
Unsupervised Bayesian Data Cleaning Techniques for Structured Data

by

Sushovan De

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved May 2014 by the
Graduate Supervisory Committee:

Dr. Subbarao Kambhampati, Chair
Dr. Yi Chen

Dr. Selçuk Candan
Dr. Huan Liu

ARIZONA STATE UNIVERSITY

August 2014



ABSTRACT

Recent efforts in data cleaning have focused mostly on problems like data deduplica-

tion, record matching, and data standardization; few of these focus on fixing incorrect

attribute values in tuples. Correcting values in tuples is typically performed by a min-

imum cost repair of tuples that violate static constraints like CFDs (which have to be

provided by domain experts, or learned from a clean sample of the database). In this

thesis, I provide a method for correcting individual attribute values in a structured

database using a Bayesian generative model and a statistical error model learned

from the noisy database directly. I thus avoid the necessity for a domain expert or

master data. I also show how to efficiently perform consistent query answering using

this model over a dirty database, in case write permissions to the database are un-

available. A Map-Reduce architecture to perform this computation in a distributed

manner is also shown. I evaluate these methods over both synthetic and real data.

i



ACKNOWLEDGEMENTS

This thesis would not have been possible without the thoughtful, patient and

knowledgable guidance of my advisor, Dr. Subbarao Kambhampati. To him I am

eternally grateful.

I also could not have been here without the love and support of my family: my

father, mother and little sister; to whom I’ve always looked when the going went

rough, and for keeping me on the right track.

The bitter Arizona heat would have been unbearable without the constant com-

panionship of my friends; to whom I owe much of what I have accomplished.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Limitations of Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 BayesWipe Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Probabilistic Database Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Query Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Probabilistic Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 BayesWipe Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 BayesWipe Application, Map-Reduce and Probabilistic Dependen-

cies extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Model Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Data Source Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Edit Distance Similarity: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Distributional Similarity Feature: . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.3 Unified Error Model: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Finding the Candidate Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



CHAPTER Page

5 Offline Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Cleaning to a Deterministic Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Cleaning to a Probabilistic Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Online Query Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Increasing the Precision of Rewritten Queries . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Increasing the Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 The BayesWipe Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.2 User Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Map-Reduce framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.1 Original Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.2 Simple Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.3 Improved Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.4 Results of This Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.5 Potential Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.6 Further Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10 Dependencies Among Attributes in Probabilistic Databases . . . . . . . . . . . . . 56

10.1 Functional Dependencies Compared to Bayes Networks . . . . . . . . . . . . 56

10.2 Motivation for Functional Dependencies in Probabilistic Databases . 57

iv



CHAPTER Page

10.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.3.1 Probabilistic Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.3.2 Probabilistic Functional Dependencies (pFD) . . . . . . . . . . . . . . . 61

10.3.3 Probabilistic Approximate Functional Dependencies (pAFD) 62

10.3.4 Conditional Probabilistic Functional Dependencies (CpFD) . 63

10.3.5 Conditional Probabilistic Approximate Functional Depen-

dencies (CpAFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.4 Relationships Among Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.5 Assessing and Mining Probabilistic Dependencies . . . . . . . . . . . . . . . . . . 67

10.5.1 Assessing the Confidence of a pFD . . . . . . . . . . . . . . . . . . . . . . . . . 68

10.5.2 Adapting Specificity for Probabilistic Databases . . . . . . . . . . . . 69

10.5.3 Assessing the Confidence of a pAFD. . . . . . . . . . . . . . . . . . . . . . . . 73

10.5.4 Assessing the Confidence of a CpFD . . . . . . . . . . . . . . . . . . . . . . . . 76

10.5.5 Assessing the Confidence of a CpAFD . . . . . . . . . . . . . . . . . . . . . . 77

10.5.6 Adapting the Algorithms for TI Databases . . . . . . . . . . . . . . . . . 77

10.5.7 Mining Dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.6.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10.6.2 DBLP Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10.6.3 Dependency Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10.7 Probabilistic Dependency Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



LIST OF TABLES

Table Page

1.1 A Snapshot of Car Data Extracted From the Web. . . . . . . . . . . . . . . . . . . . . 2

5.1 Cleaned Probabilistic Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Result Probabilistic Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1 Results of the Mechanical Turk Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



LIST OF FIGURES

Figure Page

3.1 The Architecture of BayesWipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Learned Bayes Network: Auto dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Learned Bayes Network: Census dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Query Expansion example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Query Relaxation Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Performance of BayesWipe Compared to CFD . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 % Net Corrupt Values Cleaned, Car Database . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Net Corrections vs γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.4 Results of Probabilistic Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.5 Average Precision vs Recall, 20% Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.6 Comparison of BayesWipe With BayesWipe-exp and Keyword Query . . 39

7.7 Performance Evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.8 Questionnaire Provided to the Mechanical Turk Workers . . . . . . . . . . . . . . 44

8.1 Screenshots of the BayesWipe system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.1 Size of the Index as the Size of the Dataset Grows. . . . . . . . . . . . . . . . . . . . . 51

9.2 Size of the Index vs the Number of Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.3 Size of the Index vs the Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10.1 Why pAFDs Differ From a Näıve Interpretation of AFD. . . . . . . . . . . . . . . 59

10.2 The Relationship Between Various Dependencies . . . . . . . . . . . . . . . . . . . . . . 62

10.3 Algorithm for Computing the Confidence of pFD . . . . . . . . . . . . . . . . . . . . . . 68

10.4 Comparison of the Time Taken for pFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

10.5 Comparison of Time Taken for Various Number of Tuples . . . . . . . . . . . . . 75

10.6 Average Confidence Reported for the Dependencies in a Database . . . . . 79

10.7 Average Error and the Time Taken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



Figure Page

10.8 The confidence of pAFD and time taken as computed by Monte Carlo

method vs the union method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10.9 The dependencies discovered in DBLP data by mining pAFDs for speci-

ficity threshold = 0.3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10.10The dependencies discovered in DBLP data by mining pAFDs with

specificity threshold = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



Chapter 1

INTRODUCTION

Although data cleaning has been a long standing problem, it has become critical

again because of the increased interest in web data and big data. The need to effi-

ciently handle structured data that is rife with inconsistency and incompleteness is

now more important than ever. Indeed multiple studies (Computing Research Associ-

ation, 2012) emphasize the importance of effective and efficient methods for handling

“dirty data” at scale. Although this problem has received significant attention over

the years in the traditional database literature, the state-of-the-art approaches fall

far short of an effective solution for big data and web data.

1.1 A Motivating Example

Most of the current techniques are based on deterministic rules, which have a

number of problems:

Suppose that the user is interested in finding ‘Civic’ cars from Table 1.1. Tradi-

tional data retrieval systems would return tuples t1 and t4 for the query, because they

are the only ones that are a match for the query term. Thus, they completely miss

the fact that t4 is in fact a dirty tuple — A Ford Focus car mislabeled as a Civic.

Additionally, tuple t3 and t5 would not be returned as a result tuples since they have

a typos or missing values, although they represent desirable results. My objective is

to provide the true result set (t1, t3, t5) to the user. ◻

1



Table 1.1: A snapshot of car data extracted from cars.com using information extrac-

tion techniques

TID Model Make Orig Size Engine Condition

t1 Civic Honda JPN Mid-size V4 NEW

t2 Focus Ford USA Compact V4 USED

t3 Civik Honda JPN Mid-size V4 USED

t4 Civic Ford USA Compact V4 USED

t5 Honda JPN Mid-size V4 NEW

t6 Accord Honda JPN Full-size V6 NEW

1.2 Limitations of Existing Techniques

A variety of data cleaning approaches have been proposed over the years, from

traditional methods (e.g., outlier detection (Knorr et al., 2000), noise removal (Xiong

et al., 2006), entity resolution (Xiong et al., 2006; Fan et al., 2013), and imputa-

tion(Fellegi and Holt, 1976)) to recent efforts on examining integrity constraints, Al-

though these methods are efficient in their own scenarios, their dependence on clean

master data is a significant drawback.

Specifically, state of the art approaches (e.g., (Bohannon et al., 2005; Fan et al.,

2009; Bertossi et al., 2011) attempt to clean data by exploiting patterns in the data,

which they express in the form of conditional functional dependencies (or CFDs).

In my motivating example, the fact that Honda cars have ‘JPN’ as the origin of

the manufacturer would be an example of such a pattern. However, these approaches

depend on the availability of a clean data corpus or an external reference table to learn

data quality rules or patterns before fixing the errors in the dirty data. Systems such

2



as ConQuer (Fuxman et al., 2005) depend upon a set of clean constraints provided

by the user. Such clean corpora or constraints may be easy to establish in a tightly

controlled enterprise environment but are infeasible for web data and big data. One

may attempt to learn data quality rules directly from the noisy data. Unfortunately

however, my experimental evaluation shows that even small amounts of noise severely

impairs the ability to learn useful constraints from the data.

1.3 BayesWipe Approach

To avoid dependence on clean master data, in this thesis, I propose a novel system

called BayesWipe that assumes that a statistical process underlies the generation of

clean data (which I call the data source model) as well as the corruption of data

(which I call the data error model). The noisy data itself is used to learn the parame-

ters of these the generative and error models, eliminating dependence on clean master

data. Then, by treating the clean value as a latent random variable, BayesWipe lever-

ages these two learned models and automatically infers its value through a Bayesian

estimation.

I designed BayesWipe so that it can be used in two different modes: a traditional

offline cleaning mode, and a novel online query processing mode. The offline clean-

ing mode of BayesWipe follows the classical data cleaning model, where the entire

database is accessible and can be cleaned in situ. This mode is particularly useful for

cleaning data crawled from the web, or aggregated from various noisy sources. The

cleaned data can be stored either in a deterministic database, or in a probabilistic

database. If a probabilistic database is chosen as the output mode, BayesWipe stores

not only the clean version of the tuple it believes to be most likely correct one, but

the entire distribution over possible clean tuples. This mode is most useful for those

scenarios where recall is very important for further data processing on the cleaned

3



tuples.

The online query processing mode of BayesWipe (De et al., 2014) is motivated by

web data scenarios where it is impractical to create a local copy of the data and clean

it offline, either due to large size, high frequency of change, or access restrictions. In

such cases, the best way to obtain clean answers is to clean the resultset as I retrieve

it, which also provides me the opportunity of improving the efficiency of the system,

since I can now ignore entire portions of the database which are likely to be unclean

or irrelevant to the top-k. BayesWipe uses a query rewriting system that enables it to

efficiently retrieve only those tuples that are important to the top-k result set. This

rewriting approach is inspired by, and is a significant extension of our earlier work on

QPIAD system for handling data incompleteness (Wolf et al., 2009a).

1.4 Probabilistic Database Dependencies

One of the features of the offline mode of BayesWipeis that a probabilistic database

(PDB) can be generated as a result of the data cleaning. Probabilistic databases are

complex and unintuitive, because each single input tuple is mapped into a distribution

over resulting clean alternatives. This is further exacerbated by the fact that one of

the key components generating this PDB was a Bayes network. While the structure

of a Bayes network can be visualized easily, the parameters are a set of numbers that

is hard to get an intuitive grasp on.

In order to understand the underlying model of the data, and to discover rela-

tionships between attributes, I show novel algorithms to mine variations of functional

dependencies (approximate, conditional and regular) over PDBs. This helps both

experts who wish to verify that the data cleaning system is working based on sound

reasoning, and näıve users looking for an explanation for a surprising output.

In order to find dependencies among attributes, I first provide the definitions of

4



the equivalent of functional dependencies on PDB (which I call pFD, pAFD, CpFD

and CpAFD, for the regular, approximate, conditional and conditional approximate

variations). Then I show both an exact algorithm as well as a fast approximate

algorithm to find the confidence of a dependency. Using this, I show how to mine

these dependencies efficiently.

There are two ways in which probabilistic dependency mining ties into data clean-

ing and BayesWipe.

Cleaning of PDBs: In the first instance, notice that BayesWipe was built for

deterministic databases. It can operate on a deterministic database and produce a

probabilistic cleaned database as an output, but it cannot clean a database that is

probabilistic to begin with. Indeed, cleaning of probabilistic databases is a largely

unexplored area. Using pFDs, I can begin to create algorithms that clean probabilistic

data. Indeed, just like CFDs can be used to perform data cleaning of deterministic

data, CpFDs can be used to perform data cleaning of certain kinds of probabilistic

data.

In order to clean this data, I need a set of dependencies. As I shall show for both

CFDs in deterministic data (Chapter 7.2) and probabilistic data (Chapter 10.6),

conditional dependencies (that are not approximate) cannot directly be learned from

the dirty data, since even a small amount of noise makes their confidence zero. I can

ask a domain expert to provide a set of dependencies, or alternatively, I can mine

high confidence CpAFDs from the data to perform the cleaning.

PDBs come in various forms; the most general being a collection of possible worlds,

and the most simple being tuple-independent databases. This form of data cleaning

is able to handle both block-disjoint independent and tuple-independent databases,

since in both of these cases, the database can be broken down into a set values that

are mutually independent. Existing min-cost repair algorithms can then be modified

5



to perform the smallest change to the database that makes it consistent with the

learned dependencies.

Supporting and explaining BayesWipe output: Secondly, probabilistic de-

pendencies can also be used to further analyze a PDB generated as a result of running

BayesWipe on a dataset. While BayesWipe uses Bayesian methods to perform the

cleaning, the choice of the probabilities of the generated PDBs is made as a product

of the generative model and error model’s probabilities. In order to gain insight into

why a certain option of a certain tuple is given a higher probability, one may find

the set of pAFDs from the PDB and use the learned dependencies as an explanation.

Additionally, the set of dependencies learned from the cleaned data can be matched

against highly correlated attributes in the Bayes network in order to ensure the data

cleaning was performed correctly. For example, had the overcorrection parameter

been set incorrectly, I will find a discrepancy between Bayes Network and the learned

pAFDs.

1.5 Organization

The rest of the thesis is organized as follows. I describe related work in the

next chapter, followed by an overview of the architecture in Chapter 3. Chapter 4

describes the learning phase of BayesWipe, where I find the data and error models.

Chapter 5 describes the offline cleaning mode, and the next chapter details the query

rewriting and online data processing. I describe the results of my empirical evaluation

in Chapter 7. The next two chapters describe the BayesWipe Application and the

optimizations to run on Map-Reduce framework. In Chapter 10, I describe how to

find functional dependencies in probabilistic databases.

6



Chapter 2

RELATED WORK

2.1 Data Cleaning

The current state of the art in data cleaning focuses on deterministic dependency

relations such as FD, CFD, and INDs.

CFDs: Bohannon et al. proposed (Bohannon et al., 2007; Fan et al., 2008) using

Conditional Functional Dependencies (CFD) to clean data. Indeed, CFDs are very

effective in cleaning data. However, the precision and recall of cleaning data with

CFDs completely depends on the quality of the set of dependencies used for the

cleaning. As my experiments show, learning CFDs from dirty data produces very

unsatisfactory results. In order for CFD-based methods to perform well, they need to

be learned from a clean sample of the database (Fan et al., 2009). Learning CFDs are

more difficult than learning plain FDs. For FDs, the search space is of the order of

the number of all possible combinations of the attributes. In the case of CFDs, each

such dependency is further adorned with a pattern tableau, that determines specific

patterns in tuples to which the dependency applies. Thus, the search space for mining

CFDs is extended by all combinations of all possible values that can appear in the

attributes. Not only does this make learning CFDs from dirty data more infeasible

— this also shows that the clean sample of the database from which CFDs are learn

must be large enough to be representative of all the patterns in the data. Finding

such a large corpus of clean master data is a non-trivial problem, and is infeasible

in all but the most controlled of environments (like a corporation with high quality

data).

7



Indeed, all these deterministic dependency based solutions were focused towards

the business data problem, where it is well known that the error rate lies between

1% – 5% (Redman, 1998). BayesWipe can handle much higher rates of error, which

makes this technique applicable for web data and user-generated data scenarios, which

are much more relevant today. This is because BayesWipe learns both the generative

and error model from the dirty data itself using Bayes networks and not deterministic

rules; the system is a lot more forgiving of dirtiness in the training sample.

