An Investigation of Topics in
Model-Lite Planning and Multi-Agent Planning
by

Sarath Sreedharan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved August 2016 by the
Graduate Supervisory Committee:

Subbarao Kambhampati, Co-Chair

Yu Zhang, Co-Chair
Heni Ben Amor

ARIZONA STATE UNIVERSITY

June 2016



(©2016 Sarath Sreedharan
All Rights Reserved



ABSTRACT

Automated planning addresses the problem of generating a sequence of actions that
enable a set of agents to achieve their goals. This work investigates two important topics
from the field of automated planning, namely model-lite planning and multi-agent
planning. For model-lite planning, I focus on a prominent model named Annotated
PDDL and it’s related application of robust planning. For this model, I try to identify a
method of leveraging additional domain information (available in the form of successful
plan traces). I use this information to refine the set of possible domains to generate
more robust plans (as compared to the original planner) for any given problem. This
method also provides us a way of overcoming one of the major drawbacks of the
original approach, namely the need for a domain writer to explicitly identify the
annotations.

For the second topic, the central question I ask is “under what conditions are
multiple agents actually needed to solve a given planning problem?’. To answer this
question, the multi-agent planning (MAP) problem is classified into several sub-classes
and | identify the conditions in each of these sub-classes that can lead to required
cooperation (RC). I also identify certain sub-classes of multi-agent planning problems
(named DVC-RC problems), where the problems can be simplified using a single
virtual agent. This insight is later used to propose a new planner designed to solve
problems from these subclasses. Evaluation of this new planner on all the current
multi-agent planning benchmarks reveals that most current multi-agent planning
benchmarks only belong to a small subset of possible classes of multi-agent planning

problems.
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Chapter 1

OVERVIEW

Automated planning is quickly growing to become one of the most important
branches of artificial intelligence. Automated planning as a field focuses on creating
algorithms that are capable of identifying a series of steps or actions (usually called a
plan) that can allow an agent to realize a pre-specified goal. Automated planning has
shown great success especially in creating faster and more scalable planning algorithms,
and have also been used in many real life applications like Knight et al. 2001. Two
topics that have recently been getting a lot of attention within the automated planning
community are the areas of multi-agent planning and model-lite planning. In this
document, we look at each of these topics and solve an important problem related to
each.

The first part of the document is related to Model-lite planning. In this
section, we start by looking at model-lite planning models in general and why they
are important. Then we focus on one of the most prominent model-lite planning
model, namely Annotated PDDL (APDDL) model. For this model, we identify ways
of incorporating model information from successful plan traces. We also see how
we can use this method to eliminate one of the major drawbacks of the current
approaches related to APDDL, namely the domain writer’s responsibility to identify
the annotations for the model.

The second part of the document focuses on Multi-agent planning. In this
section, we identify problem characteristics which can lead to a given problem to

require multiple agents to solve it. This section presents work that has already been



presented in Zhang, Sreedharan, and Kambhampati 2016, for which I was one of
the co-authors. In this section, we will also look at a subset of multi-agent planning
problems that can be simplified by compiling it to a single agent one. We also propose
a planner that makes use of this compilation, and the evaluation of this planner on
current multi-agent planning benchmarks shows that most of the current benchmarks

in fact only belongs to a small subset of possible multi-agent planning problems.
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Chapter 2

INTRODUCTION

In recent years, automated planning has seen major improvements in scalability
and efficiency. Since the original IPC (International Planning Competition) held at
1998 the speed and efficiency of the planners have increased by leaps and bounds.
Even with these great advances in planning technology, we are yet to see a wide usage
of planning techniques in real world applications. One of the major hurdles to the wide
adoption of planning technologies is their reliance on complete and correct planning
models. A planning model is expected to capture both the agent’s capabilities and the
environment dynamics. It provides the information on what actions can be performed
and what the result of each action execution would be. Most planners require and
expect a complete and correct planning domain to be provided, for them to solve
a problem in that domain. Even stochastic planners expect a complete list of all
possible transitions and an accurate distribution over it is required for each action.

In most cases these models are created manually by a domain expert, who is well
versed with the domain dynamics and is able to identify both required action and
the factored representation of problem states. Even when such experts are available,
creating a planning model for a new problem domain remains a time consuming and
effort intensive process. Even when a pre-existing planning model is available for an
action, a small change in the problem setting can render the model unusable. For
example, when creating domains for Robotics application, a planning domain made
for one robot may not be applicable for another even when solving the same problem.

