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ABSTRACT 

Internet information gathering is the process of gathering data from sources that include 

those scattered over the Internet. Query optimization problems for Internet information 

gathering are different from that of traditional databases due to the lack of knowledge of 

the behavior of sources and a myriad of binding constraints that exist for many sources 

over the Web. 

Traditional System R style optimizers lose their efficacy when sources are spread across 

the Internet with high access costs compared to secondary storage media. Such 

optimizers cannot be used for Internet sources due to various binding restrictions and 

query capacities.  

This research proposes a System R style optimizer that takes binding patterns and 

restrictions that most Internet sources have. It considers both left and right linear 

evaluations along with bushy joins. The proposed algorithm assumes full knowledge of 

statistics and generates a join order accordingly. However, in the absence of full statistics, 

it degrades gracefully and maintains its improvement over previous algorithms.  
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1. INTRODUCTION 

The growing popularity of the Internet1, especially the World Wide Web2 has made it a 

prime vehicle for disseminating information. The number of structured (along with semi-

structured ones) information sources is increasing rapidly. Most of these sources have a 

form-based Web interface and provide the user with information from a traditional 

database being maintained. Even though each of these sources is structured and supports 

high- level queries, the interaction with a multitude of sources is like surfing. The user 

must consider the list of available sources; decide/short- list the ones to access and 

manually combine the information obtained from such multiple sources. 

An Information Gathering system provides a uniform query interface [Lev99a] for a 

multitude of autonomous heterogeneous data sources. The sources in such an application 

may be traditional databases, legacy systems or even structured files. The goal of a data 

integration system is to free the user from having to find the data sources relevant to a 

query, interact with each source in isolation, and manually combine data from such 

different sources. To provide a uniform interface, an information gathering system 

exposes the user to a mediated schema which is a set of virtual relations (they are not 

                                                 

1 internet: (abbreviation for internetwork) A set of computer networks, possibly dissimilar, joined together 
by means of gateways that handle data transfer and the conversion of messages from the sending network 
to the protocols used by the receiving network. [AHK+91] 

Internet: The collection of networks and gateways that use the TCP/IP suite of protocols. Many internets 
exist besides the Internet, including many TCP/IP based networks that are not linked to the Internet (the 
Defense Data Network is a case in point). 

2 WWW aka Web: A global hypertext system that uses the Internet as its transport mechanism. [AHK+91] 

The Web is the most popular part of the Internet, while the rest are FTP/Gopher/telnet etc.  
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stored anywhere)- it is designed manually for a particular application. To be able to 

answer queries, the system must also contain a set of source descriptions that specify the 

contents of the source and the attributes contained in it and the corresponding constraints. 

Figure 1.1 shows an example of a typical internet information gathering scenario. A 

machine in the library stores records of Lost books and details of each Borrow transaction 

in the secondary storage media. In a different building in the campus, the Student 

information is stored in the Administration building.  

 

 

 

 

 

 

 

 

Fig 1.1 Internet information gathering scenario 
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An intranet connects the two buildings in the university. The library also has an internet 

link to a Books database that could be located tens to thousands of miles away. 

While many of the traditional database techniques may be applied to internet information 

integration, some differences do exist.  

• Internet information sources are autonomous - exporting no statistics about 

themselves, and hence their costs cannot be estimated easily. Access and transfer costs 

may not be accurately estimated for the Books database accessible on the Internet.  

• Even when costs are known, Access and transfer times cannot be reliably estimated. 

Hence even a plan that appears to be optimal might turn out to be sub-optimal if there 

are unexpected delays in transferring the data from one of the sources. 

• Sources have a variety of processing capabilities - while one source might be a form 

interfaced database another might be an unstructured HTML file. Even form-

interfaced databases have additional types of constraints. 

1.1. Source constraints 

On the Internet, there are a variety of sources that have various constraints associated 

with them [LKG99].  

• An ordinary HTML document needs a wrapper interface so that it may be 

modeled as a traditional database. For any kind of query posed on such a source, 

the entire file has to be retrieved regardless of the volume of information required, 

and extraction of data is done locally.  
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• Further, some sources have binding constraints that implies that some of the 

attributes need to be bound to a value. To illustrate, the schema for the Books 

source may be 

Books (isbnb, title, author, publisher, pages, price) 

indicating that queries posed on this source need to provide a value for isbn to be 

semantically correct. 

1.2. Execution optimization 

Information gathering consists of three stages 

1 Plan generation Generate a source complete query plan 

2 Plan optimization Optimize the above plan using subsumption, LCW and other 

such information 

3 Plan execution Execute the optimized query plan for optimality. 

This research concentrates on the third phase of information gathering - plan execution. 

One of the most important execution optimization strategies is to order the source calls in 

a manner so that the corresponding costs are minimized. Even small differences in sub-

optimal partial join orders that constitute the final join multiply very rapidly as the 

number of source accesses increases. 
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There exist heuristics as well as systematic methods to find an optimal join order. Bound-

is-easier is a heuristic that uses naïve heuristics in the absence of statistics to find the best 

order. System R [ABC+76] style join order algorithms use statistics to more accurately 

arrive at the optimal join order. However, they do not take binding constraints into 

account. This research concentrates on developing a join-ordering algorithm that uses 

query plans containing source statistics and takes care of binding patterns.  

Access costs that represent overhead costs for an internet connection setup (as against 

disk seek time for traditional databases) are one of the important costs for internet 

information gathering. Bushy trees lend themselves naturally to internet information 

gathering by their inherent parallelism to cut down access time when possible by making 

simultaneous access to sources. For this reason, the search space is expanded to add 

bushy trees. An experimental setup with simulated sources where various parameters can 

be changed is used to test the algorithm. Empirical data shows that the algorithm scales as 

expected and is better than other comparable methods. Empirical data also validates the 

assumption that searching a larger space of join order trees is paid off with a smaller 

execution cost. 

 



2. INTERNET INFORMATION GATHERING 

Internet information gathering has to deal with different kinds of databases. Figure 2.1 

shows an information gatherer than puts data together from different sources- varying 

from secondary storage media to internet databases. Traditional query optimization 

algorithms are designed to work with localized databases. The issues related to such an 

environment is very different from that of an internet one where databases are strewn 

across the Internet. Databases stored in the same secondary storage device, or in multiple 

devices accessible directly by the computer have comparatively lower (almost negligible) 

seek and read times than the setup time to establish a socket connection and transfer data 

in the case of databases across various networks.  
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2.1. Binding patterns 

While posing a query to a database, some attributes may be bound to a particular value 

while some may not [LKG99]. Sometimes, the bound attribute may depend on the 

availability of data or the query itself. However, quite often in the case of internet 

databases, attributes may be required to be bound because of the inherent database 

design. 