Even if a curated set of integrity constraints are provided, existing methods do not

use a probabilistically principled method of choosing a candidate correction. They

resort to either heuristic based methods, finding an approximate algorithm for the

least-cost repair of the database (Arenas et al., 1999; Bohannon et al., 2005; Cong

et al., 2007); using a human-guided repair (Yakout et al., 2011), or sampling from a

space of possible repairs (Beskales et al., 2013b). There has been work that attempts

to guarantee a correct repair of the database (Fan et al., 2010), but they can only

provide guarantees for corrections of those tuples that are supported by data from a

perfectly clean master database. Recently, Beskales et al. (2013a) have shown how

the relative trust one places on the constraints and the data itself plays into the choice

of cleaning tuples. A Bayesian source model of data was used by Dong et al. (2009),

but was limited in scope to figuring out the evolution over time of the data value.

Most of the existing work has been focused on deterministic rules, and as a result,

the repairs to the database they perform do not have any probabilistic semantics.

On the other hand, BayesWipe provides confidence numbers to each of the repairs

it performs, which is the posterior probability (in a Bayesian sense) of the corrected

tuple given the input database and error models. Recent work (Beskales, 2012) shows

the use of a principled probabilistic method for two scenarios: (1) using a probabilis-

tic database to perform data de-duplication, and (2) to fix violations of functional

8



dependencies. Similar to (1), I allow the use of a probabilistic database, however, I

use it to store the outcome of my cleaning of corrupted data. As for (2), it has been

shown that CFDs are far more effective in data cleaning that FDs (Bohannon et al.,

2007), and I show in this thesis that my approach is superior to CFDs as well.

Kubica and Moore also use a probabilistic model that attempts to learn the gener-

ative and error model (Kubica and Moore, 2003), and apply it to a image processing

domain. However, this thesis separates the noise model into two parts, the noise

itself, and the corruption given the noise. Additionally, Kubica and Moore do not

specify how the generative and error models were learned.

Recent work has also focused on the metrics to use to evaluate data cleaning

techniques (Dasu and Loh, 2012). In this thesis, I focus on evaluating my method

against ground truth (when the ground truth is known), and user studies (when the

ground truth is not known).

2.2 Query Rewriting

The classic problem of query rewriting (Papakonstantinou and Vassalos, 1999) is

to take a SQL query Q that was written against the full database D, and reformulate

it to work on a set of views V so that it produces the same output. I use a similar

approach in this thesis — when it is not possible to clean the entire database in

place, I use query rewriting to efficiently obtain those tuples that are most likely to

be relevant to the user by exploiting all the views that the database does expose.

The query rewriting part of this thesis is inspired by the QPIAD system (Wolf

et al., 2009a), but significantly improves upon it. QPIAD performed query rewriting

over incomplete databases using approximate functional dependencies (AFD). Unlike

QPIAD, BayesWipe supports cleaning databases that have both null values as well

as wrong values. The problem I are attempting to solve in this thesis would not be

9



solvable by QPIAD, since it needs to know the exact attribute that is dirty (QPIAD

assumed any non-null value in a tuple was correct). The inference problem I solve is

much harder, since I have to infer both the location as well as the value of the error

in the tuples.

Researchers have also suggested query rewriting techniques to get clean answers

over inconsistent databases. However, there are significant differences between the

problem that I solve and the problem typically solved by query rewriting techniques.

Arenas et al. show (Arenas et al., 1999) a method to generate rewritten queries

to obtain clean tuples from an inconsistent database. However, the query rewriting

algorithm in that paper is driven by the deterministic integrity dependencies, and not

the generative or error model. Since this system requires a set of curated deterministic

dependencies, it is not directly applicable to the problem solved in this thesis. Further,

due to the use of Bayes networks to model the generative model, BayesWipe is able

to incorporate richer types of dependencies.

Recently, performing cleaning of the top-k results of a query has gained interest.

Mo et al. propose a system (Mo et al., 2013) that cleans just the top-k returned tuples

— similar to what I do in this thesis. However, their definition of cleaning the data

is very different from ours; while I algorithmically find the best correction for a given

tuple, they query the real world for a cleaner sample of any tuple that the system

flags as ambiguous.

2.3 Probabilistic Dependencies

Monte Carlo methods have been used in probabilistic databases before, for ex-

ample, (Dalvi and Suciu, 2007b) uses Monte Carlo methods to give top-k results

for queries on probabilistic databases. A more general framework for probabilistic

databases, MCDB, is proposed by Jampani et. al. in (Jampani et al., 2008) where

10



the uncertainty is represented by parameters instead of probabilities, so that a more

generalized model of uncertainty can be represented. In MCDB, the authors consider

the creation and querying of uncertain databases in great detail, and provide algo-

rithms that improve on the time taken to perform the Monte Carlo simulations by

considering groups of tuples at a time, which they call tuple bundles. However, nei-

ther the problem of finding the confidence of dependencies, nor the problem of mining

dependencies is considered by the authors. Sarma et al. extended FDs to probabilis-

tic data in (Sarma et al., 2009), how- ever, in that paper the dependencies that

were proposed were appropriate for schema normalization, but were inappropriate

for discovering hidden relationships in data. Specifically, the horizontal dependencies

specified can detect databases where the FD holds either in the union of all proba-

bilistic tuples, each tuple individually, or within a specific tuple. The first two of these

cases are intolerant to any noise in the data. The last one needs a single tuple to be

specified, which is not holistic enough to discover any patterns. Such dependencies

are ideal for schema normalization, since they allow the tables to be decomposed and

simpler schema to be built, but it is not appropriate for discovering data patterns

which needs to be fault tolerant.

There is a large body of research that talks about association rules (Agrawal and

Srikant, 1994) and itemsets (Brin et al., 1997), more commonly known as the market-

basket analysis problem. This work on association rules was recently improved by

Kalavagattu (Kalavagattu, 2008) to include pruning based on specificity and to roll

them up into approximate functional dependencies. AFDs have also been used to

mine attribute correlations on autonomous web databases by Wolf et al. (Wolf et al.,

2009b). They have also been used by Wang et al. (Wang et al., 2009) to find dirty

data sources and normalize large mediated schemas. FDs have also been generalized

into conditional functional dependencies. Their role in data cleaning was shown by

11



Bohannon et al. (Bohannon et al., 2007).

In (Gupta and Sarawagi, 2006), Gupta and Sarawagi demonstrate how to create

probabilistic databases that are an approximation of an information extraction model

and find that using the appropriate model of uncertainty in a database is important.

If the model of uncertainty is too simple then interactions between elements of the

generating model cannot be represented; if it is too complex then querying becomes

inefficient. Similarly, in this chapter, I am proposing the right level of uncertainty,

but for functional dependencies. I show that using probabilistic semantics does cause

a significant change in the confidence of the dependencies, and I show efficient algo-

rithms that find these dependencies.

12



Chapter 3

BAYESWIPE OVERVIEW

BayesWipe views the data cleaning problem as a statistical inference problem over

the structured data. Let D = {T1, ..., Tn} be the input structured data which contains

a certain number of corruptions. Ti ∈ D is a tuple with m attributes {A1, ...,Am}

which may have one or more corruptions in its attribute values. So given a correction

candidate set C for a possibly corrupted tuple T in D, I can clean the database by

replacing T with the candidate clean tuple T ∗ ∈ C that has the maximum P (T ∗∣T ).

Using Bayes rule (and dropping the common denominator), I can rewrite this to

T ∗best = arg max[P (T ∣T ∗)P (T ∗)] (3.1)

If I wish to create a probabilistic database (PDB), I don’t take an arg max over the

P (T ∗∣T ), instead I store the entire distribution over the T ∗ in the resulting PDB.

For online query processing I take the user query Q∗, and find the relevance score

of a tuple T as

Score(T ) = ∑
T ∗∈C

P (T ∗)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

source model

P (T ∣T ∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error model

R(T ∗∣Q∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

relevance

(3.2)

In this thesis, I used a binary relevance model, where R is 1 if T ∗ is relevant to

the user’s query, and 0 otherwise. Note that R is the relevance of the query Q∗ to

the candidate clean tuple T ∗ and not the observed tuple T . This allows the query

rewriting phase of BayesWipe, which aims to retrieve tuples with highest Score(.)

to achieve the non-lossy effect of using a PDB without explicitly rectifying the entire

database.

13



Data Source

Database 
Sampler

Data source 
model

Error 
Model

Candidate 
Set Index

Cleaning to a 
Deterministic DB

Query 
Rewriting

Clean
Data

Model Learning

Cleaning to a 
Probabilistic DB

Offline Cleaning

Query Processing

Result 
Ranking

OR

or

Figure 3.1: The architecture of BayesWipe. My framework learns both data source

model and error model from the raw data during the model learning phase. It can

perform offline cleaning or query processing to provide clean data.

3.1 Architecture

Figure 3.1 shows the system architecture for BayesWipe. During the model learn-

ing phase (Section 4), I first obtain a sample database by sending some queries to the

database. On this sample data, I learn the generative model of the data as a Bayes

network (Section 4.1). In parallel, I define and learn an error model which incorpo-

rates three types of errors (Section 4.2). I also create an index to quickly propose

candidate T ∗s.

I can then choose to do either offline cleaning (Section 5) or online query processing

(Section 6), as per the scenario. In the offline cleaning mode, I can choose whether to

store the resulting cleaned tuple in a deterministic database (where I store only the

T ∗ with the maximum posterior probability) or probabilistic database (where I store

the entire distribution over the T ∗). In the online query processing mode, I obtain a

14



query from the user, and do query rewriting in order to find a set of queries that are

likely to retrieve a set of highly relevant tuples. I execute these queries and re-rank

the results, and then display them to the user.

Algorithm 1: The algorithm for offline data cleaning

Input: D, the dirty dataset.

BN ← Learn Bayes Network (D)

foreach Tuple T ∈D do

C ← Find Candidate Replacements (T )

foreach Candidate T ∗ ∈ C do

P (T ∗)← Find Joint Probability (T ∗,BN)

P (T ∣T ∗)← Error Model (T,T ∗)

end

T ← arg max
T ∗∈C

P (T ∗)P (T ∣T ∗)

end

In Algorithms 1 and 2, we present the overall algorithm for BayesWipe. In the

offline mode, we show how we iterate over all the tuples in the dirty database, D

and replace them with cleaned tuples. In the query processing mode, the first three

operations are performed offline, and the remaining operations show how the tuples

are efficiently retrieved from the database, ranked and displayed to the user.

3.2 BayesWipe Application, Map-Reduce and Probabilistic Dependencies

extensions

I made publicly available a version of BayesWipe that users can download and

clean any dataset of their choice. The architecture for this application matches the

architecture described in the previous section.

Making a complex algorithm like BayesWipe truly parallel is not simple: the pieces

15



Algorithm 2: Algorithm for online query processing.

Input: D, the dirty dataset

Input: Q, the user’s query

S ← Sample the source dataset D

BN ← Learn Bayes Network (S)

ES ← Learn Error Statistics (S)

R ← Query and score results (Q,D,BN)

ESQ← Get expanded queries (Q)

foreach Expanded query E ∈ ESQ do

R ← R∪ Query and score results (E,D,BN)

RQ← RQ∪ Get all relaxed queries (E)

end

Sort(RQ) by expected relevance, using ES

while top-k confidence not attained do

B ← Pick and remove top RQ

R ← R∪ Query and score results (B,D,BN)

end

Sort(R) by score

return R

are coupled because the index needs to be generated, and the size of the index quickly

gets out of hand. I show a way to decouple the index, by dividing it based on the hash

of the common attribute. This lets me route the input to the correct node so that

the index on the node is minimized. The architecture for this decoupling is explained

more fully in Chapter 9. In short, there is a two-stage map-reduce architecture,

where in the first stage, the tuples are routed to a set of reducer nodes which hold

the relevant candidate tuples for them. In the second stage, the resulting candidate

16



tuples along with their scores are collated, and the best one is selected from them.

In order to better express the dependencies among attributes to humans, I extend

the definition of functional dependencies to incorporate cases for PDBs. There are

two existing dimensions along which functional dependencies have been generalized:

approximate and conditional. I introduce each of these to PDBs, creating four new

types of dependencies: pFD, pAFD, CpFD, CpAFD. In order to mine these depen-

dencies, I take a two-stage approach. First, I present an algorithm to determine the

confidence of a dependency. For pFD, I show an exact algorithm that efficiently trims

down the number of computation it has to perform. I also show a Monte-Carlo based

approximation method to efficiently estimate the confidence of all these dependencies.

Finally, similar to the algorithm for mining AFDs from data, I show how to

reduce the search space when trying to mine these dependencies directly from the

probabilistic data.

17



Chapter 4

MODEL LEARNING

This chapter details the process by which I estimate the components of Equa-

tion 3.2: the data source model P (T ∗) and the error model P (T ∣T ∗)

4.1 Data Source Model

The data that I work with can have dependencies among various attributes (e.g.,

a car’s engine depends on its make). Therefore, I represent the data source model as

a Bayes network, since it naturally captures relationships between the attributes via

structure learning and infers probability distributions over values of the input tuple

instances.

Constructing a Bayes network over D requires two steps: first, the induction

of the graph structure of the network, which encodes the conditional independences

between the m attributes of D’s schema; and second, the estimation of the parameters

of the resulting network. The resulting model allows me to compute probability

distributions over an arbitrary input tuple T .

I observe that the structure of a Bayes network of a given dataset remains constant

with small perturbations, but the parameters (CPTs) change more frequently. As a

result, I spend a larger amount of time learning the structure of the network with a

slower, but more accurate tool, Banjo (Hartemink., ????). Figures 4.1 and 4.2 show

automatically learned structures for two data domains.

Then, given a learned graphical structure G of D, I can estimate the conditional

probability tables (CPTs) that parameterize each node in G using a faster package

called Infer.NET (Minka et al., 2010). This process of inferring the parameters is run

18



Condition Make 

Door 

Model Year 

Drivetrain 

Engine Car Type 

Figure 4.1: Learned Bayes Network: Auto dataset

occupation 

gender working-
class 

filing-status 

education 

marital status 

country 

race 

Figure 4.2: Learned Bayes Network: Census dataset

offline, but more frequently than the structure learning.

Once the Bayesian network is constructed, I can infer the joint distributions for

arbitrary tuple T , which can be decomposed to the multiplication of several marginal

distributions of the sets of random variables, conditioned on their parent nodes de-

pending on G.

4.2 Error Model

Having described the data source model, I now turn to the estimation of the error

model P (T ∣T ∗) from noisy data. Given a set of clean candidate tuples C where T ∗ ∈ C,

my error model P (T ∣T ∗) essentially measures how clean T is, or in other words, how

19



similar T is to T ∗. Unlike traditional record linkage measures (Koudas et al., 2006),

my similarity functions have to take into account dependencies among attributes.

I now build an error model that can estimate some of the most common kinds of

errors in real data: a combination of spelling, incompletion and substitution errors.

4.2.1 Edit Distance Similarity:

This similarity measure is used to detect spelling errors. Edit distance between

two strings TAi
and T ∗Ai

is defined as the minimum cost of edit operations applied to

dirty tuple TAi
transform it to clean T ∗Ai

. Edit operations include character-level copy,

insert, delete and substitute. The cost for each operation can be modified as required;

in this thesis I use the Levenshtein distance, which uses a uniform cost function. This

gives me a distance, which I then convert to a probability using (Ristad and Yianilos,

1998):

fed(TAi
, T ∗Ai

) = exp{−costed(TAi
, T ∗Ai

)} (4.1)

4.2.2 Distributional Similarity Feature:

This similarity measure is used to detect both substitution and omission errors.

Looking at each attribute in isolation is not enough to fix these errors. I propose a

context-based similarity measure called Distributional similarity (fds), which is based

on the probability of replacing one value with another under a similar context (Li

et al., 2006). Formally, for each string TAi
and T ∗Ai

, I have:

fds(TAi
, T ∗Ai

) = ∑
c∈C(TAi

,T ∗Ai
)

Pr(c∣T ∗Ai
)Pr(c∣TAi

)Pr(TAi
)

Pr(c)
(4.2)

where C(TAi
, T ∗Ai

) is the context of a tuple attribute value, which is a set of attribute

values that co-occur with both TAi
and T ∗Ai

. Pr(c∣T ∗Ai
) = (#(c, T ∗Ai

) + µ)/#(T ∗Ai
) is

the probability that a context value c appears given the clean attribute T ∗Ai
in the

20



sample database. Similarly, P (TAi
) = #(TAi

)/#tuples is the probability that a dirty

attribute value appears in the sample database. I calculate Pr(c∣TAi
) and Pr(TAi

)

in the same way. To avoid zero estimates for attribute values that do not appear in

the database sample, I use Laplace smoothing factor µ.