Model-lite planning is a relatively new area within the automated planning com-



munity, which aims at developing novel planning and planning-related algorithms
that do not depend on the availability of a complete and correct planning domain.
Though there exist a number of earlier works with similar motivation, the first work
to clearly motivate this as an important research direction was Kambhampati 2007.
Kambhampati 2007 presents many areas including web service composition that do not
require the availability of a complete domain. The work also analyzes various classes
of models that can be designed to use varying degrees of incompleteness and identifies
ways these models can be utilized for planning and plan related activities. Since the
codification of this approach to planning, there have been many related works. Some
of the prominent ones include PISA (Nguyen and Kambhampati 2014),CAP (Zhang,
Sreedharan, and Kambhampati 2015), ML-CBP (Zhuo, Kambhampati, and Nguyen
2012) etc..

Even though there exist a plethora of model-lite planning models, in this work
we will be focusing on a single one, namely annotated PDDL model ( Nguyen and
Kambhampati 2014 and Nguyen, Kambhampati, and Do 2013). In this thesis, we will
focus on extending the current APDDL approaches by providing them the ability to
incorporate additional domain information available through plan execution traces.
This new extension not only provides a way of refining the model but also circumvent
one of the main drawbacks of the system, namely the need for the domain expert
to annotate the models. In an Annotated PDDL model, one expects a domain
writer to come up with a concise and correct list of annotations to be used by the
algorithms. This means that the domain writer should be capable of identifying
a list of annotation that is guaranteed to contain the correct missing predicates
and is concise enough for the algorithms to work with them efficiently. This could

be an extremely hard task for most domain writers and by providing a method of



eliminating incorrect domains, we are able to relax this requirement by making use of
all possible predicates as annotations. Our tests on the new extensions show that our
new approach outperforms the original PISA method for a given annotated model,
and even when compared to other model refinement methods like RIM Zhuo, Nguyen,
and Kambhampati 2013. Our method is able to produce plans with higher robustness
when less number of cases are available. w The rest of this part of the document is
structured as follows, in chapter 2, we take a quick look at some of the background
information required to understand this work. Next, we discuss the original annotated
pddl model and in chapter 5 we discuss the extensions made to it as part of this thesis.
Finally, we conclude this document with a discussion on possible applications of this

approach and directions for future works.



Chapter 3

BACKGROUND INFORMATION

Automated planning refers to a model-based approach to identify a set of actions
that can allow an agent to reach a goal state from the given initial state (Geffner and
Bonet 2013). By definition planning depends on a predefined model to make decisions
regarding the actions it needs to perform. The model is expected to capture both the
agent capabilities and the environment dynamics. Geffner and Bonet 2013 defines a

basic state model using the tuple (S, I, G, A, f, ¢), where the various components are

e S - Set of states
e [ - Initial state
o (G - Goal states

A - Set of actions

e f(a,s) - Deterministic transition function, which defines the effects of each

action

c(als) - Positive action cost

There are a number of variations on this basic model to capture additional properties
and other constraints. In this work, we will be mainly focusing on Classical planning
models, which makes use of this basic state model with the additional assumption
that all action costs are independent of states (Geffner and Bonet 2013).

Given a model, the model needs to be captured by some predefined language,
so these model definitions can be read by a planner, these languages are usually
standardized to allow for compatibility of input among the planners. There exists a

number of languages that has been proposed to capture classical planning models like



STRIPS, ADL etc.. But one of the most widely used planning languages for classical
planning is called Planning Domain Definition Language or PDDL(Mcdermott et al.
1998).

Introduced in the late 90s, PDDL was created as part of the first International
Planning Competition. It was conceived with a goal of creating a standard language
to represent classical planning domains and problems. The original language was
strongly influenced by many of the then popular planning languages like STRIPS and
ADL(Wikipedia 2016) and even the latest versions of pddl still retain many important
aspects of these earlier languages.