• The Books database requires isbn to be bound. 

• Student records stored in a university administration may require the id of the student 

to be bound. 

On the other hand, some sources may allow a richer set of queries than expected. For 

example, a source might take multiple bindings (limited disjunctive queries) for a 

particular attribute. While disregarding such information does not affect the soundness of 

a query result, optimality of a system is impaired if it doesn’t take into account such 

features of sources. Such limitations and features must be taken into consideration if an 

optimal query plan is desired.  

Examples: 

yellowPages (LastNamef, FirstNamef, Zipf, Phoneb) 

yellowPages (LastNameb, FirstNamef, Zipf, Phonef) 

books(Titlef, Authorf, Pricef, ISBNb, Pagesf) 
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The variations of having some attributes bound and some other free are called binding 

patterns. In the example given above, yellowPages has two possible binding patterns. In 

the first one Phone is bound and denoted by b while the second one has LastName bound 

2.2. Access costs 

A discriminating feature of internet information gathering is the wide range of access 

costs of the sources involved. Access time is the overhead associated with getting data 

from a particular source. Access cost is the unavoidable cost associated with accessing a 

source without getting any data in return. For this reason, contribution of access costs to 

the execution cost of a plan must be kept minimal in order to obtain an optimal solution. 

Furthermore, access costs tend to be nonlinear as they are not proportionate to the 

number of tuples transferred. 

Databases available locally on secondary storage media like hard disks have very small 

access time in the form of disk seek time. Those present across the intranet linked by 

high-speed internal networks serving a smaller load have moderate access times. At the 

far end of the spectrum are those scattered on the Internet where servers are used by a 

much larger number of people and hence have very high access times.  

2.3. Types of internet databases 

Databases accessible on the Internet exist in myriad forms. One of the most common and 

most visible are form interfaced databases. Usually in such cases, fixed queries are 

written and a web page designed so that it can accept values for various attributes. The 

result of such a query is used in further transactions. The server site usually limits queries 
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that can be posed to such databases. Consider a book database with the following 

schema: 

Books (ISBN, Title, Author, Publisher, Pages, Price) 

A query of the form 

SELECT * FROM Books WHERE Author=”John Doe” 

is acceptable whereas 

SELECT * FROM Books WHERE Pages>50 

is acceptable not even though it is semantically correct. Even though Pages is an attribute 

for Books, its value cannot be bound in queries posed on the relation. Such binding 

patterns are termed Forbidden Binding Patterns. For the above Books example, Books 

(ISBN, Title, Author, Publisher, Price, Pagesb) is a forbidden binding pattern. 

Let us say that the design of the Books relation is such that it requires ISBN to be bound. 

In such a situation, the possible binding patterns are written as 

Books (ISBNb, Title, Author, Publisher, Price, Pagesf) 

All binding patterns with the remaining attributes are any combination of Free or Bound 

are feasible and not part of Forbidden Binding Patterns. 

Some unconventional databases are also present that are in text form. Such databases do 

not have any query processing capability. If needed to be queried, they have to be 

transferred in full to the client site and a wrapper program parses the file and converts it 
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into a database for internal use. Text databases usually need customized wrappers and are 

also inefficient. 

2.4.  Source statistics  

Another important characteristic of internet databases is the lack of statistics regarding 

their performance and data stored by them [LKG99]. It is not a trivial task to find out the 

access and transfer times for such databases. Even when known, the fluctuations in 

network connections can cause the statistics to vary more than that for databases stored in 

secondary storage media.  

Possibly the most common scenario is where nothing is known about an internet database 

apart from the schema and binding restrictions. Sometimes, partial information may be 

available. Information that SELECT * FROM Student WHERE Major=”CS” returns fewer 

tuples than SELECT * FROM Student WHERE Sex=”M” might be easily available or  

estimated.  

On the other side of the spectrum are databases where all the statistics are known. 

Corporate intranets are a prime example. Even for those sources for which no statistics 

are available, probing and other methods can return a very good estimate.  

Cost forms an important factor in a query optimization algorithm. A more accurate 

estimate implies a better-informed decision made by the optimizer. Small errors in source 

statistics may not affect the final outcome of a join order optimizer as the costs are 

merely used to rank plans. It is very likely that the same order would have been produced 

with small changes in source statistics. This indicates the accuracy of the statistics 
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required by most join order optimization algorithms. Small changes in statistics for 

internet databases are quite natural and common [AH00]. Because a high level of 

accuracy is not needed, such changes do not usually change the optimality of the solution 

produced by such algorithms. 
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3. JOIN ORDERS 

The number of permutations of ordering the join operations can provide many equivalent 

alternatives that provide a sound solution with varying degrees of optimality. Finding an 

optimal join ordering for a given query is the task of join order optimizers. Selecting the 

optimal execution strategy for a query is NP-hard in the number of relations [IK84]. 

Consider the following query 

SELECT StudentName 

FROM Student, Course, Dept 

WHERE  

Student.id=Course.takenBy AND  

Course.deptId=Dept.id AND  

Student.Major=Dept.Id 

The following figure illustrates equivalent join queries all of which are semantically 

correct and yield the same results. However, depending on the attributes of the sources, 

the corresponding costs may vary. 



   
13 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1 Equivalent join trees 

3.1. Order affects costs 

We will now show how order of a join that is commutative affects join costs. Assume P 

and Q are two relations that have 10 & 100 rows each that take part in the join. Limited 

?

?

Student 

Dept 

Course 

?

?

Course

Student 

Dept 

?

?  

Student 

Course 

Dept 



   
14 

   

by binding constraints, a parallel access to both the sources may not be possible. Due to 

such dependencies, they have to be accessed one at a time and the bindings from the first 

source are used to query the second. Let a and t be the access and transfer time for the 

sources. Access time refers to the setup (overhead) time incurred in using a source and 

transfer time is the rate at which the source produces data. 