4.2.3 Unified Error Model:

In practice, I do not know beforehand which kind of error has occurred for a

particular attribute; I need a unified error model which can accommodate all three

types of errors (and be flexible enough to accommodate more errors when necessary).

For this purpose, I use the well-known maximum entropy framework (Berger et al.,

1996) to leverage all available similarity measures, including Edit distance fed and

distributional similarity fds. So for the input tuple T and T ∗, I have my unified error

model defined on this attribute as follows:

Pr(T ∣T ∗) =
1

Z
exp{α

m

∑
i=1
fed(TAi

, T ∗Ai
) + β

m

∑
i=1
fds(TAi

, T ∗Ai
)} (4.3)

where α and β are the weight of each similarity measure, m is the number of attributes

in the tuple. The normalization factor is Z = ∑T ∗ exp{∑i λifi(T
∗, T )}.

4.3 Finding the Candidate Set

I need to find the set of candidate clean tuples, C, that comprises all the tuples

in the sample database that differ from T in not more than j attributes. Even with

j = 3, the näıve approach of constructing C from the sample database directly is

too time consuming, since it requires one to go through the sample database in its

entirety once for every result tuple encountered. To make this process faster, I create

indices over (j + 1) attributes. If any candidate tuple T ∗ differs from T in less than

or equal to j attributes, then it will be present in at least one of the indices, since

21



I created j + 1 of them. These j + 1 indices are created over those attributes that

have the highest cardinalities, such as Make and Model (as opposed to attributes

like Condition and Doors which can take only a few values). For every possibly dirty

tuple T in the database, I go over each such index and find all the tuples that match

the corresponding attribute. The union of all these tuples is then examined and the

candidate set C is constructed by keeping only those tuples from this union set that

do not differ from T in more than j attributes.

Thus I can be sure that by using this method, I have obtained the entire set C.

By using those attributes that have high cardinality, I ensure that the size of the set

of tuples returned from the index would be small.

22



Chapter 5

OFFLINE CLEANING

5.1 Cleaning to a Deterministic Database

In order to clean the data in situ, I first use the techniques of the previous section

to learn the data generative model, the error model and create the index. Then, I

iterate over all the tuples in the database and use Equation 3.1 to find the T ∗ with

the best score. I then replace the tuple with that T ∗, thus creating a deterministic

database using the offline mode of BayesWipe.

5.2 Cleaning to a Probabilistic Database

I note that many data cleaning approaches — including the one I described in the

previous sections — come up with multiple alternatives for the clean version for any

given tuple, and evaluate their confidence in each of the alternatives. For example, if

a tuple is observed as ‘Honda, Corolla’, two correct alternatives for that tuple might

be ‘Honda, Civic’ and ‘Toyota, Corolla’. In such cases, where the choice of the clean

tuple is not an obvious one, picking the most-likely option may lead to the wrong

answer. Additionally, if one intends to do further processing on the results, such as

perform aggregate queries, join with other tables, or transfer the data to someone else

for processing, then storing the most likely outcome is lossy.

A better approach (also suggested by others (Computing Research Association,

2012)) is to store all of the alternative clean tuples along with their confidence values.

Doing this, however, means that the resulting database will be a probabilistic database

(PDB), even when the source database is deterministic.

23



It is not clear upfront whether PDB-based cleaning will have advantages over

cleaning to a deterministic database. On the positive side, using a PDB helps re-

duce loss of information arising from discarding all alternatives to tuples that did not

have the maximum confidence. On the negative side, PDB-based cleaning increases

the query processing cost (as querying PDBs are harder than querying determinis-

tic databases (Dalvi and Suciu, 2004)). Another challenge is that of presentation:

users usually assume that they are dealing with a deterministic source of data, and

presenting all alternatives to them can be overwhelming to them.

In this section, and in the associated experiments, I investigate the potential

advantages to using the BayesWipe system and storing the resulting cleaned data in

a probabilistic database. For my experiments, I used Mystiq (Boulos et al., 2005),

a prototype probabilistic database system from University of Washington, as the

substrate.

In order to create a probabilistic database from the corrections of the input data,

I follow the offline cleaning procedure described previously in Section 4. Instead of

storing the most likely T ∗, I store all the T ∗s along with their P (T ∗∣T ) values.

When evaluating the performance of the probabilistic database, I used simple se-

lect queries on the resulting database. Since representing the results of a probabilistic

database to the user is a complex task, in this thesis I focus on showing just the tuple

ID to the user. The rationale for my decision is that in a used car scenario, the user

will be satisfied if the system provides a link to the car the user intended to purchase

— the exact reasoning the system used to come up with the answer is not relevant to

the user. As a result, the form of my output is a tuple-independent database. This

can be better explained with an example:

Example: Suppose I clean my running example of Table 1.1. I will obtain

24



Table 5.1: Cleaned Probabilistic Database

TID Model Make Orig. Size Eng. Cond. P

t1
Civic Honda JPN Mid-size V4 NEW 0.6

Civic Honda JPN Compact V6 NEW 0.4

...

t3
Civic Honda JPN Mid-size V4 USED 0.9

Civik Honda JPN Mid-size V4 USED 0.1

a tuple-disjoint independent 1 probabilistic database (Suciu and Dalvi, 2005); a

fragment of which is shown in Table 5.1. Each original input tuple (t1, t3), has been

cleaned, and their alternatives are stored along with the computed confidence values

for the alternatives (0.6 and 0.4 for t1, in this example). Suppose the user issues a

query Model = Civic. Both options of tuple t1 of the probabilistic database satisfy

the constraints of the query. Since I are only interested in the tuple ID, I project out

every other attribute, resulting in returning tuple t1 in the result with a probability

0.6 + 0.4 = 1. Only the first option in tuple t3 matches the query. Thus the result

will contain the tuple t3 with probability 0.9. The experimental results use only the

tuple ids when computing the recall of the method. The output probabilistic relation

is shown in Table 5.2.

Table 5.2: Result Probabilistic Database

TID P

t1 1

t3 0.9

1A tuple-disjoint independent probabilistic database is one where every tuple, identified by its
primary key, is independent of all other tuples. Each tuple is, however, allowed to have multiple
alternatives with associated probabilities. In a tuple-independent database, each tuple has a single
probability, which is the probability of that tuple existing.

25



The interesting fact here is that the result of any query will always be a tuple-

independent database. This is because I projected out every attribute except for the

tuple-ID, and the tuple-IDs are independent of each other. ◻

When showing the results of my experiments, I evaluate the precision and recall

of the system. Since precision and recall are deterministic concepts, I have to convert

the probabilistic database into a deterministic database (that will be shown to the

user) prior to computing these values. I can do this conversion in two ways: (1)

by picking only those tuples whose probability is higher than some threshold. I call

this method the threshold based determinization. (2) by picking the top-k tuples and

discarding the probability values (top-k determinization). The experiment section

(Section 7.2) shows results with both determinizations.

26



Chapter 6

ONLINE QUERY REWRITING

In this chapter I develop an online query processing method where the result tuples

are cleaned at query time. Two challenges need to be addressed to do this effectively.

First, certain tuples that do not satisfy the query constraints, but are relevant to

the user, need to be retrieved, ranked and shown to the user. Second, the process

needs to be efficient, since the time that the users are willing to wait before results

are shown to them is very small. I show my query rewriting mechanisms aimed at

addressing both these challenges.

I begin by executing the user’s query (Q∗) on the database. I store the retrieved

results, but do not show them to the user immediately. I then find rewritten queries

that are most likely to retrieve clean tuples. I do that in a two-stage process: I first

expand the query to increase the precision, and then relax the query by deleting some

constraints (to increase the recall).

6.1 Increasing the Precision of Rewritten Queries

Since my data sources are inherently noisy, it is important that I do not retrieve

tuples that are obviously incorrect. Doing so will improve not only the quality of the

result tuples, but also the efficiency of the system. I can improve precision by adding

relevant constraints to the query Q∗ given by the user. For example, when a user

issues the query Model = Civic, I can expand the query to add relevant constraints

Make = Honda, Country = Japan, Size = Mid-Size. These additions capture the essence

of the query — because they limit the results to the specific kind of car the user is

probably looking for. These expanded structured queries I generate from the user’s

27



Make=
Honda

Model=
Civic

Model=
Accord

Fuel=
Gas

Model=
Civic

Doors=
4

Engine=
V4

Miles=
10k

…

…

…

…

Make=Honda

Make=Honda, Model = Accord

Make=Honda, Model = Civic

Make=Honda, Fuel = Gas

0.4

0.3

0.9

0.1

(0.1)6

(0.1 × 0.4)3

(0.1 × 0.3)3

(0.1 × 0.9)3

Figure 6.1: Query Expansion Example. The tree shows the candidate constraints

that can be added to a query, and the rectangles show the expanded queries with the

computed probability values.

query are called ESQs.

Each user query Q∗ is a select query with one or more attribute-value pairs as

constraints. In order to create an ESQ, I will have to add highly correlated constraints

to Q∗.

Searching for correlated constraints to add requires Bayesian inference, which is

an expensive operation. Therefore, when searching for constraints to add to Q∗, I

restrict the search to the union of all the attributes in the Markov blanket (Pearl,

1988). The Markov blanket of an attribute comprises its children, its parents, and

its children’s other parents. It is the set of attributes whose value being given, the

node becomes independent of all other nodes in the network. Thus, it makes sense to

consider these nodes when finding correlated attributes. This correlation is computed

using the Bayes Network that was learned offline on a sample database (recall the

architecture of BayesWipe in Figure 3.1.) ‘’

28



Given a Q∗, I attempt to generate multiple ESQs that maximizes both the rele-

vance of the results and the coverage of the queries of the solution space.

Note that if there are m attributes, each of which can take n values, then the

total number of possible ESQs is nm. Searching for the ESQ that globally maximizes

the objectives in this space is infeasible; I therefore approximately search for it by

performing a heuristic-informed search. My objective is to create an ESQ with m

attribute-value pairs as constraints. I begin with the constraints specified by the user

query Q∗. I set these as evidence in the Bayes network, and then query the Markov

blanket of these attributes for the attribute-value pairs with the highest posterior

probability given this evidence. I take the top-k attribute-value pairs and append

them to Q∗ to produce k search nodes, each search node being a query fragment.

If Q has p constraints in it, then the heuristic value of Q is given by P (Q)m/p.

This represents the expected joint probability of Q when expanded to m attributes,

assuming that all the constraints will have the same average posterior probability. I

expand them further, until I find k queries of size m with the highest probabilities.

Example: In Figure 6.1, I show an example of the query expansion. The node

on the left represents the query given by the user “Make=Honda”. First, I look at

the Markov Blanket of the attribute Make, and determine that Model and Condition

are the nodes in the Markov blanket. I then set “Make=Honda” as evidence in the

Bayes network and then run an inference over the values of the attribute Model.

The two values of the Model attribute with the highest posterior probability are

Accord and Civic. The most probable values of the Condition attribute are “new”

and “old”. Using each of these values, new queries are constructed and added to the

queue. Thus, the queue now consists of the 4 queries: “Make=Honda, Model=Civic”,

“Make=Honda, Model=Accord” and “Make=Honda, Condition=old”. A fragment

of these queries are shown in the middle column of Figure 6.1. I dequeue the highest

29



probability item from the queue and repeat the process of setting the evidence, finding

the Markov Blanket, and running the inference. I stop when I get the required number

of ESQs with a sufficient number of constraints.

6.2 Increasing the Recall

Adding constraints to the query causes the precision of the results to increase,

but reduces the recall drastically. Therefore, in this stage, I choose to delete some

constraints from the ESQs, thus generating relaxed queries (RQ). Notice that tuples

that have corruptions in the attribute constrained by the user (recall tuples t3 and t5

from my running example in Table 1.1) can only be retrieved by relaxed queries that

do not specify a value for those attributes. Instead, I have to depend on rewritten

queries that contain correlated values in other attributes to retrieve these tuples.

Using relaxed queries can be seen as a trade-off between the recall of the resultset

and the time taken, since there are an exponential number of relaxed queries for any

given ESQ. As a result, an important question is the order and number of RQs to

execute.

I define the rank of a query as the expected relevance of its result set.

Rank(q) = E(
∑Tq Score(Tq ∣Q∗)

∣Tq ∣
)

where Tq are the tuples returned by a query q, and Q∗ is the user’s query. Executing

an RQ with a higher rank will have a more beneficial result on the result set because

it will bring in better quality result tuples.

Estimating this quantity is difficult because I do not have complete information

about the tuples that will be returned for any query q. The best I can do, therefore,

is to approximate this quantity.

Let the relaxed query be Q, and the expanded query that it was relaxed from be

30



Civic Honda JPN Mid-size V4

Honda JPN V4

Q*:

ESQ:

RQ:

E[P(T|T*)]: 0.8 1 1 0.5 1 0.5

=0.2

Model Make Country Type Engine Cond.

Civic

Figure 6.2: Query Relaxation Example.

ESQ. I wish to estimate E[P (T ∣T ∗)] where T are the tuples returned by Q. Using the

attribute-error independence assumption, I can rewrite that as ∏
m
i=0P (T.Ai∣T ∗.Ai),

where T.Ai is the value of the i-th attribute in T. Since ESQ was obtained by ex-

panding Q∗ using the Bayes network, it has values that can be considered clean for

this evaluation. Now, I divide the m attributes of the database into 3 classes: (1) The

attribute is specified both in ESQ and in Q. In this case, I set P (T.Ai∣T ∗.Ai) to 1,

since T.Ai = T ∗.Ai. (2) The attribute is specified in ESQ but not in Q. In this case,

I know what T ∗.Ai is, but not T.Ai. However, I can generate an average statistic

of how often T ∗.Ai is erroneous by looking at my sample database. Therefore, in

the offline learning stage, I pre-compute tables of error statistics for every T ∗ that

appears in my sample database, and use that value. (3) The attribute is not specified

in either ESQ or Q. In this case, I know neither the attribute value in T nor in

T ∗. I, therefore, use the average error rate of the entire attribute as the value for

P (T.Ai∣T ∗.Ai). This statistic is also precomputed during the learning phase. This

product gives me the expected rank of the tuples returned by Q.

Example: In Figure 6.2, I show an example for finding the probability values of

a relaxed query. Assume that the user’s query Q∗ is “Civic”, and the ESQ is shown

31



in the second row. For an RQ that removes the attribute values “Civic” and “Mid-

Size” from the ESQ, the probabilities are calculated as follows: For the attributes

“Make, Country” and “Engine”, the values are present in both the ESQ as well as

the RQ, and therefore, the P (T ∣T ∗) for them is 1. For the attribute “Model” and

“Type”, the values are present in ESQ but not in RQ, hence the value for them can

be computed from the learned error statistics. For example, for “Civic”, the average

value of P (T ∣Civic) as learned from the sample database (0.8) is used. Finally, for the

attribute “Condition”, which is present neither in ESQ nor in RQ, I use the average

error statistic for that attribute (i.e. the average of P (Ta∣T ∗a ) for a = “Condition”

which is 0.5).

The final value of E[P (T ∣T ∗)] is found from the product of all these attributes as

0.2. ◻

Terminating the process: I begin by looking at all the RQs in descending order

of their rank. If the current k-th tuple in my resultset has a relevance of λ, and the

estimated rank of the Q I am about to execute is R(Tq ∣Q), then I stop evaluating

any more queries if the probability Pr(R(Tq ∣Q) > λ) is less than some user defined

threshold P. This ensures that I have the true top-k resultset with a probability P .

32



Chapter 7

EXPERIMENTS

I quantitatively study the performance of BayesWipe in both its modes — offline,

and online, and compare it against state-of-the-art CFD approaches. I used three

real datasets spanning two domains: used car data, and census data. I present

experiments on evaluating the approach in terms of the effectiveness of data cleaning,

efficiency and precision of query rewriting.

7.1 Experimental Setup

To perform the experiments, I obtained the real data from the web. The first

dataset is Used car sales dataset Dcar crawled from Google Base. The second dataset

I used was adapted from the Census Income dataset Dcensus from the UCI machine

learning repository (Asuncion and Newman, 2007). From the fourteen available at-

tributes, I picked the attributes that were categorical in nature, resulting in the

following 8 attributes: working-class, education, marital status, occupation, race, gen-

der, filing status. country. The same setup was used for both datasets – including

parameter values and error features.

