝑑 𝑎 ∖ 𝐷𝑒𝑙(𝑎) for applying 𝑎 ∈ 𝐴 
in 𝑠 ⊆ 𝐹 s.t. 𝑃𝑟𝑒 𝑎 ⊆ 𝑠. 
 

 Applying 𝜋 = 〈𝑎1, … , 𝑎𝑛〉 at state 𝑠: 𝛾 𝜋, 𝑠 =
𝛾( 𝑎𝑛 , 𝛾( 𝑎2, … , 𝑎𝑛−1 , 𝑠)) 

15 



INCOMPLETE DOMAIN MODELS 

 Predicate set 𝑹: clear(x – object), on-table(x – object), 
on(x – object, y – object), holding(x – object), hand-
empty, light(x – object), dirty(x – object) 

 Operators 𝑶 
 Name (signature): pick-up(x – object) 

 Preconditions: hand-empty, clear(x) 

 Possible preconditions: light(x) 

 Effects: ~hand-empty, holding(x), ~clear(x) 

 Possible effects: dirty(x) 

 Incomplete domain 𝑫 = 〈𝑹,𝑶〉 
 At “schema” level with typed variables (no objects) 

 With K “annotations”, we have 2𝐾 possible complete models, 
one of which is the true model. 
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Incompleteness 

in deterministic 

domains 

Stochastic domains 



PLANNING PROBLEM WITH INCOMPLETE 

DOMAIN 

Set of typed objects {𝑜1, … , 𝑜𝑘} 
 Together with predicate set 𝑃, we have a 

set of grounded propositions 𝐹 

 Together with operators 𝑂, we have a set of 
grounded actions 𝐴 

Initial state: 𝐼 ∈ 𝐹 

Goals: 𝐺 ⊆ 𝐹 

Find: a plan 𝜋 “achieves” 𝐺 starting 
from 𝐼 
 An ill-defined solution concept! 

 Need a definition for “goal achievement” 
17 



TRANSITION FUNCTION 

18 

 Under 𝑫 , applying  𝝅 in s results in a set of possible 

states: 

 

𝜸 𝝅, 𝒔 =  𝜸𝑫𝒊(𝝅, 𝒔)

𝑫𝒊∈≪𝑫 ≫

 

 

 The probability of ending up in 𝒔′ ∈ 𝜸(𝝅, 𝒔) is equal 

to 

 𝑷𝒓(𝑫𝒊)

𝑫𝒊∈≪𝑫 ≫, 𝒔
′=𝜸𝑫𝒊(𝝅,𝒔)

 

where 𝑷𝒓 (𝑫𝒊) is the probability of 𝑫𝒊 being the true 

model.  



TRANSITION FUNCTION 

20 

 

 

 STRIPS Execution (SE):  

 

 

 

 

 Generous Execution (GE): 

 

𝜸𝑫( 𝒂 , 𝒔): 

𝛾𝐺𝐸
𝐷 (〈𝑎〉, 𝑠) =  

  𝑠 ∖ 𝐷𝑒𝑙𝐷 𝑎 ∪ 𝐴𝑑𝑑𝐷 𝑎 , 𝑖𝑓 𝑃𝑟𝑒𝐷 𝑎 ⊆ 𝑠
𝑠,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛾𝑆𝐸
𝐷 (〈𝑎〉, 𝑠) =  

  𝑠 ∖ 𝐷𝑒𝑙𝐷 𝑎 ∪ 𝐴𝑑𝑑𝐷 𝑎 , 𝑖𝑓 𝑃𝑟𝑒𝐷 𝑎 ⊆ 𝑠
𝑠⊥ = {⊥} ,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

⊥ ∉ 𝐹 𝑃𝑟𝑒𝐷 𝑎  ⊈ 𝑠⊥, 𝐺 ⊈ 𝑠⊥ 
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 Proposition set 𝐹 = {𝑝1, 𝑝2, 𝑝3}  Initial state 𝐼 = {𝑝2} 