A planning task for pddl is usually captured using separate domain and problem
file. While the domain file contains the various action descriptions, the problem files
usually provides the specific problem details. A standard action description in pddl
includes the precondition and the effects of the action, each represented by a set of
first-order predicates. The precondition represents the set of conditions that needs
to be satisfied for an action to be executable, while the effects represent the changes
in the world the action would bring about. During planning, we aim to produce a
sequence of actions that satisfy the given goal (i.e the combined effects of the plan
leads to the goal), such that the preconditions of a given action is satisfied by the
state generated by the previous action. Figure 1 gives us a sample action description

from the IPC blocksworld pddl domain.

3.1 Learning Domain Models

In most cases, the domain file is specifically written by a domain writer in a pre-

specified domain description language. But as we have discussed before the process of



(raction pick-up
:parameters (7x - block)
:precondition (and (holding 7x))
reffect
(and (not (holding 7x))
(clear 7x)
(handempty)
(ontable 7x)))

Figure 1. The putdown action as presented in ipc blockworld domain

writing such a domain can be quite an effort intensive process for the domain writer.
Most of the times, it may not even be possible to find domain writers with both
domain knowledge and planning knowledge required to create the correct domain
model.

One of the most obvious ways of getting around the requirement for the availability
of pre-existing planning models would be to try to learn them. It has been shown
that a complete planning domain can be learned from scratch by using information
from various sources. One of the most commonly available sources of planning domain
knowledge is plan execution traces. ARMS (Yang, Wu, and Jiang 2007) is a very
popular domain learner that learns a domain from the given set of cases (a set of
successful plans and their corresponding start and goal states). Though it’s interesting
to note that in such cases the required actions in the domain and the symbols (and
sometimes even the actions) needed to represent the domain are already available to
the system, and most of these systems only need to learn the precondition /effects, HTN
methods etc... There are newer works like (Konidaris, Kaelbling, and Lozano-Perez
2015) and (Konidaris, Kaelbling, and Lozano-Perez 2014) that are trying to further
relax this requirement, by assuming knowledge of only the underlying continuous

low-level action model and no other high-level symbolic information. These systems



need to learn not only the action precondition and effects but also need to figure out
the set of symbols to use to represent the planning states. But most of the times,
these systems ends up learning symbols that lack any apparent semantic meaning,
this would mean that people may have a hard time creating new problems in these
learned domains.

One common attribute among all the previously listed works is the assumption
that the system will have access to enough information to learn a complete and correct
model. In most cases this is a very hard requirement to meet. Consider a system like
ARMS that relies on planning traces to learn a domain, if the system is trying to
learn a model for a relatively new problem, it is quite unlikely that we can provide
the system a large set of successful cases.

This brings us to the topic of model-lite planning models and why they are

important.

3.2 Model-lite Planning Models

As discussed above, it may not be possible (or in some cases even necessary)
to learn a complete planning model. Model-lite planning models were proposed
as an alternate strategy to deal with the lack of complete models. The topic of
model-lite planning was first introduced to the Al research community through the
paper (Kambhampati 2007), and a central question the paper raises is whether we
really need a complete planning model to perform planning (provided we can accept
some decrease in accuracy)?. The paper introduces a possible spectrum of planning
models (illustrated in figure 2 as presented in the Tian, Zhuo, and Kambhampati 2015)

and the possible planning related tasks they can be used for. The paper identifies
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and investigates two classes of planning models at the two ends of this spectrum
incompleteness, namely Shallow and Approximate Models and discusses the various

ways these models can be utilized.

Increasing degree of incompleteness of planning models

Capability Model
A

Word Vector Model Annotated pddl
* Partial Models '
No l\m éhallow Models Approximate Models Wodel
gg
Planning { No plan ! Plan critiquing or | Planning Robust plan generation \E Traditional
Support T ’ | auto-completion | | Guidance | | and management | | planning

Figure 2. Models arranged on their increasing completeness

3.2.1 Shallow Models

Shallow models represent the more incomplete models within the spectrum. Shallow
models do not contain enough information about the domain to perform planning,
but can be successfully used for tasks like plan critique. Examples of shallow planning
models include models that can only capture action affinity (the probability that
certain actions can appear together) like word vector based models presented in Tian,

Zhuo, and Kambhampati 2015.

3.2.2 Approximate Models

These planning models exist on the other end of the spectrum and are close to
being complete. These models can support both plan creation as well as plan critiquing.