These datasets were observed to be mostly clean. I then introduced 1 three types

of noise to the attributes. To add noise to an attribute, I randomly changed it either

to a new value which is close in terms of string edit distance (distance between 1 and

4, simulating spelling errors) or to a new value which was from the same attribute

(simulating replacement errors) or just deleted it (simulating deletion errors).

1I note that the introduction of synthetic errors into clean data for experimental evaluation
purposes is common practice in data cleaning research (Cong et al., 2007; Bohannon et al., 2007).

33



A third dataset was car inventory data crawled from the website ‘cars.com’. This

dataset was observed to have inaccuracies — therefore, I used this to validate my

approach against real-world noise in the data, where I do not control the noise process.

7.2 Experiments

Offline Cleaning Evaluation: The first set of evaluations shows the effectiveness

of the offline cleaning mode. In Figure 7.1, I compare BayesWipe against CFDs

(Chiang and Miller, 2008). The dotted line that shows the number of CFDs learned

from the noisy data quickly falls to zero, which is not surprising: CFDs learning

was designed with a clean training dataset in mind. Further, the only constraints

learned by this algorithm are the ones that have not been violated in the dataset —

unless a tuple violates some CFD, it cannot be cleaned. As a result, the CFD method

cleans exactly zero tuples independent of the noise percentage. On the other hand,

BayesWipe is able to clean between 20% to 40% of the data. It is interesting to note

that the percentage of tuples cleaned increases initially and then slowly decreases.

This is because for very low values of noise, there aren’t enough errors available for

the system to learn a reliable error model from; and at larger values of noise, the data

source model learned from the noisy data is of poorer quality.

While Figure 7.1 showed only percentages, in Figure 7.2 I report the actual num-

ber of tuples cleaned in the dataset along with the percentage cleaned. This curve

shows that the raw number of tuples cleaned always increases with higher input noise

percentages.

Setting α and β: The weight given to the distributional similarity (β), and the

weight given to the edit distance (α) are parameters that can be tuned, and should

be set based on which kind of error is more likely to occur. In my experiments, I

performed a grid search to determine the best values of α and β to use. In Figure 7.3,

34



0

2

4

6

0%

10%

20%

30%

40%

50%

0 5 10 15 20 25 30 35 40

N
u

m
 C

FD
s 

le
ar

n
e

d

%
 T

u
p

le
s 

C
le

an
e

d

Noise Percent

BayesWipe CFD #CFDs

Figure 7.1: % Performance of BayesWipe Compared to CFD, for the Used-car

Dataset.

I show a portion of the grid search where α = 2β/3.

The “values corrected” data points in the graph correspond to the number of

erroneous attribute values that the algorithm successfully corrected (when checked

against the ground truth). The “false positives” are the number of legitimate values

that the algorithm changes to an erroneous value. When cleaning the data, my

algorithm chooses a candidate tuple based on both the prior of the candidate as

well as the likelihood of the correction given the evidence. Low values of α,β give a

higher weight to the prior than the likelihood, allowing tuples to be changed more

easily to candidates with high prior. The “overall gain” in the number of clean values

is calculated as the difference of clean values between the output and input of the

algorithm.

If I set the parameter values too low, I will correct most wrong tuples in the input

dataset, but I will also ‘overcorrect’ a larger number of tuples. If the parameters

are set too high, then the system will not correct many errors — but the number of

35



0%

10%

20%

30%

40%

50%

0

1000

2000

3000

4000

3 4 5 10 15 20 25 30 35
Percentage of noise

Net Tuples Cleaned
Percent Cleaned

Figure 7.2: % Net Corrupt Values Cleaned, Car Database

‘overcorrections’ will also be lower. Based on these experiments, I picked a parameter

value of α = 3.7, β = 2.1 and kept it constant for all my experiments.

Using probabilistic databases: I empirically evaluate the PDB-mode of BayesWipe

in Figure 7.4. The first figure shows the system using the threshold determinization.

I plot the precision and recall as the probability threshold for inclusion of a tuple

in the resultset is varied. As expected, with low values of the threshold, the system

allows most tuples into the resultset, thus showing high recall and low precision. As

the threshold increased, the precision increases, but the recall falls.

In Figure 7.4b, I compare the precision of the PDB mode using top-k determiniza-

tion against the deterministic mode of BayesWipe. As expected, both the modes show

high precision for low values of k, indicating that the initial results are clean and rel-

evant to the user. For higher values of k, the PDB precision falls off, indicating that

PDB methods are more useful for scenarios where high recall is important without

sacrificing too much precision.

Online Query Processing: Since there is no existing work on querying autonomous

36



0

40

80

120

160

200

2 2.5 3 3.5 4 4.5 5 5.5 6

N
u

m
b

e
r 

o
f 

tu
p

le
s

Distributional Similarity Weight

Values Corrected

False Positives

Cleanliness Gain

Figure 7.3: Net Corrections vs γ. (The x-axis Values Show the Un-normalized Dis-

tributional Similarity Weight, Which is Simply γ × 3/5.)

data sources in the presence of data inconsistency, I consider a keyword query

system as my baseline. I evaluate the precision and recall of my method against the

ground truth and compare it with the baseline.

I issued randomly generated queries to both BayesWipe and the baseline system.

Figure 7.5 shows the average precision over 10 queries at various recall values. It

shows that my system outperforms the keyword query system in precision, especially

since my system considers the relevance of the results when ranking them. On the

other hand, the keyword search approach is oblivious to ranking and returns all tuples

that satisfy the user query. Thus it may return irrelevant tuples early on, leading to

a loss in precision.

This shows that my proposed query ranking strategy indeed captures the expected

relevance of the to-be-retrieved tuples, and the query rewriting module is able to

generate the highly ranked queries.

37



0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold

PDB Precision

PDB Recall

(a) Precision and recall of the PDB method

using a threshold.

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100

P
re

ci
si

o
n

top-K

Deterministic Precision

PDB Precision

(b) top-k precision of PDB vs deterministic

method.

Figure 7.4: Results of Probabilistic Method.

.85

.90

.95

1.00

.01 .03 .05 .07 .09 .11 .13

P
re
ci
si
o
n

Recall

Keyword

BayesWipe Online
Query Processing

Figure 7.5: Average Precision vs Recall, 20% Noise.

Figure 7.6 shows the improvement in the absolute numbers of tuples returned by

the BayesWipe system. The graph shows the number of true positive tuples returned

(tuples that match the query results from the ground truth) minus the number of

false positives (tuples that are returned but do not appear in the ground truth result

set). We also plot the number of true positive results from the ground truth, which

is the theoretical maximum that any algorithm can achieve. The graph shows that

the BayesWipe system outperforms the keyword query system at nearly every level

of noise. Further, the graph also illustrates that — compared to a keyword query

baseline — BayesWipe closes the gap to the maximum possible number of tuples to

a large extent. In addition to showing the performance of BayesWipe against the

38



900

920

940

960

980

1000

1 2 3 4 5 10 15 20 25 30 35
Noise %

BW BW-exp SQL Ground truth

Figure 7.6: The improvement in the quality of the results (true positives minus false

positives) by BayesWipe, compared against BayesWipe-exp (without query relax-

ation) and a keyword query baseline.

keyword query baseline, we also show the performance of BayesWipe without the

query relaxation part (called BW-exp 2 ). We can see that the full BayesWipe system

outperforms the BW-exp system significantly, showing that query relaxation plays an

important role in bringing relevant tuples to the resultset, especially for higher values

of noise.

Efficiency:

Figure 7.7 shows the performance of BayesWipe. In For the offline mode of

BayesWipe, in Figure 7.7a I evaluate the time taken as the number of tuples in

the database increases, and in Figure 7.7b I show the time taken as the noise varies.

As can be seen from the figures, the offline methods complete in a time that can be

considered reasonable for an offline, one-time process on the database.

For the online mode, Figure 7.7c shows how the time taken per query varies with

the number of tuples, and Figure 7.7d shows the trend with respect to noise. While

2BW-exp stands for BayesWipe-expanded, since the only query rewriting operation done is query
expansion.

39



0

100

200

300

400

500

600

5k 10k 15k 20k 25k 30k

Ti
m

e
 T

ak
e

n
 (

s)

Number of tuples

census-offline

car-offline

(a) Time vs. #Tuples (Offline)

0

200

400

600

800

1000

0 10 20 30 40

Ti
m

e
 t

ak
e

n
 (

s)

Percentage of noise

census

car

(b) Time vs. %Noise (Offline)

0

50

100

150

5k 10k 15k 20k 25k 30k

Ti
m

e
 T

ak
e

n
 (

s)

Number of tuples

car-online

census-online

(c) Time vs. #Tuples (Online)

0

50

100

150

0 10 20 30 40

Ti
m

e
 t

ak
e

n
 (

s)

Percentage of noise

car-online

census-online

(d) Time vs. %Noise (Online)

Figure 7.7: Performance Evaluations

the time taken by the online method is higher than expected for an online method,

there are a couple of salient points to note. First, the online method is most useful for

scenarios where the database is not under the control of the user, so the online method

may be the only possible method to get clean data from the system. Second, note

that the trend of increase of the time taken as the number of tuples increases is much

more gradual when compared to the offline instance, and in fact tends to flatten out

towards higher tuple sizes. This is because the online method uses only the portion

of the database that is relevant to the query (through the rewritten queries).

Evaluation on real data with naturally occurring errors: In this section I

used a dataset of 1.2 million tuples crawled from the cars.com website 3 to check

3http://www.cars.com

40



the performance of the system with real-world data, where the corruptions were not

synthetically introduced. Since this data is large, and the noise is completely naturally

occurring, I do not have ground truth for this data. To evaluate this system, I

conducted an experiment on Amazon Mechanical Turk. First, I ran the offline mode

of BayesWipe on the entire database. I then picked only those tuples that were

changed during the cleaning, and then created an interface in mechanical turk where

only those tuples were shown to the user in random order. Due to resource constraints,

the experiment was run with the first 200 tuples that the system found to be unclean.

An example is shown in Figure 7.8. The turker is presented with two cars, and she

does not know which of the cars was originally present in the dirty dataset, and which

one was produced by BayesWipe. The turker will use her own domain knowledge, or

perform a web search and discover that a Mazda CX-9 touring is only available in a

3.7l engine, not a 3.5l. Then the turker will be able to declare the second tuple as the

correct option with high confidence.

The results of this experiment are shown in Table 7.1. As can be seen, the users

consistently picked the tuples cleaned by BayesWipe more favorably compared to the

original dirty tuples, proving that it is indeed effective in real-world datasets. Notice

that it is not trivial to obtain a 56% rate of success in these experiments. Finding a

tuple which convinces the turkers that it is better than the original requires searching

through a huge space of possible corrections. Based on the cardinality of the domain,

the probability that a random substitution will provide the correct tuple is vanishingly

small; in the given case, it is less than 0.025%.

The first row of Table 7.1 shows the fraction of tuples for which the turkers picked

the version cleaned by BayesWipe and indicated that they were either ‘very confident’

or ‘confident’. The second row shows the fraction of tuples for all turker confidence

values, and therefore is a less reliable indicator of success.

41



In order to show the efficacy of BayesWipe I also performed an experiment in

which the same tuples (the ones that BayesWipe had changed) were modified by a

random perturbation. The random perturbation was done by the same error process

as described before (typo, deletion, substitution with equal probability). Then these

tuples (the original tuple from the database and the perturbed tuple) were presented

as two choices to the turkers. The preference by the turkers for the randomly per-

turbed tuple over the original dirty tuple is shown in the third column, ‘Random’. It

is obvious from this that the turkers overwhelmingly do not favor the random per-

turbed tuples. This demonstrates two things. First, it shows the fact that BayesWipe

was performing useful cleaning of the tuples. In fact, BayesWipe shows a tenfold im-

provement over the random perturbation model, as judged by human turkers. This

shows that in the large space of possible modifications of a wrong tuple, BayesWipe

picks the correct one most of the time. Second, it provides additional support for the

fact that the turkers are picking the tuple carefully, and are not randomly submitting

their responses. This fact is further supported by experiments shown later.

Interestingly, note that the percentages shown in this table are not a fraction of

the total number of tuples, but only of the number of tuples changed by BayesWipe.

Therefore, as long as BayesWipe scores higher than the original data, the resulting

database is cleaner.

Another concern was that the mechanical turk users will not provide reliable

answers, since there is a monetary incentive to answer as many questions as possible

in a short amount of time. There were two approaches to mitigate this risk: showing

the same question to multiple turkers, and taking the majority vote; or to insert known

answers into the questions, and discard any turkers who fail to provide the expected

answer. In this experiment, I chose the second approach. I created a small set of

manually curated clean tuples, and automatically corrupted them with a substition,

42



Confidence BayesWipe Original Random
Increase over

Random

High confidence only 56.3% 43.6% 5.5%
50.8% points

(10x better)

All confidence values 53.3% 46.7% 12.4%
40.9% points

(4x better)

Table 7.1: Results of the Mechanical Turk Experiment, showing the percentage of

tuples for which the users picked the results obtained by BayesWipe as against the

original tuple. Also shows performance against a random modification.

deletion or typo. Both the original clean tuple and the corrupted tuple were presented

to the turkers, and there was no visible distinction between this control tuple and the

actual tuples from the study. For every 10 tuples of the query, I inserted 3 control

tuples. If the turker responds correctly to at least 2 out of the 3 control questions,

their answers were included in the results, otherwise, they were discarded.

I found that among 20 respondents, only one failed the control test. Repeating the

experiment with a higher monetary reward ($0.30 instead of $0.20) did not change

this observation significantly. As a result of this encouraging result, I determined

that further measures to prevent turker misuse of the system was unnecessary. In

this experiment, I also found the average fraction of known answers that the turkers

gave wrong answers to. This value was 8%. This leads to the conclusion that the

difference between the turker’s preference of BayesWipe over both the original tuples

(which is 12%) and the random perturbation (which is 50%) are both significant.

43



... make model cartype fueltype engine transmission drivetrain doors wheelbase 

Car: mazda cx-9 touring suv gasoline 3.5l v6 24v mpfi dohc 6-speed automatic fwd 4 113" 

Car: mazda cx-9 touring suv gasoline 3.7l v6 24v mpfi dohc 6-speed automatic fwd 4 113" 

 

 First is correct 

 Second is correct 

How confident are you about your selection? 

 Very confident     Confident    Slightly Confident    Slightly Unsure    Totally Unsure 

Figure 7.8: A Fragment of the Questionnaire Provided to the Mechanical Turk Work-

ers.

44



Chapter 8

THE BAYESWIPE APPLICATION

This chapter details the system, BayesWipe (De, 2014), that has been made avail-

able publicly, highlighting its working and architecture.

8.1 Objective

The BayesWipe software aims to let anyone perform probabilistic data cleaning

of any dataset of their choice easily, using a downloadable, graphical interface. It was

(a) (b)

(c) (d)

Figure 8.1: Screenshots of the BayesWipe system. (a) The initial selection screen,

(b) The data type selection screen, (c) Computation processing, (d) Computation

complete.

45



desirable to make the software as easy to use as possible, allowing input and output

in a simple, widely accepted format. It was also an objective to make it free from

complicated procedures, such as installation of other software.

To this end, BayesWipe has been made available for downloaded from the web-

site (http://bayeswipe.sushovan.de). It runs on the Windows platform (Windows 7

onwards). It requires Java (in order to run the Bayes Network structure learning

module, Banjo).

8.2 User Input

The input data can be formatted as either a comma separated, or a tab separated

input file. Since most databases (MySQL, SQL Server, Oracle) can export their data

to a CSV file with a simple command, this is a convenient container to take the data

input from.

The user starts the program and chooses her input data file. BayesWipe then

prompts the user to double check if the input data was properly imported — if the

column names were not present in the input data file, the user can choose to input

it here as well. The user can also help in the quantization of some attributes by

specifying if the attributes are numerical in nature. If selected, the application will

automatically figure out the bounds of the attribute values and quantize the attribute

appropriately.

Certain attributes that are unique keys, such as social security numbers, serial

numbers, or the VIN identifier for a car do not exhibit patterns across the dataset,

and thus cannot be cleaned by BayesWipe. The user has an opportunity at this point

to select those attributes to be ignored, so that the algorithm runs faster (since it has

fewer attributes to compute correlations for).

After this, no further input from the user is required.