 Goal 𝐺 = {𝑝3} 



A MEASURE FOR PLAN ROBUSTNESS 

 Naturally, we prefer plan that succeeds in as 

many complete models as possible 

22 

𝑅 𝜋 =
|Π|

2𝐾
 

RGE 𝜋 = 6/8 

RGE 𝜋 = 4/8 

𝑹𝑺𝑬 𝝅  ≤ 𝑹𝑮𝑬(𝝅) 



A BIT MORE GENERAL… 

 Predicate set 𝑹: clear(x – object), on-table(x – 

object), on(x – object, y – object), holding(x – object), 

hand-empty, light(x – object), dirty(x – object) 

 Operators 𝑶 

 Name (signature): pick-up(x – object) 

 Preconditions: hand-empty, clear(x) 

 Possible preconditions: light(x) with a weight of 0.8 

 Effects: ~hand-empty, holding(x), ~clear(x) 

 Possible effects: dirty(x) with an unspecified weight 

 Treat weights as probabilities with random 

variables 

 Robustness measure: 

23 𝑹 𝝅 ≝  𝐏𝐫 (𝑫𝒊)

𝑫𝒊 ∈ 〈〈𝑫 〉〉:𝜸
𝑫𝒊 𝝅,𝑰 ⊨𝑮

 



CONTENT 

A measure for plan quality 

 Robustness of plan 𝑅 𝜋 ∈ [0,1] 

Plan robustness assessment 

 Reduced to weighted model counting 

 Complexity 

Synthesizing robust plans 

 Compilation approach 

 Heuristic search approach 
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PLAN ROBUSTNESS ASSESSMENT 

Computation: 

 

 Given 𝐷 , 𝑃 = 〈𝐹, 𝐴, 𝐼, 𝐺〉, a plan 𝜋 

 

 Construct a set of correctness constraints 𝚺(𝝅) for 

the execution of 𝜋: 
  State transitions caused by actions are correct. 

  The goal 𝐺 is satisfied in the last state. 

 

 Then:   𝑅(𝜋) is computed from the weighted 

model count of 𝚺(𝝅) 
25 
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𝐼 𝐺 
𝜋 

𝚺(𝝅) 

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒎
𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ (𝒑𝒂𝒎

𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

) 



PLAN ROBUSTNESS ASSESSMENT 

Complexity 

The problem of computing 𝑅(𝜋) for a plan π to a problem 

〈D , I, G〉 is #P-complete. 

Membership: 

 Have a Counting TM non-deterministically guess a 

complete model, and check the correctness of the plan. 

 The number of accepting branches output: the number 

of complete models under which the plan succeeds. 

Completeness: 

 There exists a counting reduction from the problem of 

counting satisfying assignments for Monotone-2-SAT 

problem to Robustness-Assessment (RA) problem 

27 



CONTENT 

A measure for plan quality 

 Robustness of plan 𝑅 𝜋 ∈ [0,1] 

Plan robustness assessment 

 Reduced to weighted model counting 

 Complexity 

Synthesizing robust plans 

 Compilation approach 

 Heuristic search approach 

28 



COMPILATION APPROACH 

 The realization of possible preconditions / effects is 

determined by unknown variables 𝑝𝑎
𝑝𝑟𝑒

, 𝑝𝑎
𝑎𝑑𝑑, 𝑝𝑎

𝑑𝑒𝑙 

 

 Thus, can be compiled away using “conditional effects” 

 

 If 𝑝𝑎
𝑝𝑟𝑒
= 𝑡𝑟𝑢𝑒 then 𝑝 is a precondition of 𝑎. 

 

 Domain incompleteness  State incompleteness 

 

 Conformant probabilistic planning problem! 