These includes models that are incomplete in terms of some missing preconditions

11



and effects and models like annotated PDDL (which we will discuss in detail in the
next chapter)

Another class of incomplete models that has been getting some recent attention
are the partial models which lie closer to the center of the spectrum. while more
incomplete than an approximate model, these types of planning models are still helpful
in plan guidance and can be used for tasks like goal recognition and state prediction.

In the rest of this section of the thesis, we will mainly focus on Annotated PDDL

and how we can use these models to generate more robust plans.
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Chapter 4

ANNOTATED PDDL MODELS

In the previous chapter, we were introduced to the concept of incomplete model
and why it is important to planning research. In this chapter, we take a closer look at
annotated pddl model (Nguyen and Kambhampati 2014 and Nguyen, Kambhampati,
and Do 2013), one of the earliest incomplete models to be proposed and see how
we can improve it. Within the spectrum of incomplete models, we saw in the last
chapter, annotated pddl models falls under Approximate models which are close to
being complete. Annotated PDDL(APDDL) models were designed to handle cases
where the incompleteness of the model arises from known unknowns, i.e cases where
we have actions with missing preconditions and effects and are also aware of possible
candidates to these missing predicates. In annotated pddl model, this information is
represented in form annotations within action definitions. This means in APDDL the
action definition also includes possible preconditions and possible effects in addition
to the normal preconditions and effects, where each predicate could possibly be part
of the real action definition ( the unknown ground truth), Figure 3 presents an action
definition from a sample APDDL model. One could see an APDDL model as a concise
representation of a set of possible domains. Where each subset of the annotations
represents a different domain and the true PDDL domain is present in this set of

possible domains.

To see why such a model will be helpful, let us consider an example domain.
Consider a simple gripper based domain where a robotic gripper needs to pick up

boxes from an assembly line and place them on a pallet. A domain writer tasked

13



(raction pick-up
:parameters (7x - block)
:precondition (and )
:poss-precondition (and (holding ?x))
:effect
(and (not (holding 7x))
(ontable 7x))

:poss-effect
(and
(clear 7x)

(handempty)
)

Figure 3. The putdown action as presented in ipc blockworld domain

with the responsibility of writing an action model for this robotic gripper, may not
be aware of all the details of the specific robotic arm to be used. The writer might
believe that that arm could possibly have a limitation on the amount of weight it
can lift. The fact whether this assumption is true or not may actually depend on the
specific robot being used and other factors that may not be apparent to the domain
writer. So it would make sense for the domain writer to keep this precondition as a

possible precondition for the lift action of the robot.

4.1 Problem Formulation

We define an APDDL domain by the tuple M = (R, O) where R denotes the
lifted predicates in the domain and O provides the list of operators. Each operator

0; € O, contains a list of known preconditions pre(o;), known add effects add(o;),
known delete effects del(o;), possible preconditions pre(o;), possible add effects add(o;)

—_~—

and possible delete effects del(o;). Each annotation r in the possible predicate list

14



may also be associate with a weight (w?™(r) or w2?(r) or w(r)). But for the rest
of this chapter we assume that all possible predicates have equal weights.

As discussed before an APDDL domain concisely represents a set of possible
domains, where each unique ‘“realization” of the annotations corresponds to a unique
domain. A unique realization of the annotated model refers to a complete PDDL
domain created by moving a certain subset of annotation to the actual precondition
or effects list. We refer to the list of all possible realizations as completions list and
is denoted as ((Mv)> The size of completions list will be equal to 2%, where k is the
total number of all the annotations in the original APDDL model M. If we assume

that the actual ground truth (the true unknown domain) is M*, then we know that

M* € ((M)).
For a given plan m = (ay, .., a,) and initial state sq and goal g, the validity of the
plan for the model M (if the plan can achieve the goal) is defined with respect to the

completion list. For a given complete model M; € ({M)), the plan is said to be valid
for the model M, if