46



8.3 Operation

Having collected input from the user, the software now transforms the data. It

standardizes the input file format to comma separated, finds the bounds of any nu-

merical attributes and quantizes the data. It also removes any attributes that the

user asked to ignore (for example, unique keys).

BayesWipe then invokes Banjo, to learn the structure of the Bayes network. In

order to do so, it creates two files: a smaller, sampled and quantized input file for

Banjo with attribute values converted to integer identifiers; and a configuration file

for Banjo that provides configuration information. This includes information such as

the duration for which the structure learner should be run, the algorithm that should

be used, etc. Banjo produces the output and writes the graph in the .dot format,

which BayesWipe reads back.

BayesWipe then learns the parameters of the Bayes network using Infer.NET. In

order to do so, it programmatically recreates the Bayes network structure that was

produced by Banjo into a structure that Infer.NET recognizes, and then provides

a sampled version of the input file as input. It also learns the error statistic and

computes the candidate index.

Finally, BayesWipe cleans the input data tuple by tuple and writes the output

to a text file in a comma separated format (that can be read back into the user’s

database for further processing).

BayesWipe was implemented in C# 3.5 on the Windows platform. Figure 8.1

shows the screenshots of system in operation. The first two screens show how the

user provides the input data and information, the second two screens show the data

cleaning operation in progress.

47



8.4 Future Work

To make it even easier for users to run BayesWipe, it can be implemented as a

web-application. There are several practical challenges for this to work well: data

cleaning is an extremely computation intensive process. Performing cleaning online

for whoever uploads their (possibly massive) datasets could easily prove to be pro-

hibitively expensive. Further, if the data is of a sensitive or confidential nature, users

may be unwilling to upload their data to a server they do not trust.

A second improvement to the system would be to bring online query capabilities

to the system. In such a case, making it a web-based system that can query certain

well-known datasets (such as cars.com) could be a valuable idea. Once again, if users

wish to run an online query against their own private datasets, making a copy of the

software available for download would also be a good idea.

48



Chapter 9

MAP-REDUCE FRAMEWORK

BayesWipe is most useful for big-data related scenarios. The online mode of BayesWipe

already works for big data scenarios by optimising the rewritten queries it issues, but

the offline mode has so far been shown as a single-threaded application. It makes

sense to implement it in a Map-Reduce architecture, so that I can run it very quickly

for massive datasets.

It is very useful and important to have big-data that is actually clean and reliable

and can be further processed using external tools, hence this is particularly suited for

BayesWipe.

Since it is a nice abstraction to think about when considering parallelizing pro-

grams, the map-reduce architecture is a good fit for this problem. Extensive support

for running Map-Reduce jobs is also available through many service providers (Ama-

zon AWS, Microsoft Azure, Google App Engine).

9.1 Original Implementation

BayesWipe has two modes: online and offline. This chapter only considers par-

allelizing the offline mode of BayesWipe, since the online mode can already work for

large datasets without affecting the run time too severely.

So far, BayesWipe-Offline has been implemented as a two-phase, single threaded

program. In the first phase, the program learns the Bayes network (both structure

and parameters), learns the error statistics, and creates the candidate index. In the

second phase, the program goes through every tuple in the input database, picks a set

of candidate tuples, and then evaluates the P (T ∗∣T )P (T ∗) for every candidate tuple,

49



and replaces T with the T ∗ that maximises that value. Since the learning is typically

done on a sample of the data, it is more important to focus on the second phase for

the parallelizing efforts. Later, I will see how the learning of the error statistics can

also be parallelized.

9.2 Simple Approach

The simplest approach to parallelizing the tuples is to run the first phase (the

learning phase) on a single machine, called the master machine. Then, a copy of the

bayes network (structure and CPTs), the error statistics, and the candidate index

can be sent to a number of other machines. Each of those machines also receives a

fraction of the input data. With the help of the generative model and the input data,

it can then clean the tuples, and then create the output.

If I express this in Map-Reduce terminology, I will have a pre-processing step

where I create the generative and error models. The Map-Reduce architecture will

have only mappers, and no reducers. The result of the mapping will be the tuple

⟨T,T ∗⟩.

The problem with this approach is that in a truly big data scenario, the candidate

index becomes very large. Indeed, as the number of tuples increases, the size of the

domain of each attribute also increases. Further, the number of different combina-

tions, and the number of erroneous values for each attribute also increase. All of this

results in a rather large candidate index. Transmitting and using the entire index on

each mapper node is wasteful of both network, memory, (and if swapped out, disk

resources).

This increase is shown in Figure 9.1. The x-axis shows the dataset over which the

index is built. The items curves shows the number of entries in the index, computed

as the number of attribute values used as the key and the tuples that are part of it.

50



0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 20 40 80 100 120 140

B
yt

es

N
u

m
b

er
 o

f 
it

em
s

Number of tuples (x1000)

items

bytes

Figure 9.1: Size of the Index as the Size of the Dataset Grows

The bytes curve shows the amount of space consumed in holding the item in memory.

As is apparent from the graph, the space taken by the index grows quickly. For a

successful distribution of the computation, it is necessary, therefore, to also distribute

the size of the index.

9.3 Improved Approach

In order to split both the input tuples and the candidate index, I use a two-stage

approach. In the first stage, I run a map-reduce that splits the problem into multiple

shards, each shard having a small fraction of the candidate index. Each input tuple

may be sent to multiple shards. In the second stage, I run a simple map-reduce that

picks the best output from stage 1 for each input tuple to produce the final clean

database.

Stage 1: I can intelligently partition both the tuples and the candidate index into

classes, so that I have a smaller index at each node. Fundamentally, I am operating

on an input tuple T and a set of candidate tuples, the T ∗s. Suppose the candidate

index is created on k attributes, A1...Ak. Therefore, I can say that for every tuple

T , and one of its candidate tuples T ∗, they will have at least one matching attribute

51



ai from this set. The idea is that I can use this common element ai to predict which

shards the candidate T ∗s might be available in.

In the map-reduce architecture, it is possible to define a ‘partition’ function. Given

a mapped key-value pair, this function determines which reducer nodes will process

the data. I use the value of the matching attribute, ai as the partition function.

However, notice that the number of possible values that A1...Ak can take is rather

large. If I näıvely useai as the partition function, I will have to create those many

reducer nodes. Therefore, more generally, I hash this value into a fixed number of

reducer nodes, using a deterministic hash function. This will then find all candidate

tuples that are eligible for this tuple, compute the similarity, and output it.

Example: Suppose I have tuple T1 that has values (a1, a2, a3, a4, a5). Suppose our

candidate index is created on attributes A1,A2,A4. This means that any candidates

T ∗ that are eligible for this tuple have to match one of the values a1, a2 or a4. Then

the mapper will create the pairs (a1, T ), (a2, T ) and (a4, T ), and send to the reducers.

The partition function is hash of the key - so in this case, the first one will be sent to

the reducer number hash(A1 = a1), the second will be sent to the reducer numbered

hash(A2 = a2), and so on. ◻

In the reducer, the similarity computation and prior computation part of BayesWipe

is run. Since each reducer only has a fraction of the candidate index (the part that

matches A1 = a1, for instance), it can hold it in memory and computation is quite

fast. Each reducer produces a pair (T1, (T ∗1 , score)).

Stage 2: This stage is a simple max calculation. The mapper does nothing,

it simply passes on the key-value pair (T1, (T ∗1 , score)) that was generated in the

previous Map-Reduce job. Notice that the key of this pair is the original, dirty tuple

T1. The Map-Reduce architecture thus automatically groups together all the possible

clean versions of T1 along with their scores. The reducer picks the best T* based on

52



0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 20 40 80 100 120 140

B
yt

es
 in

 o
n

e 
sh

ar
d

number of tuples

none 2 3 4 5

Figure 9.2: Size of the Index vs the Number of Tuples (in Thousands) in the Dataset,

for Various Number of Shards.

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40

B
yt

es
 in

 o
n

e 
sh

ar
d

Noise percentage

none 2 3 4 5

Figure 9.3: Size of the Index vs the Noise in the Dataset, for Various Number of

Shards.

the score (using a simple max function), and outputs it to the database.

9.4 Results of This Strategy

In Figure 9.2 and Figure 9.3 I can see how this map reduce strategy helps in

reducing the memory footprint of the reducer. First, I plot the size of the index that

needs to be held in each node as the number of tuples in the input increases. The

53



topmost curve shows the size of index in bytes if there was no sharding - as expected,

it increases sharply. The other curves show how the size of the index in the one of

the nodes varies for the same dataset sizes. From the graph, it can be seen that as

the number of tuples increases, the size of the index grows at a lower rate when the

number of shards is increased. This shows that increasing the number of reduce nodes

is a credible strategy for distributing the burden of the index.

In the second figure (Figure 9.3), we see how the size of the index varies with

the percentage of noise in the dataset. As expected, when the noise increases, the

number of possible candidate tuples increase (since there are more variations of each

attribute value in the pool). Without sharding, we see that the size of the dataset

increases. While the increase in the size of the index is not as sharp as the increase

due to the size of the dataset, it is still significant. Once again, we observe that as the

number of shards is increased, the size of the index in the shard reduces to a much

more manageable value.

These graphs show the size in bytes; the number of items shows a very similar

trend. I refer the reader to Figure 9.1 to show how close this similarity is.

9.5 Potential Disadvantages

While this architecture does solve the problem of the index size, the disadvantage

of using a 2-stage map-reduce is that it requires a very large temporary disk-space to

hold the (T, (T*, score)) pair. Recall that this is the output of the first Map-Reduce

job. This is the price I pay for implementing this architecture in Map-Reduce directly,

without worrying about modifying map-reduce architecture further.

The alternate implementation to this would be to slightly change the Map-Reduce

architecture, so that the second stage MR is not necessary. For example, this can

be accomplished by implementing a multi-layer Map-Map-Reduce framework. Recall

54



that the second Map-Reduce job did not process anything in the Mapper, it simply

passed the key-value pair generated by the previous stage. If we can implement that

as a ‘middle-layer’ mapper, then we can directly run the entire process in a single run,

without having to store the intermediate results. Other solutions, such as streaming

the output of the first stage to the second stage are also viable.

9.6 Further Possible Improvements

In future work, in addition to parallelizing the data cleaning part of the project,

the error statistic learning part can also be easily parallelized. First, error statistic for

each attribute is computed separately. Thus splitting the problem on the attribute is

a straightforward way to parallelize the computation.

For each attribute, the computation is quadratic because it looks at every pos-

sible pair of attributes. Ideas similar to the classic Map Reduce problem of matrix

multiplication can be applied to solve this.

55



Chapter 10

DEPENDENCIES AMONG ATTRIBUTES IN PROBABILISTIC DATABASES

10.1 Functional Dependencies Compared to Bayes Networks

In the previous chapters of this thesis, I developed a system to clean data based

on Bayes networks. Bayes networks were very useful as a tool to model the generative

model of the data, since it can effectively encode the conditional independences be-

tween attributes and provide an efficient method of storing and reasoning over them.

However, in addition to serving as a generative model, Bayes networks can also be

used to gain insight into the dependencies between the attributes themselves. For

example, Mellott (2013) uses the parameters of the Bayes network learned from the

data to infer a set of conditional functional dependencies.

Such dependencies between attributes (functional dependencies, and its more gen-

eralized versions such as approximate and conditional functional dependencies) are

faster to reason with, compared to Bayes networks, and can be more intuitively pre-

sented for inspection by domain experts. Thus, they can be used to verify that the

internal state of the system that is performing the data cleaning is reasonable. They

can also be used for generating automated explanations for the output of the program

(similar to recommender systems).

Recall that in the probabilistic mode of BayesWipe, the generated output is a

probabilistic database. It is quite well-known how to find the dependencies for a

deterministic database, but there is very little prior work on doing the same for

probabilistic databases. In this chapter, I show how to determine the confidence of

such dependencies in probabilistic databases, and hence, how to mine them.

56



10.2 Motivation for Functional Dependencies in Probabilistic Databases

A lot of data generated today, especially that obtained from the web, is dirty,

untrustworthy or uncertain. Yet we continue to store them in database engines that

are ill-equipped to handle uncertainty. Handling uncertainty isn’t a simple case of

adding a ‘probability’ attribute – uncertain data has correlations, causations and

query processing on such data is a probabilistic inference problem. Probabilistic

databases (PDB) allow the data to be represented in a manner that fully reflects

the different possibilities for the ground truth. Further processing can then take into

account all the alternatives, not just the most likely one.

In the case of traditional databases, dependencies in the form of exact and approx-

imate functional dependencies have proven to be very useful. They are used for fast

query processing, rectification of data and can also be used to gain insight into the

data and generate explanations for recommender systems. There are algorithms that

will evaluate functional dependencies between attributes to aid in schema normal-

ization (slo, 2013), that will evaluate approximate functional dependencies (AFD),

which helps filling out missing data in incomplete databases (Agrawal and Srikant,

1994). There are also conditional functional dependencies (CFDs), which help in

cleaning and correcting data (Bohannon et al., 2007). However, such dependencies

and algorithms are missing for probabilistic data. In this chapter, I extend these

very useful dependencies so that they work with PDBs in general. I generalize FDs

to probabilistic functional dependencies (pFD), AFDs to probabilistic approximate

functional dependencies (pAFD), and their conditional counterparts respectively to

CpFD and CpAFD. I also investigate the relationship between these dependencies. In

particular, I point out which of these dependencies are generalizations of, and hence

subsume, others. I also provide fast algorithms for evaluating the confidence of these

57



dependencies on probabilistic database, with a special focus on tuple- independent

and tuple-disjoint independent databases (Brin et al., 1997). With the help of these

algorithms, I describe how I can mine these dependencies from data, by using efficient

methods to prune the search space of dependencies.

Motivating example Consider the case where a large corporation has deployed a

set of sensor networks across its various departments to track operating environment,

power supply and malfunctioning equipment. Suppose that the data records of each

department are kept in separate relations, and are recorded in the following format:

each row has a timestamp, the exception in the environment conditions (if any)

such as ‘high temperature’ or ‘high humidity’, exceptions in power supply such as

‘fluctuating’ or ‘low voltage’, and the level of functioning of the equipment ‘working’

or ‘not working’. These readings are inherently uncertain, since they are taken by

sensors. Finding the confidence of the pAFD (environment ↝ malfunctioning) can tell

us in which department, equipment malfunctioning is correlated with environmental

concerns. This can then be compared with the confidence of the malfunctioning

being correlated with electrical reasons. Running a pAFD mining algorithm might

also bring out certain dependencies that were previously unknown. In this example,

finding a dependency like (power supply ↝ environment) may give an indication that

the operating environment is not ideal because of the erratic power supply.

Another scenario that benefits from uncertain dependencies is the following. As-

sume that two or more astronomers are observing and recording various objects in

the sky, like in the Sloan Digital Sky Survey (slo, 2013). They note various attributes

of the objects, including the color, type, speed, frequency of oscillation and position.

Such data is most naturally represented as a probabilistic database, where each tuple

represents a different object in the sky and reflects the curator’s confidence in the

58



ID Name Color Type Probability 

1 Sirius 
Red Star 0.5 

Pink Planet 0.5 

2 Andromeda 
White Galaxy 0.5 

Grey Comet 0.5 

3 Taurus 
Red Nebula 0.5 

Pink Dual Star 0.5 

4 Cassiopeia 
White Moon 0.5 

Grey Satellite 0.5 

ID Name Color Type Probability 

1a Sirius Red Star 0.5 

1b Sirius Pink Planet 0.5 

2a Andromeda White Galaxy 0.5 

2b Andromeda Grey Comet 0.5 

3a Taurus Red Nebula 0.5 

3b Taurus Pink Dual Star 0.5 

4a Cassiopeia White Moon 0.5 

4b Cassiopeia Grey Satellite 0.5 

Naïve AFD 

conf(Color ⇝ Type) = 0.5 

ID Name Color Type 

1 Sirius Red Star 

2 Andromeda White Galaxy 

3 Taurus Red Nebula 

4 Cassiopeia White Moon 

ID Name Color Type 

1 Sirius Red Star 

2 Andromeda White Galaxy 

3 Taurus Red Nebula 

4 Cassiopeia White Moon 

c = 0.5 

ID Name Color Type 

1 Sirius Red Star 

2 Andromeda White Galaxy 

3 Taurus Red Nebula 

4 Cassiopeia White Moon 

c = 1.0 

ID Name Color Type 

1 Sirius Red Star 

2 Andromeda White Galaxy 

3 Taurus Pink Dual S 

4 Cassiopeia Grey Satellite 

⋱ 
 

(0.5)4 

(0.5)4 

Possible Worlds 

conf(Color ⇝ Type) = 0.75 

c = 0.5 

c = 1.0 

Confidence in a 
Possible world 

Probability of a 
Possible world 

Tuple-Disjoint Independent 

Figure 10.1: Why pAFDs differ from a näıve interpretation of AFD. (top) A tuple-

disjoint independent database. (right) An attempt to find the AFD näıvely results

in confidence of 0.5. (left) The semantically correct value of 0.75.

observer as well as the observer’s confidence in the data. Having represented this

data, the curator can run a pAFD finding algorithm to discover dependencies that

were as yet unknown, of the form (color, speed↝ type). If the curator is aware of

some dependencies that are expected to hold, he can verify their validity by running

the appropriate dependency checking algorithm on this data.