29 



COMPILATION EXAMPLE 

Compiled “pick-up” 

30 



COMPILATION: EXPERIMENTAL RESULTS 

 Using Probabilistic-FF planner (Domshlak & 

Hoffmann, 2006) 

 

 

 

 

 

 

    Synthesizing Robust Plans under Incomplete Domain Models 

    (NIPS 2013) 

 Normally fails with large problem instances 
31 

Incomplete 

Logistics 

domain 



CONTENT 

A measure for plan quality 

 Robustness of plan 𝑅 𝜋 ∈ [0,1] 

Plan robustness assessment 

 Reduced to weighted model counting 

 Complexity 

Synthesizing robust plans 

 Compilation approach 

 Heuristic search approach 

32 



APPROXIMATE TRANSITION FUNCTION 

33 

 Not explicitly maintain set of resulting states 

 

 

 Successor state: 

𝛾 𝑆𝐸 𝑎 , 𝑠 = 𝑠 ∪ 𝐴𝑑𝑑 𝑎 ∪ 𝐴𝑑𝑑 𝑎 ∖ 𝐷𝑒𝑙 𝑎 , 𝑖𝑓 𝑃𝑟𝑒 𝑎 ⊆ 𝑠 

 Possible delete effects might not take effects! 

 Recursive definition for 𝛾 𝑆𝐸(𝜋, 𝑠) 

Completeness: Any solution in the complete STRIPS 

action model exists in the solution space of the problem with 

incomplete domain. 

Soundness: For any plan returned under incomplete 

STRIPS domain semantics, there is one complete STRIPS 

model under which the plan succeeds. 

𝜸 𝝅, 𝒔 =  𝜸𝑫𝒊(𝝅, 𝒔)

𝑫𝒊∈≪𝑫 ≫

 



ANYTIME APPROACH FOR GENERATING 

ROBUST PLANS 

1. Initialize: 𝛿 = 0 

2. Repeat 

 Find plan 𝜋 s.t. 𝑅 𝜋 > 𝛿           (Stochastic) 

 If plan found: 𝛿 = 𝑅(𝜋) 

      Until time bound reaches 

3. Return 𝜋 and 𝑅(𝜋) if plan found 

34 



USE OF UPPER BOUND 

 Reduce exact weighted model counting 

35 

𝐼 

𝑠 

𝜋 

If  (𝐺 ⊆ 𝑠) and 𝑈 𝜋 > 𝛿 
then  𝑤𝑚𝑐(𝜋)   

𝑼 𝝅 ≥ 𝒘𝒎𝒄(𝝅) (Upper bound for 𝑅(𝜋)) 



USE OF LOWER BOUND 

 How to… 

 Compute ℎ 𝑠, 𝛿 = |𝜋 | 
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𝐼 
𝑠 𝑠G 𝜋𝑘 𝜋  

Find:  𝝅   s.t.  wmc 𝜋𝑘 ∘ 𝜋 > 𝛿 

Avoid invoking 𝑤𝑚𝑐 ∘  during the construction of 𝜋 ! 

Find:  𝝅   s.t.  L 𝜋𝑘 ∘ 𝜋 > 𝛿 

𝐋 𝝅 ≤ 𝒘𝒎𝒄(𝝅)  (Lower bound for 𝑅(𝜋)) 



LOWER BOUND FOR 𝑹(𝝅) 
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𝚺(𝝅) 

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒎
𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒑𝒂𝒊
𝒑𝒓𝒆
⇒ (𝒑𝒂𝒎

𝒅𝒆𝒍 ⇒  𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

) 



LOWER BOUND FOR 𝑹(𝝅) 

39 

𝚺(𝝅) 

 𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

¬𝒑𝒂𝒊
𝒑𝒓𝒆
 ∨  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

¬𝒑𝒂𝒎
𝒅𝒆𝒍  ∨  𝒑𝒂𝒌

𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

¬𝒑𝒂𝒊
𝒑𝒓𝒆
∨ ¬𝒑𝒂𝒎

𝒅𝒆𝒍  ∨  𝒑𝒂𝒌
𝒂𝒅𝒅

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝒘 ¬𝒑 = 𝟏 −𝒘(𝒑) 

 Σ(𝜋) as a set of clauses with positive literals.   