9 € Y, (T, s0) (4.1)
Where «yr, provides the transition function for the model M; and vy, (7, o) is equal

to Y, (@1, oy Y, (@n—1, Y, (@n, S0))), Where the application of transition function for

a single action on a state s; is given as

o,ifpre(a;) € si1
TM; (ai) Si—l) = (42)
(si—1 \ del(a;)) U add(a;)
So if at any point of the plan, the preconditions of the action does not match the
corresponding execution state, the plan would be considered invalid. This definition

of plan validity, where the failure of a single action can lead to complete plan failure is

generally referred to as STRIPS execution semantics in automated planning literature.
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Another popular execution semantics that is considered by many planning algorithms
is generous execution semantics. But for the remainder of this document we assume

that the plans follow STRIPS execution semantics.
4.2 Robustness of the Plan

A given plan may only be executable in a fraction of the total number of domains
in the completion list. Given the fact that the ground truth is completely unknown,
higher the number of domains the plan is executable, more likely the plan is executable
in the ground truth. Thus, assuming each possible complete domain is equally likely,
the ratio of executable domains for a plan becomes a measure of goodness of the plan
and is usually referred to as it’s robustness. For a given plan 7, if ((M)) is the set
of all possible domains for an APDDL model M and ((M’)) be the set of domains

where pi is executable, then the robustness of the plan 7 is defined as
N/
R(x) = LM (4.3)

In general, the robustness of a plan can be defined as the cumulative probability of
each possible domain where the plan is executable.
R(m) = > Pr(M,) (4.4)
M, where GCyq, (1)
Thus, one of the main goals of using APDDL model becomes to generate the most
robust plan for a given planning problem. In addition to generating robust plan, other
important tasks related to APDDL (as listed in Nguyen, Kambhampati, and Do 2013)

and robustness measures can be.

e Improving the robustness of a given plan

16



e Generating plans with the desired level of robustness
e Robust plan generation with fixed plan costs

e Assessing the robustness of a given plan

4.3 Assessing Robustness as a WMC

Most of the tasks listed above require assessing the plans, the most obvious way of
measuring the robustness would be to iterate through all possible complete domains
that can support the execution of the given plan. This could be an extremely time-
consuming process, Nguyen and Kambhampati 2014 proposes a different approach, in
which a set of SAT constraints for annotation required to support the execution of
each plan is generated. Next, we use a weighted model counting solver to identify the
realization of annotations that can support these constraints. A WMC solver should
return the set of possible instantiations for the variables for which the constraints are
satisfied. Since the variables in the SAT constraints corresponds to the annotations in
the domain, each solution represents a possible domain in the completions list and
the total number of solutions found by WMC corresponds to the number of domains
where the plan is executable.

For a given plan 7 =< a4, .., a,, > with initial state s; and goal g and a domain M
that has k annotations. To create a set of WMC constraints to capture the robustness
of the plan, we will need k£ boolean variables to capture every annotation in the model.
For example, consider an annotation r in an operator o; € O, let r € p?é?o/i), then
we need to consider an equivalent boolean variable r2™ and for every WMC solution

with the value 727¢ = T', the corresponding domain model will have 7 € pre(o;).

Next, we need to create a set of constraints using these variables to capture the

17



validity of the given plan, for ease of creating the constraints we consider an updated
plan 7’ =< ag, a, .., @y, a1 >, where Nguyen and Kambhampati 2014 presents two
possible constraints that can capture the executability of a given plan, the constraints

are namely

e Precondition establishment and protection

e Possible precondition establishment and protection

The first constraint deals with the fact that given a known precondition of an action,
there should exist a previous action in the plan that establishes the required predicate,
if it is not already true and this action should appear after all actions that could
possibly delete this predicate. This means if the an action a; at position ¢ in the plan
has a precondition p”, the constraint will be
\ pad (4.5)
Ci<k<ipcadd(ay)

Where C; is the last level before ¢ where the value p was confirmed. If there is any

actions that can delete the predicate p at some level m > C’;,

Do = Voo (4.6)
m§k<i,p6(;l?i(ak)

Similarly, the second set of constraints is used to protect the values of possible
preconditions that may be realized.