One pertinent question is whether these extensions are important or interesting

enough to consider, or whether AFDs can be used directly. Pending empirical study,

59



(see Section 10.6.2), I demonstrate their importance with an example. Let us say that

I have a probabilistic database as shown in Figure 10.1. I am interested in finding

out whether or not the dependency Color ↝ Type has a high confidence. Strictly

speaking, I cannot evaluate its AFD, because the concept of AFD does not apply to

probabilistic data. However, I can apply what might be called an ‘intuitive’ extension

of an AFD to probabilistic data by considering each option as an independent tuple

and weighing them according to their probabilities. If I do that, Figure 10.1 shows

that this näıve method calculates a probability that is quite low, and different from

the correct value dictated by probabilistic semantics.

The rest of the chapter is organized as follows. I start by defining the various

dependencies for probabilistic databases, and in the following section I explore the

theoretical connections between them. In Section 10.5 I propose some algorithms

to evaluate the confidence of these quantities and show how to mine them, and in

the section following that, show experiments that evaluate the effectiveness of these

algorithms. I end with a discussion of related work and present our conclusions in

Section 10.7.

10.3 Definitions

10.3.1 Probabilistic Database

In this chapter I follow the possible worlds model for a probabilistic database: a

probabilistic database is a collection of possible worlds, with each possible world be-

ing a deterministic database with an associated probability of existence. Figure 10.1

shows a probabilistic database. The possible worlds representation is the set of rela-

tions on the bottom left.

I denote a deterministic relation by symbolR, which has attributes (A1,A2, ...,An).

60



Sets of attributes are denoted by X or Y . Uncertain relations are denoted by D, and

each uncertain relation comprises possible worlds (P1, P2, ...Pm), with and attributes

(A1,A2, ...,An).

10.3.2 Probabilistic Functional Dependencies (pFD)

Given a deterministic relation R a functional dependency (FD) is defined as (X →

Y ), where X and Y are sets of attributes. The FD is said to hold if whenever two

tuples share the same values of X, they have the same values of Y .

I can generalize this idea to probabilistic databases, as shown in Figure 10.2 by the

‘uncertainty in data’ axis. Given an uncertain relation D, a probabilistic functional

dependency, pFD, is defined as (X → Y ). The pFD is associated with a quantity

called its confidence which is the fraction of possible worlds in which the corresponding

FD holds.

Consider the possible world representation in Figure 10.1. In the first possible

world, the data in tuple 1, (Red, Star) conflicts with tuple 3, (Red, Nebula). As a result

the contribution of that possible world towards the confidence of the pFD Color →

Type is zero. The last possible world in the figure shows a non-zero contribution.

The FD holds within the world, hence the entire probability of the world is added to

the pFD confidence score.

It should be noted that pFDs suffer from the same kind of flaws that traditional

FDs do. If the data is dirty, just a few tuples that do not conform to the pFD might

cause an entire possible world to be not counted. I can address these concerns with

pAFDs.

61



FD 
AFD 

CAFD CFD 

pFD 

CpFD CpAFD 

pAFD 

Dependencies for 
Deterministic Data 

Dependencies for 
Probabilistic Data 

Degree of truth 

U
n

ce
rt

a
in

ty
 in

 d
a

ta
 

Figure 10.2: The relationship between various dependencies. FDs are the least gen-

eral, when extended by adding degree of truth, I get AFDs; when extended to prob-

abilistic databases, I get pFDs, when extended to include conditional dependencies,

I get CFDs. Combinations of these properties give rise to the other dependencies.

10.3.3 Probabilistic Approximate Functional Dependencies (pAFD)

AFDs generalize FDs by adding the concept of a ‘degree of truth’ to an FD, which

is also illustrated in Figure 10.2. Given a deterministic relation R, an approximate

functional dependency AFD is defined as (X ↝ Y ), where X and Y are sets of

attributes, with X approximately determining Y . The confidence of an AFD may be

defined in various ways. Following (Huhtala et al., 1999), I define the AFD confidence

as as one minus the minimum fraction of tuples that need to be removed from the

relation for the FD to hold.

In an uncertain relation D, a probabilistic approximate functional dependency,

pAFD, is defined as (X ↝ Y ). The confidence of the pAFD is the expected con-

fidence of the AFD over the possible worlds, (i.e. average of the confidence of the

corresponding AFD in each possible world weighted by the probability of that world).

For example, in Figure 10.1, in the first possible world, the data in tuple 1, (Red,

Star) conflicts with tuple 3, (Red, Nebula). As a result only one of them can be

62



considered as contributing towards the AFD within that possible world. A similar

argument holds for tuples 2 and 4. I can therefore say that among the four tuples in

the possible world, two support the AFD, and two don’t; hence the confidence of the

AFD is 0.5. In situations where data is both uncertain and noisy, pAFDs are useful

for judging the relationship between attributes.

10.3.4 Conditional Probabilistic Functional Dependencies (CpFD)

I can extend functional dependencies in yet another way – by making them condi-

tional on specific values of the data. Given a deterministic relation R, a CFD is a pair

(X → Y,Tp). X → Y is a standard FD. Tp is the pattern tableau, which is a relation

with the attributes (X ∪Y ). The semantics of a CFD (Bohannon et al., 2007) are as

follows: A CFD holds on R if the corresponding FD holds on the subset of tuples that

matches the pattern tableau. Every tuple in Tp is either a constant or the wildcard

character ( ). A constant a in Tp matches only the constant a in R. The wildcard ‘ ’

in Tp matches any value in the real tuple. For a pair of tuples to violate the CFD,

they must agree on every attribute in X but different values for some attributes in

Y , and the set of attributes X ∪ Y must match the pattern tableau.

I can extend this concept to probabilistic databases. Given an uncertain relation

D, a conditional probabilistic functional dependency, CpFD, is the pair (X → Y,Tp),

where X and Y are sets of attributes and Tp is the pattern tableau. The confidence

of a CpFD is the fraction of possible worlds where the corresponding CFD holds.

A CpFD is an extension of the concept of CFD to uncertain databases, but it

does not tolerate dirty data. If even one tuple in a possible world violates the CpFD,

the entire possible world probability is not counted.

63



10.3.5 Conditional Probabilistic Approximate Functional Dependencies (CpAFD)

Given a deterministic relation R, a conditional approximate functional depen-

dency, CAFD, is defined as the pair (X ↝ Y,Tp). The confidence of the CAFD is one

minus the fraction of tuples that need to be removed from the subset of tuples that

match the pattern tableau Tp such that the CFD (X → Y ) holds.

CAFDs do support a fractional confidence value, thus they can be used where

the data is expected to be noisy and when the dependency holds only conditionally.

Therefore it is useful to extend for probabilistic data. Given an uncertain relation

D, a conditional probabilistic approximate functional dependency (CpAFD) is the

pair (X ↝ Y,Tp). Its confidence is the weighted average of the confidence of the

corresponding CAFD in each possible world, weighted by the probability of that

possible world.

A CpAFD extends the notion of a functional dependency in the most general

way among all of the dependencies discussed in this chapter. It supports fractional

confidence values, possible world semantics, as well as operating on a select part of

the database.

10.4 Relationships Among Dependencies

The dependencies defined in Section 10.3 are all generalizations of FDs, as shown

in Figure 10.2. It is natural therefore, that I can express the less general dependencies

in terms of the more general ones, and that I can induce relationships among them.

That is what I will attempt to do in this section.

An FD is an AFD of confidence 1. AFDs allow dependencies that hold approxi-

mately, thus they extend FDs along the ‘degree of truth’ axis as shown in Figure 10.2.

It should be noted that the confidence of an AFD can never be zero. This is because,

64



in a relation R with at least one tuple, even if all different values of Y occur with the

same values of X, I can remove all tuples except for one for each different set of values

of X and have a non-zero set of tuples left in our database. Thus, the confidence of

the AFD, which is is one minus the fraction of tuples removed, is non-zero. I can

make a similar comparison between pFDs and pAFDs.

Theorem 1. The confidence of a pAFD is always larger than the confidence of the

corresponding pFD.

Proof. In every possible world that the pFD holds, the confidence of the pAFD is

1. In every possible world that the pFD does not hold, the confidence of the pAFD

is non-zero. Thus the confidence of the pAFD, which is the weighted sum of the

confidences in each possible worlds, would be no smaller than that of the pFD.

However, the reverse is not true. The information that a pAFD holds with a very

high confidence does not imply that the pFD will have a high confidence, in fact,

the confidence of the pFD may even be zero, as there might be a few tuples in every

possible world that do not conform to the pFD.

Conditional dependencies extend each of the previous dependencies so that they

can be specified over only a part of the data. This is illustrated in Figure 10.2 by

the ‘conditional’ axis. However, the generalization to conditional dependencies can

introduce inconsistencies. For example, if I know that an FD holds on a relation,

the corresponding CFD is not guaranteed to hold, since the tableau could introduce

impossible cases (Bohannon et al., 2007). For example, in a CFD (A → B), if the

pattern tableau has two tuples, one requiring the value ofB to be b, the other requiring

the value to be c, the CFD is clearly inconsistent, and no relation can satisfy it.

However, in normal use cases, where the tableau of the CFD has been induced from

the data, or else calculated in a non-malicious manner, intuitively I can state that if

65



the FD holds, the CFD will also hold. The converse, however, is not true. If a CFD

with a non-trivial tableau holds over a relation R, then I cannot guarantee that the

corresponding FD holds.

A pattern tableau may select a non-zero number of tuples from some possible

worlds but no tuples from others. In the special case where the tableau selects some

tuples from each possible world, I can state that the confidence of the CpFD and the

confidence of a CFD are equal. More generally, I can state the following theorem:

Theorem 2. If a pFD (X → Y ) holds over an probabilistic relation D with confidence

p, then the CpFD (X → Y,Tp) also holds over R with a confidence not less than p,

provided the CpFD is not inconsistent.

Proof. Suppose the pFD holds on a certain possible world of D. The pattern tableau

would then cause certain tuples to be eliminated from consideration. Even after

elimination of a few tuples, the pFD will continue to hold, by definition. Thus that

possible world will contribute towards the confidence of the CpFD. On the other

hand, if there is a possible world in which the pFD does not hold, it is possible

that those tuples that cause the pFD not to hold will be eliminated by the pattern

tableau, causing the possible world to contribute to the confidence of the CpFD.

So the fraction of possible worlds contributing to the CpFD is not smaller than the

fraction contributing to confidence of the pFD.

The same argument does not hold for pAFD and CpAFDs. In the case of CpAFDs,

elimination of certain tuples may reduce its confidence. For example, consider the

CpAFD (A↝ {B,C}, T1) where T1 consists of the tuple ( , b2, ). If one of the possible

worlds, P , of relation D contains a 50 tuples of (a1, b1, c1) and 50 tuples of the form

(a1, b2, c2), (a1, b2, c3) . . . (a1, b2, c51) the pAFD would have confidence 0.50, but the

CpAFD would have confidence 0.02 (after eliminating the 50 tuples not matching T1).

66



10.5 Assessing and Mining Probabilistic Dependencies

I consider two problems in the presented framework:

Evaluating confidence: Given a relation R, and a specified dependency find

the confidence of the dependency.

Mining dependencies: Given a relation R, find a minimal set of dependencies

that is equivalent to or more general1than any set of dependencies that holds over R

with a confidence higher than a given threshold.

In the following sections I focus on evaluating the confidence of the dependencies,

since it is the first step towards mining them. Once I have fast algorithms for eval-

uating the confidence, I then use methods in (Wolf et al., 2009b) to prune the space

of dependencies I have to search through in order to mine them.

While I am interested in computing the confidence for any probabilistic database,

I shall show that in the very general case, evaluation is exponential. So I also consider

special cases, mainly focusing on tuple-disjoint independent (TDI) databases (Dalvi

and Suciu, 2007b), which are a popular special case of a probabilistic database, in

which every tuple with distinct keys is independent. I can think of this as a set of

uncertain relations, where each tuple has a set of “options” with each option having a

probability. The decision about which option to pick for each tuple is taken indepen-

dently. This significantly reduces the types of uncertainty and correlations that can

occur among the tuples, but also makes many operations on the database tractable.

These algorithms also work for Tuple-independent databases (TI), where each tuple

has an existential probability, but does not have any options. The straightforward

1A set of dependencies Σ1 is said to be more general than another set Σ2 if every dependency

in Σ2 can be inferred from Σ1 using Armstrong’s axioms and the inference rules for conditional

dependencies in (Bohannon et al., 2007).

67



Tuple 3 

Tuple 2 

Tuple 1 

Null φ 

(White, 
Moon) 0.4 

(Green, 
Galaxy) 0.7 

(Blue, Star) 
0.2 

(Green, 
Galaxy) 0.6 

(White, 
Planet) 0.3 

(Blue,  
Star) 0.2 

(Green, 
Galaxy) 0.7 

(Blue,  
Star) 0.2 

.2 

.14 

.2 

.06 

.2 

.14 

.2 .2 

.056 

.12 

.176 .176 

Tuple Color Item probability 

t1 

White Moon 0.4 

Green Galaxy 0.6 

t2 

White Planet 0.3 

Green Galaxy 0.7 

t3 

Blue Star 0.2 

Green Star 0.8 

Figure 10.3: The algorithm for computing the confidence of pFD. The dotted circles

represent adding the probabilities from the child branches, the solid circles represent

multiplication of probabilities of the child and the parent.

adaptation of these algorithms to TI databases is explained in Section 10.5.6.

10.5.1 Assessing the Confidence of a pFD

In a generalized probabilistic database, represented by its possible worlds, finding

the pFD would be polynomial in the combined size of the possible worlds, which is

typically exponential in the number of entities it represents. For a more compact

representation of a probabilistic database like TDI or TI, a näıve evaluation of the

confidence of a pFD in a probabilistic database would likely take an exponential time

in the number of tuples, since I would have to effectively generate the possible worlds

and add up the probability of those in which the corresponding FD holds. Ordinarily,

I would use Monte Carlo to sample the possible worlds (such as I will employ later to

68



find the confidence of pAFDs), however, that approach does not work very well for

pFD, since a single option that violates the dependency can bring the contribution

of the entire sample to zero.

I now present an efficient algorithm that finds the confidence of a pFD in a tuple-

disjoint independent database. This algorithm is exact and has the property of being

exponential only in the cardinality of the domain of the attributes, rather than the

number of tuples. In practice our algorithm finds useful probabilistic functional de-

pendencies very efficiently, as most desirable pFDs have low specificity. Before I

present the algortihm, I briefly introduce the concept of specificity and show why a

low specificity pFD is more interesting.

10.5.2 Adapting Specificity for Probabilistic Databases

In this section I will first introduce the notion of specificity as described by

Kalavagattu and Wolf et al. (Kalavagattu, 2008; Wolf et al., 2009b) for deterministic

databases and then show how it is adapted to probabilistic databases.

Deterministic databases: The distribution of values for the determining set is

an important measure to judge the “usefulness” of an AFD. For an AFD X ↝ A,

having fewer distinct values of X means that there exist more tuples in the database

that have the same values of X. This makes the AFD potentially more relevant. This

is because if every value of X is distinct (i.e. it is a key) then the AFD trivially holds;

however if the dependency holds in spite of X having only a few distinct values, the

AFD has a deeper semantic meaning.

To quantify this, I first define the support of a value αi of an attribute set X,

support(αi), as the occurrence frequency of value αi in the training set. The support

is defined as support(αi) = count(αi)/N, where N is the number of tuples in the

training set.