LOWER BOUND FOR 𝑹(𝝅) 

40 

Given positive clauses 𝑐, 𝑐′ :    Pr 𝑐 𝑐′) ≥ Pr(𝑐) 

Given Σ 𝜋 = {𝑐1, 𝑐2, … , 𝑐𝑛} :  
 

𝑤𝑚𝑐 Σ 𝜋 = Pr 𝑐1 ∧ 𝑐2 ∧ ⋯∧ 𝑐𝑛  

                        = Pr 𝑐1 Pr 𝑐2 𝑐1 …Pr 𝑐𝑛 𝑐𝑛−1, … , 𝑐1  

                        ≥   Pr(𝑐𝑖)

𝑐𝑖∈Σ(𝜋)

 

𝐿 𝜋 =   Pr (𝑐𝑖)

𝑐𝑖∈Σ(𝜋)

 ≤ 𝑅(𝜋) 

(Equality holds when all 

clauses are independent) 



UPPER BOUND FOR 𝑅(𝜋) 

41 

Σ 𝜋 = {𝑐1, … , 𝑐𝑛} 

An (trivial) upper bound: 

 𝑈 𝜋 ≥ min
𝑐𝑖∈Σ(𝜋)

Pr (𝑐𝑖) 

A much tighter bound: 

¬𝑝 𝑝 

𝑎𝑖 

 𝑝𝑎𝑘
𝑎𝑑𝑑

𝐶𝑝
𝑖≤𝑘≤𝑖−1,𝑝∈𝐴𝑑𝑑 (𝑎𝑘)

 

𝑎𝑘 

𝑝 

𝐼 𝐺 

• Clauses contains variables 

corresponding to one specific 

predicate 

• Thus, Σ(𝜋) is highly 

decomposable into “connected 

components” 

 

𝑈 𝜋 = min
𝑐∈Σ𝑗
Pr (𝑐)

𝑗

 

{𝒙𝟏, 𝒙𝟐} {𝒙𝟐, 𝒙𝟑} {𝒙𝟒, 𝒙𝟓} 



FIND: 𝝅  S.T.  𝐋 𝝅𝒌 ∘ 𝝅 > 𝜹 

 Build relaxed planning graph 

 Ignoring known & possible delete effects 

 

 Propagate clauses for propositions and actions 

 

 Extract relaxed plan  
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𝐼 
𝑠 𝑠G 𝜋𝑘 𝜋  



 

RELAXED PLANNING GRAPH 
PROPOSITIONAL LAYER 𝑳𝟏 
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𝑝𝑗 ¬𝑝𝑗 

𝑰 

𝐿1 = 𝑠𝑘+1 = 𝛾 𝑆𝐸(𝜋𝑘 , 𝐼) 

𝜋𝑘 

𝑎1 𝑎𝑘 

Establishment 

constraints (if 

needed) and 

protection 

constraints for 

𝑝𝑗 at state 𝑠𝑘+1 

𝚺𝒑𝒋(𝟏) 



RELAXED PLANNING GRAPH 
ACTION LAYER 𝑨𝒕 

44 

𝑳𝒕 

𝐴𝑡 = {𝑎  𝑎 ∈ 𝐴, 𝑃𝑟𝑒 𝑎 ⊆ 𝐿𝑡} ∪  {𝑛𝑜𝑜𝑝𝑝  𝑝 ∈ 𝐿𝑡} 

𝑝𝑖 

𝑝𝑗 

𝑨𝒕 

𝑎𝑚 

𝚺𝒑𝒊(𝒕) 

𝚺𝒑𝒋(𝒕) 

𝑝𝑗 𝑎𝑚
𝑝𝑟𝑒

 

𝚺𝒂𝒎 𝒕 = 𝚺𝐩𝐢 𝐭 ∧ (𝒑𝒋 𝒂𝒎
𝒑𝒓𝒆
⇒ 𝚺𝐩𝐣(𝐭)) 