4.4  Generating Robust Plans

The above section talked about how we can assess a given plan to identify the

robustness. Now a natural question is to ask if it is possible to generate the most robust

18



plan for a given problem. Nguyen and Kambhampati 2014 introduces a stochastic
search based method to perform robust plan generation. The search proceeds by
trying to extract a plan with robustness value greater than the robustness threshold of
that specific iteration (initially set to zero), at the end of each iteration the threshold
is updated to the robustness of the last extracted plan. This means that the plan
extraction process involves multiple evaluations of plan robustness and since WMC
calculations can be expensive Nguyen and Kambhampati 2014 also proposes an

approximation for exact WMC value.

e Lower limit on the Robustness value - If we are given a set of monotone
clauses ¥ = {c¢1, .., }, then WMC > I1;-1 g Pr(c;). Where the probability
is given by the weights of variables in the clauses (for eg: if ¢; = V,z;, then
Pr(c¢;) =1 —1I;(1 — w;)). The only catch being that the clauses we calculate
need not be monotone, we get around this by calculating the inverted constraints

for any negative constraints, for eg: if there is a constraint p¢ for elimination a

del

°'(p), then we can use a constraint

delete effect of an action o; with a weight w
p2el and weight 1 — w(p)
e Upper limit on the Robustness value - We can use the minimum probability

within the given set of monotone clauses as an upper bound
4.5 Current Drawbacks of Robust planning
In this chapters, we described a way of performing robust planning given an
annotated pddl model. This method, unfortunately, is not without its drawbacks.

One of the major drawbacks being, the need for the domain writer to come up with

appropriate annotations for each incomplete action. In addition to the requirement
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that the annotations should contain the missing predicates, the fact that the original
PISA do not provide a way of refining a given domain model means that if the domain
writer chooses too many annotations, it can conversely affect the planner’s ability
to create plans with high robustness value. In fact, one might argue that there may
be cases when the domain writer is not even aware of the fact that a given action

definition is incomplete.
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Chapter 5

CASE-BASED PISA

In the previous chapter, we looked at APDDL an incomplete planning model which
relied on annotations provided by the domain writer to generate robust plans. The
approach as presented in the last chapter does not suggest any ways of refining an
already defined domain model. In this chapter, we introduce an extension of the
existing PISA planning framework to incorporate information from an additional
source, namely a set of past successful plans. We assume a plan trace includes the
initial state, goal state and the set of action sequences in the plan, there exist a plethora
of works (like Yang, Wu, and Jiang 2007, Zhuo, Kambhampati, and Nguyen 2012,
Zhuo, Nguyen, and Kambhampati 2013 and Zhang, Sreedharan, and Kambhampati
2015) that make use of successful plan traces to not only refine incomplete models
but also learn complete models from scratch. The choice of successful plan traces as
the additional source of information was also motivated by the fact that one could
easily assume that these successful plans were in fact previously generated robust
plans. In the rest of this document, we will refer to this approach as Case-Based PISA
or C-PISA.

To see how the use of successful plan traces would help to improve robustness,
consider an incomplete model M with p number of possible preconditions and ¢
number of possible effects. Let the completion list of the incomplete model be ({M)),
where |((M))| = 2777 Let M* be the ground truth with M* € ((M)). Now let us
assume we are given a set of successful plan traces 7 that succeeded in M* (we assume

plan traces are noise free). Our goal would be to try and build a set of models ((Mv1>>
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such that ((M;)) C ((M)) and M* € ((M)), which can then be used to perform
robust planning via PISA. ((M,)) is formed in effect by eliminating the domains
where the given cases are not executable. Since we already know that all plans in T
are executable in M* and <<Ml>> contains all domains where 7 is executable, we
have M* € ((M,)). By eliminating the known incorrect domains, the new robustness
measure better approximates the plan's chance of success or failure. Following this

logic, if we are given enough cases we can reduce the size of ({(M;)) to one and thereby

obtaining the ground truth.
5.1 Revised robustness measure

PISA defines the robustness of the plan, as the fraction of the domains where a
given plan is executable given each possible domain is equally likely. More generally,
the robustness value can be defined as the cumulative probability of each possible
domain, where the robustness for a given plan m would be defined as

R(m) = > Pr(M;) (5.1)
M, where GCg, (1)
For C-PISA, we need to measure the robustness given the set of successful plan traces
T.
R(n|T) = > Pr(M,y|T) (5.2)

M, where both w and T are valid

Now let the set of constraints for 7 be ¥+ and the constraints for the plan be >.

Then the above equation becomes

Prin NT)  WMC(X, AX7)
Pr(T)  WMC(Zy)

IThere are certain possible domains that the cases can never eliminate. For example, if one of
the possible precondition p of an action a is an actual precondition in the D*. Then any given plan
trace executable in D* is also executable in a domain where p is not the precondition of a

R(m|T) = (5.3)
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So if a plan has a robustness value of 1, this means that the plan is valid on all

domains where the plan traces 7T is valid.