69



Now I measure how the values of an attribute set X are distributed using speci-

ficity. Specificity is defined as the information entropy of the set of all possible values

of attribute set X: {α1, α2, . . . , αm }, normalized by the maximal possible entropy

(which is achieved when X is a key). Thus, specificity is a value that lies between 0

and 1.

specificity (X) =
−∑

m
1 support(αi) × log2(support(αi))

log2(N)

When there is only one possible value of X, then this value has the maximum

support and is the least specific, thus I have specificity equals to 0. When there are

many distinct values in X, each having a low support and are specific, I have a high

value of specificity. When all values of X are distinct (when X is a key), each value

has the minimum support and is most specific and has specificity equal to 1.

Now I overload the concept of specificity on AFDs. The specificity of an AFD is de-

fined as the specificity of its determining set. i.e. specificity (X ↝ A) = specificity (X).

The lower specificity of an AFD, potentially the more relevant possible answers can

be retrieved using the rewritten queries generated by this AFD, and thus a higher

recall for a given number of rewritten queries.

Intuitively, specificity increases when the number of distinct values for a set of

attributes increases. Consider two attribute sets X and Y such that Y⊃X. Since Y

has more attributes than X, the number of distinct values of Y is no less than that

of X, specificity(Y ) is no less than specificity(X).

Probabilistic Databases: In a probabilistic database, the specificity of an at-

tribute set X would be defined as the weighted average of the specificity of X in each

possible world. Computing this is potentially exponential in the number of tuples,

since every possible world will have a different set of association rules with different

70



support.

In this chapter, I am using specificity to prune our search space. I need to be

able to compute the specificity very quickly so that I do not spend too much time

deciding whether or not to prune the current subspace of dependencies. As a result,

I decide to approximate the computation of specificity by using a method similar to

the union method described in Section 10.5.3. I ignore the intra-tuple correlations,

and create a TI database by taking the union of all the options in our TDI database.

Computing the specificity of a TI database is a straightforward adaptation of the

deterministic algorithm. The definition for specificity(X) remains the same, but I

redefine support(αi) as (where t represents all the tuples in the TI database):

support(αi) = ∑
αi∈t

prob(t)/∑prob(t)

The complexity of the algorithm can be analyzed in terms of specificity is defined

as the support of the association rules that make up the dependency (Kalavagattu,

2008). Specificity is high when the association rules have a very low support, and the

rule becomes less valuable. For example, a rule with high specificity such as (Social

Security Number → Color of hair) will definitely hold, since SSN is a key, but is

not very useful. On the other hand, an FD that states (Zip Code → Street Name)

for addresses in England is a useful one. Each zip code appears multiple times in

the database and the dependency gives us useful semantic information even though

zip code is not a key. For a low specificity pFD, the number of values a particular

attribute can take is much less than the number of tuples, which makes our algorithm

run more efficiently.

The algorithm exploits the fact that I am using a tuple-disjoint independent

database. It keeps track of a set of association rules that comprise the pFD at

any point in the algorithm. I pick the tuples one by one, and treat them indepen-

71



dently. I next optimize the calculation of the pFD using two pruning criteria. First,

if a particular option does not comply with the current set of rules, then the entire

set of possible worlds that include that option will contribute zero confidence for the

pFD. So I can terminate that branch right away. Second, all the options in the tuple

comply with the ruleset, then the confidence of the pFD does not change whether or

not I pick that tuple (it’s contribution is 1). I can therefore ignore the tuple.

I can express the evaluation of this algorithm as a tree, see Figure 10.3. The tree

branches whenever more than one option in a tuple is consistent with the current set

of rules. Using the two criteria in the previous paragraph, I can choose an optimal

order in which to pick the tuples so that the expression tree has the minimum width. I

can then prove that the algorithm is exponential only in the cardinality of the domain

of the attributes.

Once the execution reaches the leaf node, I track back. At each stage, I sum up

the probability of all the branches that originated at that point. Then I multiply the

result with the probability of the parent to compute the contribution of this branch

to the confidence of the pFD.

The algorithm is formally presented as Algorithm 3. The running time of the algo-

rithms is improved by the introduction of the function ChooseBestRemainingTuple,

which picks from the remaining tuples those that do not cause branching in the eval-

uation tree. There are three kinds of such tuples – those that completely comply

with the current set of rules (their contribution is 1), or those that have no options

that comply with the current set of rules (the branch is immediately terminated), or

those that have only one option that complies with the current set of rules (there is

no branching).

72



Algorithm 3: FindPfdRecursive

input : A TDI database D, a pFD P and the current set of rules R

output: The confidence of P in D

begin

P ←Ð 0

T = ChooseBestRemainingTuple(D,R)

if EntireTupleisCompatible(R) then

return FindPfdRecursive(D ∖ T,R)

end

for Options O ∈ T do

if IsCompatible(O, R) then

AddRule(O,R)

P ←Ð P + Prob.(O) × FindPfdRecursive(D ∖ T,R)

RemoveFromRule(O,R)

end

end

return P

end

10.5.3 Assessing the Confidence of a pAFD

It was possible to considerably speed up the calculation of the confidence of a pFD

because as soon as an execution branch violated the association rules for that branch,

I was able to terminate it. However, this technique does not work for calculating the

confidence of a pAFD. During the execution of a similar algorithm for pAFD, if a tuple

violates the majority association rule, it does not terminate the branch – it merely

reduces the confidence within that possible world. In addition to this, the association

73



rules themselves might change once enough counterexamples are observed. As a

result the algorithm becomes exponential time for a pAFD. I can, however, attempt

to calculate the confidence of a pAFD approximately.

Deterministic approximation: One of the ways in which a pAFD may be ap-

proximated is to first create a deterministic database by completely ignoring the prob-

abilities and treating every uncertain option as a tuple of a deterministic database.

Obviously, this will violate the semantics of disjoint possible worlds. I then find the

AFD over this deterministic database, and report the confidence of that AFD as the

confidence of the pAFD.

Unioned approximation: A better approximation would be to create a tuple

independent (TI) database by taking every uncertain option in the database along

with its probability and making it a tuple of the TI database. This causes it to

lose all the correlation between the options of the same tuple in a TDI database,

and I treat them as independent. Since this is effectively creating a union of all the

options, I call this approach the unioned approximation to finding the confidence of a

pAFD. I then find the pAFD over this tuple-independent database. Having the tuples

completely independent of each other makes finding the confidence much easier. To

find the confidence of the dependency (X ↝ Y ), I can find all the association rules

(x, y) in the database. For each distinct value of X, I find that value ymax of Y

which has the maximum support in the database. The pAFD value is given by

∑ support(ymax)/∑ support(x).

Monte Carlo: In order to maintain intra-tuple correlations, I can sample a

subset of the possible worlds, and compute the confidence of the pAFD over that

subset. I can then scale it up appropriately to find the confidence of the pAFD over

the entire relation. It is clear that the more representative a subset I sample, the

more accurate our pAFD computation will be. To choose a well-represented subset

74



0.1

1

10

100

1000

10000

100000

5 10 15 20 25

Ti
m

e
 t

ak
e

n
 (

m
s)

 

Number of tuples 

Proposed Algorithm

Naïve Algorithm

Figure 10.4: Comparison between the

time taken by the näıve algorithm and

the proposed algorithm for the confi-

dence of a pFD on a log-scale.

0

200

400

600

800

1000

1200

1400

15 60 105 150 195 240 285 330 375 420

Ti
m

e
 t

ak
e

n
 (

m
s)

 

Number of tuples in the database 

pFD

pAFD

CpFD

CpAFD

Figure 10.5: Comparison of time taken

for the algorithms for various depen-

dencies to run vs the number of tuples.

of possible worlds, I use a Monte Carlo simulation.

It is worth noting that the Monte Carlo technique does not make any assumptions

about the Probabilistic Database under consideration, specifically, it is not restricted

to TDI databases. For the case of the TDI database, I take one tuple at a time. For

every tuple, I generate a random number to choose which option is to be picked. This

is done proportional to the probability of the option. Since by definition, different

tuples are independent of each other, this results in generating a Monte Carlo sample

of the TDI database. I find the AFD confidence of the sampled possible world, and

weigh it with the probability of the possible world. I repeat this process till the the

weighted average of the AFD values observed converges. That is reported as the

confidence of the pAFD.

75



10.5.4 Assessing the Confidence of a CpFD

Our strategy to find the confidence of the conditional dependencies – the CpFD

and the CpAFD – is a simple one. I first select the tuples from the database that

match the pattern tableau, and then I run our corresponding pFD or pAFD on the

resulting relation.

As Dalvi and Suciu show in (Dalvi and Suciu, 2007a), query processing on a

probabilistic database can be a #P-hard problem. However, there are certain queries

that are guaranteed to have safe-plans which can be evaluated in polynomial time.

Fortunately, selecting the tuples matching a pattern tableau is a safe query, and can

be efficiently evaluated using the algorithms in (Dalvi and Suciu, 2007a).

I follow Bohannon et. al. (Bohannon et al., 2007) for the query to find tuples that

do not match the pattern tableau, appropriately modified for a probabilistic relation.

Given a probabilistic relation R with attributes A1, ...An, and a CpFD (X → Y,Tp),

I can use the following query to find the probabilistic options of the tuples that do

not match the pattern tableau Tp and hence can be removed from consideration:

select t from Rt,Tp tp

where not(t[X1] ≍ tp[X1]and...and t[Xn] ≍ tp[Xn])

Here, t[X] ≍ tp[X] represents the condition that either t[X] = tp[X] or tp[X] = . I

replace all these tuples with the special symbol ⊚. Then I run the following query to

find all tuples that violate the pattern tableau:

select t from Rt,Tp tp

where t[X1] ≍ tp[X1]and...and t[Xn] ≍ tp[Xn]and

(t[Y1] ≭ tp[Y1]or ...ort[Yn] ≭ tp[Yn])

Here t[Y ] ≭ tp[Y ] represents the condition that both t[Y ] ≠ tp[Y ] and tp[Y ] ≠ . I

76



replace these options with the special symbol φ to denote that it violates the tableau.

The main difference from (Bohannon et al., 2007) in finding mismatches is that they

found entire tuples, but here I find options of tuples.

I now run our algorithm of section 10.5.1 on this modified relation. Whenever I

encounter the ⊚ symbol, I treat it as if the tuple does not exist. Whenever I encounter

the φ symbol, I treat it as if it violates the current set of rules. The resulting confidence

is the confidence of the CpFD.

I illustrate this process with an example. Consider the database of Figure 10.1.

Consider the CpFD (Color → Type, T1), where T1 is the single-tuple (Red,Star). I

find that any tuple that does not have Red for the Color attribute matches the first

query and is replaced with ⊚. The only two remaining options are (Sirius, Red, Star)

and (Taurus, Red, Nebula). since Nebula ≭ Star, the (Taurus, Red, Nebula) option

matches the second query, and thus the tuple is replaced with a φ. I then run the

pFD algorithm and obtain the confidence 0.5.

10.5.5 Assessing the Confidence of a CpAFD

I follow the same principle as Section 10.5.4. However, in this case I use the Monte

Carlo algorithm of Section 10.5.3 instead of the algorithm for pFD to evaluate the

confidence over the resulting relation.

10.5.6 Adapting the Algorithms for TI Databases

I can use the pFD algorithm for TI databases with a slight modification. Recall

the symbol ⊚ introduced in Section 10.5.4 for handling options eliminated for not

matching the pattern tableau. The symbol represents that in further computation,

the option will be ignored for the purpose of computing the confidence, that is, it

will not conflict with any existing rule. For every tuple in the TI database whose

77



probability p is less than 1, I convert it into a TDI database by adding an option to

it consisting of the ⊚ symbol and probability 1−p. I then have a TDI database which

is essentially equivalent to the TI database. I can now apply the pFD algorithm on

this database to assess its confidence.

The union approximation for assessing the confidence of a pAFD from Section

10.5.3 can be applied directly to the TI database to get the accurate value of the

pAFD.

10.5.7 Mining Dependencies

I adapt the AFDMiner algorithm from Wolf et al. (Wolf et al., 2009b) to mine

dependencies in our data. In this section I describe the outline of the algorithm, and

the adaptations to probabilistic data.

The algorithm searches through the set-containment lattice of the attributes of the

relation. This lattice consists of all possible sets of attributes. Each set of attribute

has a directed edge that points to all sets that contain one attribute more than itself.

The algorithm performs a breadth-first search through this lattice, starting with the

null set of attributes and working its way up to the set of all attributes. For each

directed edge (X,X∪{A}) the algorithm travels along, the dependencies (X ↝ A) are

tested. AFDMiner outputs those dependencies whose confidence is larger than the

supplied confidence threshold. I adapt AFDMiner by supplying our own confidence

assessing functions for pAFD.

Pruning: Each attribute set X is tested for its specificity value. If the value

is higher than the specificity threshold, then all outgoing edges from that set are

removed from the lattice. This lets the algorithm prune the space of dependencies

whose body is X or its superset, since they are guaranteed to be above the specificity

threshold.

78



AFDMiner further prunes the space of dependencies based on redundancy. For

any dependencies that hold exactly, any superset of the dependency would also hold

(by Armstrong’s Axioms), and hence need not to be checked. So, effectively, a list of

exact FDs is maintained, and any superset of the FDs in this list are not checked. In

our case, the algorithm to check for a pFD is significantly more expensive than the

algorithm to compute the confidence of a pAFD. As a result, I adapt this condition by

replacing FDs with very high confidence pAFDs. For any pAFD that has a confidence

larger than the preset high-confidence threshold, I prune the outgoing edges from that

attribute.

0

0.2

0.4

0.6

0.8

1

1.2

0.04 0.16 0.28 0.4 0.52 0.64 0.76

C
o

n
fi

d
e

n
ce

 o
f 

d
e

p
e

n
d

e
n

cy
 

Amount of noise in the data 

pFD
pAFD
CpFD
CpAFD

Figure 10.6: Comparison between the

average confidence reported for the de-

pendencies in a database for varying

noise.

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0

5000

10000

15000

20000

25000

30000

35000

30 55 80 105 130 155 180

A
ve

ra
ge

 E
rr

o
r 

ti
m

e
 t

ak
e

n
 (

m
s)

 

Number of Monte Carlo simulations 

Time

Error

Figure 10.7: The average error and the

time taken vs the number of Monte

Carlo simulations for a 200,000 tuple

database of DBLP data.

10.6 Experimental Evaluation

I empirically verify our algorithms using two sets of data – one generated synthet-

ically, and the other real data extracted from DBLP.

79



10.6.1 Synthetic Data

Data: I am using the tuple-disjoint independent model. I generate synthetic

data by creating a TDI database with n tuples, each tuple having 2 options, and the

options generated from the domain of the attributes of cardinality m. Each option

may choose not to follow the specified FD with the probability called noise.

Results: I evaluate the time taken by the pFD algorithm to run on synthetic

data, while varying the number of tuples in the data. I compare this performance

with the näıve algorithm, which would enumerate all the possible worlds. The results

are shown in Figure 10.4. As can be clearly seen from the graph, the time taken by

the näıve algorithm grows exponentially, and quickly becomes infeasible to run, even

with as few as 30 tuples.

In Figure 10.5, I compare the time taken by the algorithms for the calculating the

confidence of various dependencies. The cardinality of the domain of the attribute

is held constant, while the number of tuples is increased. The Monte Carlo approx-

imation algorithms for pAFD and CpAFD take significantly less time to converge

compared to the pFD and CpFD algorithms. When plotted on a separate graph, it

can be seen that they grow approximately linearly with the number of tuples. The

pFD and CpFD show a general increasing trend with the number of tuples. The

fluctuation observed is due to the algorithm quickly finding conflicting data and ter-

minating early in some cases.

I also assessed the robustness of the dependencies to noise in the data in Figure

10.6. I observe that with slight introduction of corruption, the confidences of a pFD

and CpFD drop sharply. The confidence of a pAFD does not fall too sharply, which

shows that when the data is likely to be noisy, pAFD should be used to mine depen-

dencies. However, for data rectification, or in cases where the data is guaranteed to

80



Dependency Monte 
Carlo 

Time 
(ms) 

Union Time 
(ms) 

Inst ↝ Ctry 0.9492 66844 0.8805 916 

Ctry ↝ Inst 0.0932 60143 0.0977 800 

Ctry↝ SubRgn 0.9875 56104 0.9685 600 

Subrgn↝ Ctry 0.6954 55507 0.657 611 

Ctry ↝ Region 0.9821 49451 0.9598 479 

Region ↝ Ctry 0.6078 51850 0.58 492 

Domain ↝ Ctry 0.6764 98590 0.6049 1416 

Ctry ↝ Domain 0.1144 63951 0.116 882 

Figure 10.8: The confidence of pAFD and time taken as computed by Monte Carlo

method vs the union method.