RELAXED PLANNING GRAPH 
ACTION LAYER 𝑨𝒕 
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𝑳𝒕 

𝐴𝑡 = {𝑎  𝑎 ∈ 𝐴, 𝑃𝑟𝑒 𝑎 ⊆ 𝐿𝑡} ∪  {𝑛𝑜𝑜𝑝𝑝  𝑝 ∈ 𝐿𝑡} 

𝑝𝑖 

𝑝𝑗 

𝑨𝒕 

𝚺𝒑𝒊(𝒕) 

𝚺𝒑𝒋(𝒕) 

𝒏𝒐𝒐𝒑𝒑𝒊 

𝚺𝒑𝒊(𝒕) 

𝒏𝒐𝒐𝒑𝒑𝒋 

𝚺𝒑𝒋(𝒕) 



RELAXED PLANNING GRAPH 
PROPOSITIONAL LAYER 𝑳𝒕+𝟏 
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𝐿𝑡+1 = {𝑝 |𝑎 ∈ 𝐴𝑡, 𝑝 ∈ 𝐴𝑑𝑑 𝑎 ∪ 𝐴𝑑𝑑 𝑎 } 

𝑨𝒕 

𝑎𝑚 

𝑎𝑙 

𝑝𝑖 

𝚺𝒂𝒎(𝒕) 

𝚺𝒂𝒍(𝒕) 

𝑳𝒕+𝟏 

Σ𝑝𝑖 𝑡 + 1 = 𝑎𝑟𝑔𝑚𝑎𝑥Σ 𝑙(Σ ∧ Σ𝑘) 

Σ ∈ {Σ𝑎𝑚 𝑡 , 𝑝𝑖 𝑎𝑙
𝑝𝑟𝑒
⇒ Σ𝑎𝑙(𝑡)} 

𝚺𝒑𝒎(𝒕 + 𝟏) 



RELAXED PLAN EXTRACTION 
OVERVIEW 
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𝒈 

𝐿𝑇 𝐿1 𝐴1 𝐴𝑇−1 

𝑎5 
𝒑𝟖 

𝑝6 

𝐿𝑇−1 

𝑎1 

𝑝4 
𝑝2 

Best supporting action 

for 𝑔 at layer T 

𝚺𝒑𝒊 𝒕 + 𝟏 = 𝒂𝒓𝒈𝒎𝒂𝒙𝚺 𝒍(𝚺 ∧ 𝚺𝒌) 

𝑎3 

 𝜋  in total order 

 Succeed when: 
 All know preconditions are supported 

 𝑙 Σ𝑘 ∧ Σ𝜋′ > 𝛿 

𝐿2 



RELAXED PLAN EXTRACTION 
WHEN TO INSERT ACTIONS? 

 A supporting action 𝑎𝑏𝑒𝑠𝑡 is inserted only if 

needed 

 Depending on: 

 Relation between: subgoal and “relaxed plan state” 

 Robustness of the current 𝜋  and 𝜋 ∪ {𝑎𝑏𝑒𝑠𝑡} 

48 

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  



RELAXED PLAN EXTRACTION 
SUBGOAL V.S RP STATE 
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𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 

𝒑 



RELAXED PLAN EXTRACTION 

 𝑝 ∈ 𝑃𝑟𝑒 𝑎 , 𝑝 ∉ 𝑠→𝑎: insert 𝑎𝑏𝑒𝑠𝑡 into 𝜋  

 

 

 

 

 

 

 

 

 This type of subgoal makes the relaxed plan 

“incomplete” 
50 

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 
No actions in 𝜋𝑘 
and 𝜋  supporting 

this subgoal 



RELAXED PLAN EXTRACTION 
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𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝒔→𝒂
+  

𝑎 

𝒔→𝒂 

+ 

𝒔→𝒂
+  

𝒑 

𝑎 

𝒔→𝒂 

+ 

𝒑 

 For these subgoals, supporting actions inserted if the 

insertion increases the robustness of the current relaxed 

plan. 