P ?  Q: Source P is accessed and 10 rows are extracted. For each of these rows, an access 

must be made to Q to see if there exists a row that might participate in the join, the 

maximum being 100. Hence the cost can be estimated as 

Cost (P ?  Q): a + 10t + 10a +100t 

Q ?  P: Source Q is accessed and 100 rows are extracted. For each of these rows, an 

access must be made to P to see if there exists a row that might participate in the join, the 

maximum being 10. Hence the cost can be estimated as 

Cost (Q ?  P): a + 100t + 100a +10t 

The cost difference between the above two alternate approaches is 90a. It can be seen that 

P ?  Q is a better alternative to Q ?  P even though both will produce the same results. 

There are only 2 alternatives possible for 2 sources. The number of alternatives increases 

rapidly compared to the number of sources. The corresponding costs vary widely. This 

underlines the need and necessity for join ordering algorithms.  
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One of the fundamental assumptions in searching a larger space of possible join orders is 

that the time spent in searching would be paid off in obtaining a better solution than what 

would have been obtained searching a subset of the search space. In traditional databases, 

with mostly localized databases, access and transfer times that constitute a large part of 

execution cost are negligible. Hence, the difference in execution cost offered by using a 

more optimal tree is not clearly visible. This is further suggested by the fact that the time 

spent in searching a larger space might be much more than the time saved by a more 

optimal query. The increase in processing time eclipses any increase in optimality. 

Such differences could be magnified in the Internet information-gathering scenario where 

access times are relatively much higher than those for traditional ones. Hence, there is a 

need to search a larger space and come up with an execution plan as optimal as possible. 

The time saved in access and transfer costs more than makes up for the time spent in 

searching a larger space. 

Query optimization is the process of producing a query execution plan that represents an 

execution strategy for a given query. The plan so produced minimizes an objective cost 

function. A query optimizer is usually seen being comprised of three components 

[OV91]: 

1. Search space: Set of alternative execution plans that represent the input query 

2. Cost model: Predicts the cost of the given execution plan 

3. Search strategy: Explores the search space and selects the best plan, using the cost 

model 
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3.2. Search space 

Query execution plans are typically abstracted by means of operator trees that define the 

order in which operations are performed. Join trees whose operators are either join or 

Cartesian product characterize query optimizers. Permutations of join order have the most 

important effect on the performance of queries. To avoid investigating a large search 

space, query optimizers typically restrict the size  of the search space under consideration. 

An important restriction is the shape of the join tree. Though considering only linear trees 

drastically restricts the search space, bushy trees are useful for information integration 

because of their inherent parallelism as mentioned in Chapter 1. 

3.3. Join tree shapes 

Different shapes of join order trees further increase the number of possible join orders. A 

tree all of whose right nodes are base relations is termed left linear, and the one with all 

left nodes as base relations is termed right linear. A tree that is neither of the above is 

termed as a bushy tree. If a particular join tree shape has a feasible possible ordering, it 

generates the same answers as another. However, they also have different implications 

with respect to access times and hence the final cost differs. 
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3.4. Size of the search space 

Figure 3.1 illustrates various shapes for a join tree. For a left linear tree, there is only a 

single possible tree shape. Any of the n relations can be assigned to each of the leaf nodes 

in !n ways. On the other hand, there are many possible shapes for a n-leaved bushy tree. 

The number of possible bushy tree shapes is similar to the classical problem of the 

number of parenthesizations P(n) of n multiplications. A sequence of n variables can be 

split between the kth and (k+1)st variables for any k = 1, 2 ,. . . n-1 and parenthesized 

recursively.  

S(n) = ∑
−

=

−
1

1

)()(
n

k

knSkS  for n>13 

The above recurrence is the sequence of Catalan numbers4. Thus the value can be 

calculated as 

S(n) = C(n-1) where 

C(n) = 
1

1
+n 








n
n2

 

                                                 

3 P(1) = 1 

4 Among other things, the Catalan numbers describe the number of ways a polygon with n+2 sides can be 
cut into n triangles, the number of ways in which parentheses can be placed in a sequence of numbers to be 
multiplied, two at a time; the number of rooted, trivalent trees with n+1 nodes; and the number of paths of 
length 2n through an n-by-n grid that do not rise above the main diagonal. 
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For each of the bushy tree shapes, there are !n  ways in which n relations can be assigned 

to the leaves. The number of possible join orders for bushy trees (which includes left 

linear trees as well) is given by the formula: 

!)1( nnP =+ 







n
n2

 

For 8 relations, there are about 17 million join orders, of which about 40 thousand are left 

linear trees. The brute force method of exhaustive search is a poor strategy for finding an 

optimal join order. Traditional join order optimizers take a small hit in execution time of 

the resulting order in return for a large decrease in search space by considering only left 

linear trees. The degree of sub-optimality is not negligible in the Internet information-

gathering scenario dominated by access costs. This is shown by the results of one of the  

experiments conducted and the size of the search space empirically deduced. 

3.5. Motivation for using dynamic programming 

The most popular search strategy used by query optimizers is dynamic programming that 

is a systematic search method – it proceeds by build ing plans starting from base relations, 

joining one more relation at each step until complete plans are obtained. Dynamic 

programming builds all possible plans, breadth first, before it chooses the best plan. To 

reduce cost, partial plans that are not likely to lead to the optimal plan are pruned at the 

earliest stage.  
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Dynamic programming is almost exhaustive- it searches through all the possible solutions 

without actually considering all the nodes, and assures that the best of all plans is found 

and incurs an acceptable optimization cost. 

The main objective of my research is to develop and implement a join ordering algorithm 

based on the existing System R query optimization algorithm that is more suited for 

Internet information gathering. The algorithm must ensure that binding constraints are 

taken care of and that it searches bushy trees as well. 

My research also includes implementation of a system to test the new algorithm with 

multiple sources and vary access and transfer times along with the distribution of data 

and analyze the efficacy of the algorithm with respect to other join ordering algorithms. It 

is expected that as number of sources increase, the difference between the algorithms will 

be more pronounced. 
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4. JOIN ORDER OPTIMIZATION 

Present day join order optimization algorithms for Internet information gathering assume 

sources with no available statistics. This is often true for most sources present on the 

Internet. However, it is often the case that partial statistics may be available or can be 

obtained easily. While the exact selectivity indices of tables stored in internet databases 

may not be known, it is quite reasonable to assume for the relation 

Books (ISBN, Title, Author, Publisher, Price, Pages) 

binding Author will yield smaller number of tup les than Publisher.  