Dependency Confidence 

Institute ↝ Region 0.9752 

Country ↝ Region 0.9893 

Subregion ↝ Region 0.9942 

Institute ↝ Subregion 0.9752 

Country ↝ Subregion 0.9930 

Time taken: 280s 

Figure 10.9: The dependencies discovered in DBLP data by mining pAFDs for speci-

ficity threshold = 0.3.

be clean, pFD will come in very useful, since the confidence value is very sensitive.

10.6.2 DBLP Data

I use a set of data modified from (Kimura et al., 2010). The database consists

of DBLP (Ley, 2009) data, with additional probabilistic attributes added to it by

various information retrieval and machine learning sources. I use the “Author” rela-

81



Dependency Confidence 

Institute ↝ Country 0.9751 

Country ↝ Region 0.9893 

Country ↝ Subregion 0.9930 

Institute ↝ Region 0.9751 

Subregion ↝ Region 0.9942 

Institute ↝ Subregion 0.9753 

Region, Country ↝ Subregion 0.9944 

Subregion, Country ↝ Region 0.9944 

Time taken: 605s 

Figure 10.10: The dependencies discovered in DBLP data by mining pAFDs with

specificity threshold = 0.6.

tion from this source, which contains information about approximately 700,000 com-

puter science authors. This table has some deterministic attributes such as Name,

MinYearOfPublication, MaxYearOfPublication, NumPublication. It also has the fol-

lowing uncertain attributes: Institute, Country, Domain, Region and Subregion. I

modify this dataset by re-indexing it and converting it into a tuple-disjoint indepen-

dent format.

In Figure 10.7 I show the results of running the Monte Carlo pAFD algorithm on

a 200,000-tuple subset of this dataset to evaluate the confidence of the dependency

Institute ↝ Country. I show how the accuracy of the evaluated confidence varies with

the number of Monte Carlo simulations. I see that with increase in the number of

simulations, the time taken increases, and the average error decreases, as expected. I

terminate the simulation once the computed confidence converges. From this graph

it is apparent that the it takes only around 100 simulations before the value stabilizes

and the algorithm can be terminated.

In Figure 10.8 I show the confidence values of the pAFD mined from this data

82



for all 700,000 tuples using two different approaches. As shown in Section 10.5.3, I

can approximate the the confidence of a pAFD using three different approaches - the

deterministic, union and Monte Carlo approximations. This experiment shows that

even the union approximation method gives significant differences in confidence val-

ues. In the context of mining the dependencies I would typically choose dependencies

by placing a threshold on the confidence values or by taking the top-k mined depen-

dencies. The difference I observed in the confidence values is significant enough that

the union method would give different dependencies when mining. I also see that the

unioned method can both underestimate (e.g. the first dependency in Figure 10.8)

and overestimate the probabilities (e.g. the last dependency). Thus it seems that the

Monte Carlo method is most suited to finding the confidence of pAFDs.

10.6.3 Dependency Mining

In order to mine pAFD dependencies, I adapted the AFDMiner algorithm as

described in (Wolf et al., 2009b). I start with 200,000 tuples from the DBLP dataset.

I choose four uncertain attributes Institute, Country, Region and Subregion. I build

a heirarchy of possible dependencies (the set-containment lattice of the attributes).

Using the AFDMiner algorithm, I prune our search space using two criteria: the

redundancy and specificity. The redundancy condition prunes those dependencies

that are guaranteed to hold since they are subsumed by the current set of dependen-

cies. The specificity condition prunes those dependencies that are too specific to be

considered as pAFDs. For each candidate dependency that did not get pruned off, I

compute the confidence using the Monte Carlo algorithm. The exact details of the

adaptation is described in the Section 10.5.7.

Figures 10.9 and 10.10 show dependencies mined from the DBLP data using two

different thresholds for specificity. In the first case I set a very low specificity require-

83



ment, so only those dependencies that are likely to be more general across the data

are discovered. In the second case I set a high specificity threshold value, allowing

much more specific dependencies to be also discovered. As I can see, this results in

more dependencies being discovered, at the cost of quality of the dependencies.

10.7 Probabilistic Dependency Conclusions

In this chapter I defined a spectrum dependencies for probabilistic databases.

These dependencies are logical extensions of their deterministic counterparts. I ex-

plained how these dependencies are related to each other. I showed that pAFD would

always have a larger confidence than the pFD. I showed the CpAFDs were the most

general of all and that it subsumed every other kind of dependency. I then presented

algorithms to assess the confidence of each of these dependencies. I empirically ver-

ified the algorithms – the ones for pFD and CpFD were exponential in the number

of values of the attribute, and approximately linear in the number of tuples. The

Monte Carlo algorithms for the approximate dependencies converged fast and were

accurate. I also showed experiments with real data that demonstrated that the Monte

Carlo algorithm converges quickly. Finally I showed how I can use these algorithms

to effectively mine dependencies from a real probabilistic database and discover useful

dependencies. I am currently exploring the use of these dependencies in the qpiad

project (Wolf et al., 2009b).

84



Chapter 11

CONCLUSIONS

Many recent publications have talked about the importance of big data, and how

that leads to more informed solutions for everyone. However, informed decisions

are only correct if the underlying data is correct. In this thesis, I showed a proba-

bilistically principled method to perform data cleaning. Unlike other ‘data cleaning’

systems, BayesWipe cleans attribute values present in the data, and it does so with-

out requiring experts to provide a curated set of rules, or a curated clean master data

set.

The components of BayesWipe are flexible enough to accommodate many of the

real life errors that actually occur in data, and to learn directly from moderately noisy

data. Since the components are probabilistic in nature, the users can also control the

fraction of tuples the system changes by changing a single parameter.

Further, BayesWipe recognizes that very often users don’t have write access to the

data itself, either due to access restrictions, or because the data moves so quickly that

writing to database is impractical. Therefore, there are two modes of BayesWipe: (1)

Offline data cleaning, an in situ rectification of data. There is an option to generate

a standard, deterministic database as the output, as well as a probabilistic database,

where all the alternatives are preserved for further processing. (2) Online query

processing mode, a highly efficient way to obtain clean query results over inconsistent

data.

By evaluating the output of the system over synthetic data, I showed results in

a controlled environment proving both the efficacy and efficiency of the system. By

performing crowdsourced experiments over real life data, I showed encouraging results

85



of BayesWipe’s performance in the real world.

I also showed a publicly available version of BayesWipe, and demonstrated how

it can be run on the map-reduce architecture so that it can scale to huge data sizes.

Acknowledging that BayesWipe only considered deterministic input, I also showed

how variations of functional dependencies can be learned from probabilistic data, so

that they could potentially be used for data cleaning of PDB data. Further, users can

grasp an intuitive understanding of the relationships between attributes from these

dependencies, since the internal representation of a Bayes network is opaque to the

user.

Overall, BayesWipe provides a complete, probabilistically principled, large-dataset

capable data cleaning package for the modern world.

86



REFERENCES

“The Sloan Digital Sky Survey”, URL: http://www.sdss.org/ (2013).

Agrawal, R. and R. Srikant, “Fast algorithms for mining association rules”, in
“VLDB”, pp. 487–499 (1994).

Arenas, M., L. Bertossi and J. Chomicki, “Consistent query answers in inconsistent
databases”, in “PODS”, pp. 68–79 (ACM, 1999).

Asuncion, A. and D. Newman, “UCI machine learning repository”, (2007).

Berger, A., V. Pietra and S. Pietra, “A maximum entropy approach to natural lan-
guage processing”, Computational linguistics (1996).

Bertossi, L. E., S. Kolahi and L. V. S. Lakshmanan, “Data cleaning and query an-
swering with matching dependencies and matching functions”, in “ICDT”, (2011).

Beskales, G., “Modeling and querying uncertainty in data cleaning”, Ph.D. Thesis
(2012).

Beskales, G., I. F. Ilyas, L. Golab and A. Galiullin, “On the relative trust between
inconsistent data and inaccurate constraints”, in “ICDE”, (IEEE, 2013a).

Beskales, G., I. F. Ilyas, L. Golab and A. Galiullin, “Sampling from repairs of condi-
tional functional dependency violations”, The VLDB Journal pp. 1–26 (2013b).

Bohannon, P., W. Fan, M. Flaster and R. Rastogi, “A cost-based model and effective
heuristic for repairing constraints by value modification”, in “SIGMOD”, (ACM,
2005).

Bohannon, P., W. Fan, F. Geerts, X. Jia and A. Kementsietsidis, “Conditional func-
tional dependencies for data cleaning”, in “ICDE”, pp. 746–755 (IEEE, 2007).

Boulos, J., N. Dalvi, B. Mandhani, S. Mathur, C. Re and D. Suciu, “Mystiq: a
system for finding more answers by using probabilities”, in “SIGMOD”, pp. 891–
893 (2005).

Brin, S., R. Motwani, J. Ullman and S. Tsur, “Dynamic itemset counting and im-
plication rules for market basket data”, in “1997 ACM SIGMOD”, p. 264 (ACM,
1997).

Chiang, F. and R. Miller, “Discovering data quality rules”, Proceedings of the VLDB
Endowment (2008).

Computing Research Association, “Challenges and opportunities with big data”,
http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf (2012).

Cong, G., W. Fan, F. Geerts, X. Jia and S. Ma, “Improving data quality: Consistency
and accuracy”, in “VLDB”, pp. 315–326 (VLDB Endowment, 2007).

87



Dalvi, N. and D. Suciu, “Efficient query evaluation on probabilistic databases”, in
“VLDB”, vol. 30, pp. 864–875 (VLDB Endowment, 2004).

Dalvi, N. and D. Suciu, “Efficient query evaluation on probabilistic databases”, VLDB
Journal 16, 4, 544 (2007a).

Dalvi, N. and D. Suciu, “Management of probabilistic data: foundations and chal-
lenges”, in “PODS”, p. 12 (ACM, 2007b).

Dasu, T. and J. M. Loh, “Statistical distortion: Consequences of data cleaning”,
VLDB 5, 11, 1674–1683 (2012).

De, S., “BayesWipe Database Cleaner”, (2014).

De, S., Y. Hu, Y. Chen and S. Kambhampati, “BayesWipe: A Multimodal System
for Data Cleaning and Consistent Query Answering on Structured Data.”, Big
Uncertain Data (BUDA) (2014).

Dong, X. L., L. Berti-Equille and D. Srivastava, “Truth discovery and copying detec-
tion in a dynamic world”, VLDB 2, 1, 562–573 (2009).

Fan, W., F. Geerts, X. Jia and A. Kementsietsidis, “Conditional functional depen-
dencies for capturing data inconsistencies”, TODS 33, 2, 6 (2008).

Fan, W., F. Geerts, L. Lakshmanan and M. Xiong, “Discovering conditional functional
dependencies”, in “ICDE”, (IEEE, 2009).

Fan, W., F. Geerts, N. Tang and W. Yu, “Inferring data currency and consistency
for conflict resolution”, in “ICDE”, (IEEE, 2013).

Fan, W., J. Li, S. Ma, N. Tang and W. Yu, “Towards certain fixes with editing rules
and master data”, Proceedings of the VLDB Endowment (2010).

Fellegi, I. and D. Holt, “A systematic approach to automatic edit and imputation”,
J. American Statistical association pp. 17–35 (1976).

Fuxman, A., E. Fazli and R. J. Miller, “Conquer: Efficient management of inconsistent
databases”, in “SIGMOD”, pp. 155–166 (ACM, 2005).

Gupta, R. and S. Sarawagi, “Creating probabilistic databases from information ex-
traction models”, in “PROCEEDINGS OF THE INTERNATIONAL CONFER-
ENCE ON VERY LARGE DATA BASES”, vol. 32, p. 965 (Citeseer, 2006).

Hartemink., A., “Banjo: Bayesian network inference with java objects.”,
http://www.cs.duke.edu/ amink/software/banjo (????).

Huhtala, Y., J. Karkkainen, P. Porkka and H. Toivonen, “TANE: An efficient algo-
rithm for discovering functional and approximate dependencies”, The Computer
Journal 42, 2, 100 (1999).

88



Jampani, R., F. Xu, M. Wu, L. Perez, C. Jermaine and P. Haas, “MCDB: a monte
carlo approach to managing uncertain data”, in “SIGMOD”, pp. 687–700 (ACM,
2008).

Kalavagattu, A., Mining Approximate Functional Dependencies as condensed repre-
sentations of Association rules, Master’s thesis, Arizona State University (2008).

Kimura, H., S. Madden and S. Zdonik, “UPI: A Primary Index for Uncertain
Databases”, Proceedings of the VLDB Endowment 3, 1 (2010).

Knorr, E., R. Ng and V. Tucakov, “Distance-based outliers: algorithms and applica-
tions”, The VLDB Journal 8, 3, 237–253 (2000).

Koudas, N., S. Sarawagi and D. Srivastava, “Record linkage: similarity measures and
algorithms”, in “SIGMOD”, pp. 802–803 (ACM, 2006).

Kubica, J. and A. Moore, “Probabilistic noise identification and data cleaning”, in
“ICDM”, pp. 131–138 (IEEE, 2003).

Ley, M., “DBLP: some lessons learned”, Proceedings of the VLDB Endowment 2, 2,
1493–1500 (2009).

Li, M., Y. Zhang, M. Zhu and M. Zhou, “Exploring distributional similarity based
models for query spelling correction”, in “ICCL”, pp. 1025–1032 (Association for
Computational Linguistics, 2006).

Mellott, M., “CFD-Based Data Cleaning With Probabilistic Sampling for Web Data”,
in “Fulton Undergraduate Research Initiative Spring Symposium”, p. 24 (Arizona
State University, 2013).

Minka, T., W. J.M., J. Guiver and D. Knowles, “Infer.NET 2.4”, Microsoft Research
Cambridge. http://research.microsoft.com/infernet (2010).

Mo, L., R. Cheng, X. Li, D. Cheung and X. Yang, “Cleaning uncertain data for top-k
queries”, in “ICDE”, (IEEE, 2013).

Papakonstantinou, Y. and V. Vassalos, “Query rewriting for semistructured data”,
ACM SIGMOD Record 28, 2, 455–466 (1999).

Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence (Morgan Kaufmann Publishers, 1988).

Redman, T., “The impact of poor data quality on the typical enterprise”, Communi-
cations of the ACM (1998).

Ristad, E. and P. Yianilos, “Learning string-edit distance”, Pattern Analysis and
Machine Intelligence, IEEE Transactions on (1998).

Sarma, A., J. Ullman and J. Widom, “Schema design for uncertain databases”, in
“Proceedings of the 3rd Alberto Mendelzon Workshop on Foundations of Data
Management”, (Citeseer, 2009).

89



Suciu, D. and N. Dalvi, “Foundations of probabilistic answers to queries”, SIGMOD
14, 16, 963–963 (2005).

Wang, D. Z., L. Dong, A. D. Sarma, M. J. Franklin and A. Halevy, “Functional De-
pendency Generation and Applications in pay-as-you-go data integration systems
*”, in “WebDB”, pp. 1–6 (2009).

Wolf, G., A. Kalavagattu, H. Khatri, R. Balakrishnan, B. Chokshi, J. Fan, Y. Chen
and S. Kambhampati, “Query processing over incomplete autonomous databases:
query rewriting using learned data dependencies”, The VLDB Journal (2009a).

Wolf, G., A. Kalavagattu, H. Khatri, R. Balakrishnan, B. Chokshi, J. Fan, Y. Chen
and S. Kambhampati, “Query processing over incomplete autonomous databases:
query rewriting using learned data dependencies”, The VLDB Journal 18, 5, 1167–
1190 (2009b).

Xiong, H., G. Pandey, M. Steinbach and V. Kumar, “Enhancing data analysis with
noise removal”, TKDE 18, 3, 304–319 (2006).

Yakout, M., A. K. Elmagarmid, J. Neville, M. Ouzzani and I. F. Ilyas, “Guided data
repair”, VLDB 4, 5, 279–289 (2011).

90