𝑙 Σ𝜋 ∧ Σ𝜋 ∪ 𝑎𝑏𝑒𝑠𝑡 > 𝑙(Σ𝜋 ∧ Σ𝜋 ) 



RELAXED PLAN EXTRACTION 
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𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 
𝑎 

𝒔→𝒂 

 

+ 

𝒔→𝒂
+  

𝒑 

 For these subgoals, no supporting actions needed! 



FIND 𝝅 S.T. 𝑹 𝝅 > 𝜹: SEARCH ALGORITHM 

 Stochastic local search with failed bounded restarts (Coles et al., 

2007)  

53 

h s, 𝛿 = 100 

𝛿 ∈ (0,1] 

Depth bound 

reached. Failed. 

ℎ 𝑠′, 𝛿 = 55 

𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 0 

𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 1 

𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 0 

If  𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 = 𝑓𝑎𝑖𝑙𝑏𝑜𝑢𝑛𝑑 
then double depth bound 

ℎ 𝑠′′, 𝛿 = 0 

Goal reached 

𝑓𝑎𝑖𝑙𝑏𝑜𝑢𝑛𝑑 = 32, 64,128, … 

𝒂𝟏𝟎 

𝒂𝟏𝟐 

𝒂𝟐𝟎 
𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 2 

If  probecount = 𝑝𝑟𝑜𝑏𝑒𝑏𝑜𝑢𝑛𝑑 
then increment 𝑓𝑎𝑖𝑙𝑐𝑜𝑢𝑛𝑡 

𝑝𝑟𝑜𝑏𝑒𝑐𝑜𝑢𝑛𝑡 = 0 

Better state found. 

𝛿 = 𝑅(𝜋) 

ℎ(𝑠, 𝛿): how far it is 

approximately from s to a 

goal state so that the 

resulting plan has 

approximate robustness > 𝛿. 



EXPERIMENTAL RESULTS 

54 
Number of instances for which PISA produces better, equal 

and worse robust plans compared to DeFault. 

 Domains:  
 Zenotravel, Freecell, Satellite, Rover (215 domains x 10 problems = 

2150 instances) 

 Parc Printer (300 instances) 

 

 



EXPERIMENTAL RESULTS 

55 

Total time in seconds (log scale) to generate plans with the 

same robustness by PISA and DeFault. 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 



DISSERTATION OVERVIEW 
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“Model-lite” Planning 

Preference 

incompleteness 

Domain 

incompleteness 

 Representation: two levels 
of incompleteness 

 User preferences exist, but 
totally unknown 

 Partially specified 

  Full set of plan 
attributes 

 Parameterized value 
function, unknown 
trade-off values 

         

 Representation 

 Actions with possible 
preconditions / effects 

 Optionally with weights 
for being the real ones 

         

 Solution concept: plan sets  

 

         
 Solving techniques: 

synthesizing high quality 
plan sets 

 Solution concept:  “robust” 
plans 

 Solving techniques: 
synthesizing robust plans 

Publication 

 Domain independent approaches 
for finding diverse plans. IJCAI 
(2007) 

 Planning with partial preference 
models. IJCAI (2009) 

 Generating diverse plans to 
handle unknown and partially 
known user preferences. AIJ 190 
(2012) 

(with Biplav Srivastava, Subbarao 

Kambhampati, Minh Do, Alfonso  

Gerevini and Ivan  Serina) 

Publication 

 Assessing and Generating 
Robust Plans with Partial 
Domain Models. ICAPS-WS 
(2010) 

 Synthesizing Robust Plans under 
Incomplete Domain Models. 
AAAI-WS (2011), NIPS (2013) 

 A Heuristic Approach to 
Planning with Incomplete 
STRIPS Action Models. ICAPS 
(2014) 

(with Subbarao Kambhampati,  

 Minh Do) 



THANK YOU! 

Q & A 
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