4.1. Greedy approach 

To utilize this information available to us, we developed a greedy algorithm [KG99] that 

divides the set of binding patterns feasible for a source into those that make the source 

generate high traffic- High Traffic Binding Pattern [HTBP] and those that do not. It 

should be noted that a source might be included in HTBP for one of its binding patterns, 

not necessarily all. The reason for this is that it’s the binding that decides the number of 

tuples returned as a result, not the source by itself. 

The greedy algorithm uses minimal source statistics to order source calls. It attempts to 

access sources with more feasible access patterns such that they do not belong to a 

HTBP. The idea behind this approach of dividing the set of sources into two types is that 

while full statistics might not be available for most internet sources, partial information is 

usually available and if not, can be estimated in most cases. With each selection of 

source, the list of available bindings increases and thus the number of feasible access 
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patterns also increases. This ensures the termination of the algorithm. If a feasible non-

HTBP is not found for an iteration, the most general binding pattern is chosen. This keeps 

the algorithm moving.  

4.2. System R style optimizer 

A System R style optimizer performs a static query optimization based on the exhaustive 

search of the search space. The input is a list of sources to be called along with their 

binding patterns resulting from the query rewritings. The output is an execution plan that 

implements the optimal join tree. The optimizer assigns a cost to every candidate tree and 

retains the one with the smallest cost. The candidate trees are obtained by permutation of 

the join orders of the n relations of the query using relational algebra rules. The set of 

alternative strategies is constructed dynamically such that only the cheapest one is kept.  

The algorithm consists of two steps: 

1. The best access method to each individual relation is computed.  

2. For each relation P, the best join ordering is estimated, where P is first accessed 

using its best single relation access method.  

The cheapest ordering becomes the basis for the best execution plan. 

4.3. Internet System R (ISR) join ordering algorithm 

Most Internet information sources do not expose statistics about themselves. However, 

more often than not, approximate statistics can be estimated for such sources. For 

example, Amazon.com has possibly more books under a single Publisher than for a given 
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Author. This implies that binding Author will return fewer tuples than from Publisher. A 

slightly different variation of information integration can be for corporate databases that 

are kept at different locations whose exact statistics are easily available. In such cases, 

optimization strategies that take advantage of such information will be more optimal than 

those that don’t.  

The Internet System R algorithm optimizes source calls using statistics that include the 

access and transfer cost for each source and the cardinality (va lue count) for each 

attribute contained in a particular source. The algorithm uses source descriptions and 

builds plans from atomic plans (containing a single source) and prunes non-viable and 

invalid plans thereby cutting down on the search space. In cont rast with query 

optimization for traditional sources, execution is costlier in terms of time compared to the 

optimization process itself. So it makes more sense to spend more time in coming up with 

a more optimal plan than passing the cost to the execution phase. My algorithm modifies 

the traditional algorithm in such a way as to explore bushy trees instead of just left linear 

trees. While this process increases the search space, the resulting join order would be 

more optimal and the time spent in searching an expanded space would be paid off by the 

lowered execution cost. 
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Fig 5.1 Internet System R algorithm 

Initially in the algorithm outlined in Figure 5.1, all feasible sources - those that can be 

called using the available initial bindings are listed as atomic plans. Thus, the first 

iteration makes sub-plans of size n = 1. The next iteration makes all plans for n = 2 with 

all possible combinations, ensuring that only feasible join ordered plans are built. Both A 

?  B and B ?  A are considered, thus increasing the search space to include left linear as 

INPUTS 

   S [1..m]: Array of all subgoals expanded w.r.t binding patterns; 

   Associated data structure along with above which will help calculate 

costs; 

 

   Initialize NODE with 

      PP = nil; Bindings = {f}; Cost=0. 

  

   IF S has a corresponding BestPlan 

      return the corresponding join order 

   ENDIF 

  

   REPEAT 

      FOR i = 1 TO number of feasible leaf nodes 

         FOR j = 1 TO 









i
Q ||  DO 

            LET LeftSubGoal = jth element in 









i
Q ||  

            LET RightSubGoal = S - LeftSubGoal 

            Recursively call this algorithm with LeftSubGoal and RightSubgoal 

            CurPlan = Make a new plan by joining the above resultant plans 

            IF it has a lower cost than current BestPlan THEN 

               update BestPlan 

            ENDIF 

         NEXT j 

      NEXT i 

   UNTIL no child nodes are generated in an entire iteration 

   return join order of BestPlan 

END. 
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well as right linear trees. Right linear trees need to be considered in the intermediate 

stages of the working of the algorithm as bushy trees may contain partial right linear 

trees. Further, when bushy joins are possible5, the next iteration of subplans includes 

those of type  (A ?  B) ?  (C ?  D) in contrast with the traditional algorithm that would 

consider (((A ?  B) ?  C) ?  D). For each join, the statistics are updated and the 

corresponding join costs are also calculated. At the final iteration, when all the sources 

have been taken care of, the search tree consists of plans of size n = m where m is the 

number of sources given as input to the algorithm for ordering. The plan with the least 

cost at this iteration represents the optimal join ordering for calling the sources in an 

information gathering strategy. A detailed pseudo-code follows. 

4.4. Internet System R pseudo-code 

The program in Figure 5.2 takes as input the list of all subgoals along with statistics about 

the corresponding access and transfer cost per tuple; cardinality of the relation 

corresponding to each attribute (required for calculating join sizes); binding restrictions 

which describe the various bindings require to make a source call. The bindings available 

from the query are also given as the input.  

                                                 

5 There must be at least 4 nodes to form a bushy tree. 
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GLOBAL 

   SubPlans [] : Array of all subgoals with the following associated data 

   AvailBindings[] : Array of available bindings before execution of this plan 

   ReqdBindings[]  : Array of variables which require bindings 

   Attrib[]   : Array of value counts V for each attribute 

   Access   : Access cost 

   xfer     : Transfer cost for each tuple 

   cost     : Cost of transferring all the tuples 

   plan     : Initialized to unary plan 

 

   /* Array of all optimal/best plans for corresponding subgoals  

   initialized to all feasible SubPlans*/ 

 

   AllBestPlans[]: Array of aggregates containing the following 

      Plan: Join tree describing an optimal way of calling the given sources. 

      Goals[] : Array of unordered source calls 

 

PROCEDURE OptPlan(Q, QBindings) 

   IF ExistsOptimalPlan(Q) THEN BEGIN 

      Return(Plan(Q)) /* search for Q and return the corresponding plan */ 

   END 

 

   initialize BestPlan with 

      /* empty array of variables which require bindings */ 

      AvailBindings := NULL 
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      /* empty array of variables which don't require bindings */ 

      ReqdBindings := NULL 

      Access := 0 

      xfer := 0 

      cost := 8 

      Subgoals := Ø 

      plan := NULL 

 

   // Try all n sized subplans for bushy joins 

   FOR i := 1 TO |Q|/2 DO BEGIN 

      FOR j := 0 TO 









i
Q ||  DO BEGIN 

         LeftSubgoal := Combination(Q, i , j) 

         RightSubgoal := Q – LeftSubgoal 

 

         PlanLeft := OptPlan (LeftSubgoal,QBindings) 

         RightBindings := QBindings U PlanLeft.AvailBindings 

         PlanRight := OptPlan (RightSubgoal, RightBindings) 

 

         CurPlan1 := Join (PlanLeft, PlanRight) 

         CurPlan2 := Join (PlanRight, PlanLeft) 

         IF CurPlan1.cost < BestPlan.cost THEN BEGIN 

            BestPlan := CurPlan1 

         END 

         IF CurPlan2.cost < BestPlan.cost THEN BEGIN 

            BestPlan := CurPlan2 

         END 

      END 
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   END 

   /* Reuse this for successive levels */ 

   AddPlan (BestPlan) 

 

   return (BestPlan) 

 

END 

 

PROCEDURE Join (Left, Right) 

   initialize a plan New whose cost := 8 

 

   /* Check if feasible w.r.t. binding patterns */ 

   IF Left.ReqdBindings = Ø AND Right.ReqdBindings ?  Left.AvailBindings) THEN 

BEGIN 

      New.Plan := Left.Plan ?   Right.Plan; 

      New.f := Left.f U Right.f U Right.b 

      New.b := Ø 

      New.subgoals := Left.subgoals U Right.subgoals 

 

      /* Estimate size of join */ 

      New.size := Left.size * Right.size 

      FOR each join attribute ai between Left & Right DO BEGIN 

         /* V (R, a) returns the value count for attribute a of relation 

         R,that is, the number of distinct values relation R has in attribute   

         */ 

         New.size := New.size / max(V(Left, ai), V(Right, ai) )  

      END 
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      /* Access and transfer cost from mediator is 0 */ 

      New.access := 0 

      New.transfer := 0     

      /* For both Left and Right subplans 

         If a subplan is unary, it will have non-zero access and xfer costs     

            but cost=0 

         If a subplan is non-zero, then its access and xfer costs will be  

            zero but its cost will be non-zero 

         In other words, in the expression below, one of the parts (on each  

            line) will be non zero */ 

 

      New.cost := Left.cost + (Left.access +           New.size*Left.transfer)+ 

                  Right.cost+ (New.size*Right.access + New.size*Right.transfer) 

   END 

END 

 

PROCEDURE Combination (Goals, n, i) 

   /* Return the ith value from all n sized combinations from Q */ 

END 

 

PROCEDURE IsOptimal (Goals) 

   /* Return TRUE if a corresponding plan for Goals exists in AllBestPlans */ 

END 

PROCEDURE Plan (Goals) 

   /* Returns the corresponding plan for Goals from AllBestPlans[] if found,  

   NULL otherwise */ 

END 

PROCEDURE AddPlan (Plan) 

   /* Add Plan to the array of AllBestPlans[] */ 
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END 

Fig 5.2 Internet System R pseudo code 

A SubPlan is made for all possible binding patterns available for a particular source 

though some of these SubPlans may not be feasible. All the feasible SubPlans are added to 

the array of AllBestPlans that maintains a mapping of the best plan found for a set of 

source calls and the corresponding plan that is a join tree. 

Given a set of source calls to be ordered, the function OptPlan first checks to verify if an 

optimal plan is present already. If so, it merely returns the corresponding plan from 

AllBestPlans. On the other hand, if an optimal plan is not found, it tries to split the given 

set of sources and check if an optimal plan exists for a subset of the sources to be 

ordered. While the traditional System R optimization algorithm considers all subsets of 

size n-1, the proposed algorithm considers all subsets of size n-1 through 1 (The loop 

count 1 TO |Q|/2-1 is to avoid expansions redundant due to symmetry). For each subset 

thus obtained, all combinations are considered and the function is called recursively for 

both the subsets. A join is considered for both the right and left linear trees, though in 

many cases both might not be applicable due to binding restrictions. 

Two subplans may be joined if the left Subplan is executable using the bindings available 

currently, and the right SubPlan is executable using the bindings available after the 

execution of the left SubPlan. If these criteria are satisfied, joining the left and right 

subplans makes a plan. The free attributes of the new plan are the union of the free 

attributes of the left and right SubPlans and the bound attributes of the right SubPlan. The 
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new plan so obtained is executable by itself, and hence its bound variable set if the null 

set. This implies that it may participate in joins with other subplans where it occupies the 

left side. An estimate of the join size is made using a standard heuristic and the access 

and transfer costs of the new subplan are calculated using a weighted average. 

When no more sources to be ordered are left, the procedure returns with a BestPlan that 

contains a bushy tree as its attribute that is an optimal one. 

4.5. Modifications to System R style join ordering algorithm 

Splitting n sources into 1 and n-1 sources is a trivial task when there are no binding 

restrictions. For n sources that have some binding restrictions, the join of the partial plans 

obtained by the splitting them into 1 and n-1 is not always sound. Because of the binding 

restrictions, new bindings available for the right subplan generated by the left one have to 

be factored in along with those possibly available from the query itself.  

Consider the following relations corresponding to the University information-gathering 

scenario described earlier. 

Books (isbnb, title, author, publisher, price, pages) 

Student (idb, firstName, lastName) 

Borrow (studentId, isbn, dateIssued) 

Lost (isbn) 

The query to find all the books that are lost by the student is 
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SELECT * 

FROM Student, Books, Lost, Borrow 

WHERE Borrow.isbn=Lost.isbn AND Books.isbn=Lost.isbn AND Borrow.id=Student.id 

We need to order the join for Student ?  Books ?  Borrow ?  Lost such that the cost 

incurred is minimal. This query would make the call 

ISR (Books, Student, Borrow, Lost) 

One of the many ways this call can be split is ISR (Student, Borrow, Lost) ?  ISR 

(Books). Even though ISR (Books) does not receive its prerequisite binding from the 

query, the above call is valid because the left side provides the required bindings. 

Modifications to the algorithm also include those to search a larger space of join trees 

additionally containing bushy and right linear trees. Right linear trees are a non-trivial 

reversal of join order at each stage - taking care that the required bindings for the right 

node are satisfied properly. Inclusion of bushy trees in the search space involves addition 

of subplans instead of atomic sources while the join tree is built. An inherent and further 

change necessitated is to identify possible areas of symmetry and prune plans that belong 

to the same equivalence class. Instead of adding one source to the base atomic plan, 

attempts are made to add combinations of partial plans of varying sizes. This is obtained 

by a combinatorial generator that internally keeps a combination of sources and provides 

the set of sources for the next iteration. The call ISR (Student, Lost) ?  ISR (Books, 
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Borrow) is an example of how bushy trees are negated by addiction of non-atomic 

partial plans.  

The problem of ensuring that bindings from one side of the join is propagated to the other 

side is further complicated when n sources are split into n-k and k sized sets. Of utmost 

concern is the large number of such possibilities. For each such possible join, binding 

requirements are tested at the earliest possible instant to prune illegal trees as high up as 

possible. This helps in effectively cut ting down on their child nodes as well.  

The call ISR (Student, Lost) ?  ISR (Books, Borrow) is not valid because the 

bindings required for the left side are not provided by the query and hence is pruned 

without further expansion. 

Annotated query plans are used that contain information about sources including but not 

limited to access and transfer costs and selectivity indices of the attributes for each of 

them. Every time a join is made between two sources resulting in a partial plan, this 

information has to be updated so that the new pseudo source has statistics that accurately 

reflects a weighted average of the sources it is composed of. The access and transfer costs 

of the non-atomic source thus formed are 0 because there is no overhead for accessing 

materialized views. The size of the intermediate join is calculated using the selectivity 

index of the join attribute. Selectivity index of the join attribute in the newly formed 

partial plan is the weighted average using the sizes of the participating number of tuples, 

while those of other attributes remains the same assuming independent attributes and 

uniform distribution of values.  
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Consider the following two sources: 

Dept (deptId, name, chair, mailCode) 

Student (id, firstName, lastName, deptId, year) 

Assume the following statistics for Student and Dept sources: 

Statistics Dept Student 

Access 100 10 

Transfer 10 2 

Size 10 50,000 

VdeptId 10% 5% 

Cost 0 0 

The statistics for Dept ?  Student are calculated as follows: 

Statistics Dept ?  Student 

Access 0 

Transfer 0 
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Statistics Dept ?  Student 

Size 
deptId) V(Dept, deptId),ent,max(V(Stud
 Size(Dept) * nt)Size(Stude

 

=
)max(2500,1

 10 * 50000
 

Cost 100 + 10 * 10 + 10 * 10 + 50,000 * 2 = 100,300 

VdeptId 
000,5010

000,50*%510*%10
+
+

 = 5% 

The modified algorithm also has to take care of binding constraints and consider a 

different set of atomic and compound sources as and when newer bindings become 

available from previous joins. This means that the pool of eligible sources is dynamic 

instead of being static. One of the attributes of an annotated source and the resulting 

annotated plan is the list of bindings that they provide. As the plan is being built, the 

associated bindings are updated dynamically. While partitioning the set of sources into 

different sets, bindings that are provided by the left node to the right have to be accounted 

for, and also propagated down to the lower nodes. 

4.6. An illustrative example 

The ISR algorithm is better illustrated with an example. To find all the books that are lost 

by a student, we need to order the join for Student ?  Books ?  Borrow ?  Lost. 
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To join the four relations and obtain answers to the required query, the algorithm is called 

as follows:  

ISR (Student, Books, Borrow, Lost) 

ISR (Student, Books, Borrow) ?  ISR (Lost) 

ISR (Student, Books, Lost) ?  ISR (Borrow) 

 ISR (Student, Lost, Borrow)  ?  ISR (Books) 

 ISR (Books, Lost, Borrow) ?  ISR (Student) 

ISR (Lost) ?  ISR (Student, Books, Borrow) 

 ISR (Borrow) ?  ISR (Student, Books, Lost)  

 ISR (Books) ?  ISR (Student, Lost, Borrow)  

 ISR (Student) ?  ISR (Books, Lost, Borrow)  

 

ISR (Student, Books) ?  ISR (Lost Borrow) 

ISR (Student, Lost) ?  ISR (Books, Borrow) 

ISR (Student, Borrow) ?  ISR (Books, Lost) 

ISR (Lost, Borrow) ?  ISR (Student, Books)  

ISR (Books, Borrow) ?  ISR (Student, Lost)  

7SR (Books, Lost) ?  ISR (Student, Borrow)  

The above expansion shows possible join trees that may constitute the search space for 

the given set of sources. Many join orders are not possible semantically due to binding 

constraints either at the immediate level or the succeeding level. ISR (Books) ?  ISR 
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(Student, Lost, Borrow) is not feasible because of the binding requirements on the 

isbn attribute for Books. Even the ones that are sound at the first iteration level may not 

be feasible after further expansion. The correct partial join tree for ISR (Books, 

Borrow) ?  ISR (Student, Lost) is not feasible at successive levels because ISR 

(Student, Lost) does not have any feasible child nodes.  

Even though theoretically a large number of join orders are possible when taking bushy 

trees into consideration, binding constraints cut down on the number drastically. The 

number is even smaller due to pruning of sub optimal partial join order trees. ISR 

(Student Borrow) ?  ISR (Books Lost) is a possible candidate for pruning compared 

to ISR (Student, Lost, Borrow) ?  ISR (Books) because Books is accessed 

relatively fewer number of times in the later order and is thus likely to be less costly. 

It can be seen that there is a large number of child nodes at each stage many of which are 

still legal but possible sub-optimal. The above partial expansion illustrates this feature. 

Because access costs form a large portion of execution cost, it is easy to see that one of 

ISR (Student, Borrow) ?  ISR (Books, Lost) or ISR (Books, Lost) ?  ISR 

(Student, Borrow) produces the optimal join order. High access cost for Books 

coupled with the small number of tuples in Lost (compared to Borrow) means that  

(Books ?  Lost) ?  (Student ?  Borrow) 

is likely to be the solution returned by the algorithm. 
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5. IMPLEMENTATION & EVALUATION 

A realistic evaluation of the ISR algorithm would involve usage of form-interfaced web 

databases and perform tests on them. Though such an evaluation would possibly serve as 

a good demonstration - not all run time conditions can be tested out. Changing the 

selectivities of the data might not be possible in case of external web databases and not 

feasible for internal databases for each run of experiments.  

The algorithm has been implemented in Java 2 running on Sun Solaris 5.7 though some 

of the experiments were also run on a Pentium III 933 MHz PC running Windows 2000. 

Java was chosen as the language for implementation due to the abundant standard API 

methods available to prototype a system quickly. Sources were implemented as 

simulations whose behavior could be set while instantiating.  With such sources, it is also 

possible to model an increasing number of sources without giving much attention to the 

actual semantics of the joins.  

Experiments were run on the system to evaluate the performance of the algorithm. 

Specifically we attempted to test the following hypotheses: 

1. It is reasonable to expect an exponential increase in processing time for ISR. We 

are more interested in the total cost of join order optimization and empirical tests 

can show the difference in the costs of the algorithms under scrutiny.  
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2. Bindings available for some of the attributes decide the number of nodes to be 

expanded and checked before they are possibly pruned. A set of sources with 

different placement of bindings was used to empirically show this relationship. 

3. As has been mentioned before, not all sources have known statistics. Information 

gathering often involves sources about which no statistics are known and a 

scenario where all statistics are known is not common. Graceful degradation of 

the algorithm due to lack of statistics was also tested for with empirical data. 

5.1. Access and transfer times 

A fundamental assumption for internet information gathering is that access and transfer 

times are higher than those of traditional databases. Further, access time dominates 

transfer time for most sources. Access and transfer times of a source can be calculated 

though they are not directly known. Get the total time required t1 & t2 for downloading 

two different file sizes s1 & s2. Considering transfer of each byte as a transaction 

a + t . s1 = t1 

a + t . s2 = t2 

Solving the above two simultaneous linear equations we can calculate the two unknown 

variables. Further, when we have a set of values, transfer time t is the slope of the graph 

and access time a is the y- intercept. 
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Fig 6.1 Access and transfer times6 

A Pentium III 933MHz PC running Windows2000 was set up as a local (intranet) source 

and populated with about 20 files of sizes varying from 50KB7 to 3MB8. The larger files 

were copies of files downloaded from an Internet source9. The Internet connection speed 

was a T1 line with a typical speed of 500kbps. For each file, the average time taken over 

4 runs was recorded. The same was repeated for 6 files from the original source. The 

                                                 

6 The small undulations towards the top-right corner for larger file sizes is possibly due to the garbage 
collector mechanism of the Java Virtual Machine. 

7 Files are jpeg encoded images stored at http://tsangpo.eas.asu.edu/Photos  

8 Files are movie files stored at http://tsangpo.eas.asu.edu/Ads 

9 http://dvs1.dvlabs.com/adcritic which is the storage server for adcritic.com 
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graph in Figure 6.1 was plotted to see the relationship between file size and 

corresponding time taken. Thick solid lines represent the actual readings while the dashed 

lines represent the trend line for the graph.  

From the equation formed, we deduce that:  

1. Transfer time is almost constant at 25ms/KB for both sources. This shows that in 

the absence of any network fluctuations in the 40 minutes that the experiment 

took to run to completion the transfer time remained almost constant for both the 

sources 

2. Access time for the intranet source is significantly on the lower side at 92ms 

while that for the external site is about 5 seconds! 

This confirms that access costs are indeed more than transfer costs and  form a significant 

portion of the execution cost for a join. 

5.2. Increase in planning cost offset by decrease in total cost 

The optimizer does not always have to consider many of the large number of possible 

bushy join orders. 

• A particular join may not be possible because the binding requirements of both 

the participating sources are not met. 

• A partial tree might be pruned in the presence of a more optimal shape or order. 
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• In a realistic scenario, there are very few legitimate bushy trees from the vast 

original search space of all bushy join trees.  

This decreases the penalty associated with searching bushy join orders as well for a more 

optimal join order than that produced by searching left linear trees alone.  

To evaluate the belief that realistic sources would not vastly increase the search space as 

expected and put a big performance penalty on ISR, 10 sources were created with the 

ratio of access to transfer time varying from 8 to 512. Each of the sources had varying 

number of attributes and corresponding selectivity indices chosen from a range of 8% to 

64%. Sources were added incrementally to the optimizer and the execution cost of the 

plan produced was calculated using the given statistics. Planning cost was recorded as a 

measure of nodes expanded because it is independent of network fluctuations and 

processor load.  

Total cost for each data set was calculated by the weighted addition10 of the planning and 

execution costs. 

                                                 

10 A weight of 100 was used which is in tune with current processor and network speeds. 
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The graph in Fig 6.2 shows that even though the ISR algorithm takes more time in 

planning due to the increased search space, the execution cost of the plan produced and 

hence the total costs are significantly lower than those produced by traditional System R. 

This confirms our hypothesis that ISR has a larger search space than that of traditional 

System R, but not as large as theoretically possible because of pruning of sub-optimal 

and illegal plans at their onset. It also shows that in spite of a marginally larger search 

space for ISR, lower execution cost pays for the slight increase in planning cost. 

 

Fig 6.2 Planning costs for System R & Internet System R algorithms  
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5.3. Position of bound attribute matters 

The search space expands as more sources are added and contracts as more binding 

constraints are added that deem many partial plans illegal. The size of the search space is 

not the same even within a set of sources for a given number of binding constraints. For a 

given set of sources and number of binding constraints, size of the search space depends 

on the interaction between the sources and their attributes. This is shown in the graph in 

Figure  6.3 where even though there is only one bound variable amongst all sources given 

to the optimizer, the number of nodes expanded varies. This verifies the hypothesis that 

number of nodes expanded is a non-trivial function on the number of bound variables. 

 

Fig 6.3 Effect of placement of a bound attribute amongst different relations 
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5.4. Graceful degradation 

The Internet System R style join order optimization algorithm proposed in this thesis 

assumes that all the required statistics are either available or can be easily found using 

various probing techniques. However, this may not always be possible or feasible. In 

such scenario, the optimizer has partial statistics and cannot fully estimate the 

intermediate join sizes and make the correct decisions. To measure the degree of 

impairment caused by lack of statistics, a set of 4 through 9 sources was given as input to 

the optimizer. The performance of the optimizer was contrasted with that of the greedy 

algorithm described in section 5.1. The greedy algorithm does not use any statistics and is 

run only for sources with no available statistics and was taken as the base for comparison. 

In the next run, a set of statistics were masked out and the performance degradation was 

recorded. The algorithm loses out in the absence of any statistics where it degenerates 

into a pure brute force method of searching and has to go through all possible feasible 

permutations. The graph in Fig 6.4 plots the improvement of ISR over greedy algorithm 

as more statistics are given and shows that the optimizer degrades gracefully as less data 

is made available to it.  
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Fig 6.4 Graceful degradation of Internet System R with partial statistics 

5.5. Summary 

Even with a high speed T1 connection to the Internet, access costs remain an important 

bottleneck and need to be eliminated as much as possible for an optimal execution. While 

a large number of solutions are theoretically possible, the search space is not as large 

because of binding restrictions that eliminate many possible partial plans. Dynamic 

programming further eliminates partial plans that will result in sub-optimal plans before 

they can generate full plans. Both these methods only reduce the difference between the 

planning cost of traditional System R and ISR algorithms – ISR still remains 

computationally more expensive. The picture changes when execution cost is taken into 

account. High access costs compared to fast processors result in an overall lower cost and 

more optimal solution for Internet System R style join optimizer. Planning time is a non-
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trivial function of the number as well as position of bound attributes. Finally we show 

that it is not necessary for the new algorithm to have the full array of statistics. Even with 

partial statistics, it maintains its performance improvement over previous methods. 
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6. RELATED WORK 

The traditional method of ordering sub-goals is to use the "bound-is-easier" assumption 

that states that sources with more number of corresponding bound attributes tend to 

return fewer tuples. While such a heuristic is acceptable in the absence of any 

information about source statistics, it may lead to sub-optimal plans in some cases. This 

is so because the selectivity of each attribute is not uniform and the number of tuples 

returned is dependent on this information. For example, a student relation will return 

fewer tuples if Major is bound rather than Year. In mediated schemas where each tuple 

obtained from the first relation is used to query the next source, the number of accesses 

can increase tremendously if the source returning higher number of tuples is accessed 

first. In this example, a source that takes a binding on Year will produce more tuples than 

one that binds Major.  

Florescu, Levy et al in [FLMS99] propose an algorithm similar to the System R style 

optimizer but there is no explanation of the how the cost metric is arrived at- though it 

provides a better treatment for the analysis of the search space. As each sub-plan is added 

to the bag of optimal subplans, a check is made to verify if there exists a plan already - a 

selection over which would yield the new subplan being added.  

The size of the search space is the number of complete query execution plans. This size is 

more if it includes partial plans as well that may not lead to a complete plan. The bottom 

up approach used by [FLMS99] considers partial plans as well and has a larger search 

space. In contrast, my algorithm proceeds top down and partial plans that do not lead to a 

complete query execution plan are never considered.  
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To improve response time of the algorithm in [FLMS99], a redundant best- first plan is 

generated before the System R algorithm runs to completion. This contradicts the verified 

hypothesis that planning time is not as high as expected due to pruning of illegal and sub-

optimal partial plans. 

Another set of strategies to handle unpredictable statistics is to push the optimization 

techniques to the actual execution stage. Some optimizers generate a seemingly optimal 

plan and use feedback to further modify it with respect to run time behavior. At the other 

extreme, some optimizers generate a plan that may not necessarily be optimal and 

perform all the optimization at run-time. The mid-query optimization algorithm by Kabra 

and DeWitt in [KD98] emphasizes that collection of statistics is a big overhead and must 

not be done frequently. They identify stages of the execution where statistics should be 

collected and also use it for dynamic resource allocation. Urhan, Franklin et al. in 

[UFA98] concentrate on initial delays in their algorithm for cost based query scrambling 

making the assumption that access costs are much higher than transfer costs. It does not 

take into account the possible change in source transfer times or selectivities of the 

resulting data. By making the assumption that the run time environment is almost 

unpredictable, Avnur and Hellerstein in [AH00] propose a continuous query optimization 

algorithm that groups sources into eddies (similar to fragments as mentioned by Levy in 

[Lev99]) and the reordering takes place within those. 
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7. CONCLUSION AND FUTURE WORK 

System R is a popular algorithm for optimization for traditional databases. It falls short 

for the newer Internet based databases and pseudo databases. The Internet System R join 

order optimization algorithm presented in this thesis overcomes the shortcomings of the 

original System R style optimizer so that it can be made applicable to Internet 

information gathering. Binding patterns pose a problem to evaluating partial join trees as 

the binding requirements have to be met before calculating a join and estimated when 

dividing the set. The optimizer has more statistics available to it and it uses them to the 

best advantage while calculating and estimating intermediate relations and partial joins. 

Because the statistics so garnered are merely used to order the sources and arrange them 

in the join tree, it is not prone to slight changes in source statistics. When there is a 

multitude of sources with varying levels of available statistics, the optimizer degrades 

gracefully as less data is made available to it.  

The algorithm presented addresses one of the open issues in query optimization for 

internet information gathering. While the algorithm is resilient to small changes to source 

statistics, the plan produced will be substantially sub-optimal if there are large changes in 

the source behavior. Some sources may be slower on a particular day and have higher 

access times than normal. Changes to my algorithm with run time adaptivity built in 

would produce optimal solutions and be less prone to erratic source behavior. It may also 

happen that the unavailability of a source be discovered at run time. An approach that 

combines query planning and selection of sources along with execution optimization can 

solve this problem by producing alternate solutions at run time.  
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The presented algorithm penalizes all sources if some of the sources have less available 

statistics by ignoring any information that is not available for all sources. In the case 

when varying levels of statistics are available, it is not a trivial task to estimate the 

unavailable statistics of the remaining sources. Assigning average values for unavailable 

statistics may not be a good heuristic when very few sources have available statistics. 

Assigning best or worst values unnecessarily penalizes some of the sources. Such an 

approach can produce less optimal solution than that possible by using the available data 

to the best possible extent. More involved heuristics that can take into account the 

uncommon information available will produce more optimal results. 
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