5.2  Comparing C-PISA against PISA

In order to compare this new planner for APDDL, we compared our system against
PISA for two separate domains, namely zenotravel and rover to demonstrate it’s
utility. Both of these domains were used in evaluating the original approach. In our
original test, the incomplete domains were created by moving random predicates to
possible predicate section and introducing few new predicates. But in our new test
we created incomplete domain files by adding more incorrect random predicates (i.e
predicates that were not originally part of an action) to possible predicates section
than in our previous tests. This ensures that we have more incorrect domains, which
in turn can be eliminated with the help of cases. While adding these new predicates,
we made sure that the argument list of each new predicate was compatible with the
signature of the action. Next, we created a set of problems of varying sizes for each
domain, which we then solved with respect to the actual domain using an off the shelf
planner. The solutions to these problems formed our case library.

Some of these cases might implicitly eliminate some domains from consideration.
For example, in the case of zenotravel, Let us assume we have an action board with

the following action definition
(:action board

(7p - person ?a - aircraft 7c - city)

:precondition
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(and
(at 7a 7c)
(at 7p 7¢)
)
:poss-precondition
(and
)
-effect
(and
(in 7p ?a)
)

:poss-effect
(and

(not (at 7a 7c))

As shown in the action definition, the action board has a possible effect (not(at?a?c)),

which means that after boarding the plane will no longer be in that city.

Next let us consider a plan trace containing the following actions

(board personl plane3 city4)

(fly plane3 city4 city5 fi4 f13)
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This plan trace tells us that after personl boarded plane3 in city city4, the plane
flew from city4 to city5 thereby reducing its fuel level from fi4 to 3. If we knew
that the action fly had a known precondition that the plane should be in the source
city, this plan trace would end up eliminating all domains where the action board

has an effect

(not (at 7a 7c))

In the case of zeno travel domain, we created an incomplete domain by intro-
ducing five possible preconditions, five possible add effects and nine possible delete
effects. Out of these possible predicates, nine of them are part of the actual base
domain. While 10 predicates were incorrect predicates added randomly. We created
15 case files by solving random problems using the base domain. The 19 possible
predicates represents 524288 possible number of domains, of which only 1024 domains
satisfy all the provided cases.

We chose to test this domain on 15 problems of varying sizes and we ran the same
problems using the original PISA system and with differing number of cases. Each
system was run with a 15 minutes time limit per problem. Once we had the resulting
plans for all the problems, we collected the best plan for each problem as produced by
the respective approaches. To make the comparison more accurate, the robustness
of plans generated by the original approach was re-evaluated in the smallest known

domain space (in the case of zenotravel domain it corresponds to running with all 15
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cases). Since both approaches rely on stochastic search, each planning instance was
run multiple times to ensure that the search was not getting stuck on undesirable
search paths. During each search instance, we used upper bound for the robustness

approximation. The result of the comparison is given in Figures 4 and 5.

—de— With 0 cases

2= with 15 cases

0.5

Figure 4. Comparing the plans produced with 10 cases against 15 cases

The results in Figure 4 and 5 illustrate that the plans produced in the presence
of full case library are consistently more robust. In Figure 4 we see that C-PISA

running with full case library was able to outperform the original approach (which
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Figure 5. Comparing the plans produced with 10 cases against 15 cases

is same as running C-PISA in the absence of any case files) in 9/15 problems. It is
interesting to note that PISA in fact twice chose plans which ended up having zero
robustness in the reduced domain space. In Figure 5, we compare the outputs of
C-PISA running with full case library against C-PISA running on a subset of the total
cases. Again we see that even though the full set only had five additional cases, it
was still able to produce better plans in many problems.

Next for the Rover domain, we created an incomplete domain similar to zenotravel.
Our incomplete domain had 21 possible effect predicates and four possible precondition
predicates. This includes a combination of existing predicates moved to possible section
and new predicates. In total, this represents 33554432 possible domains. Next, we
created four cases for the base domain, such that the four cases reduced the possible
number of domains down to 65535.

We tested the domain using ten problems of different sizes. Similar to zenotravel,

27



1 KR / o— With 4 cases
—4— With O cases
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Robustness

Problem

Figure 6. Comparing the plans produced with 0 cases against 4 cases

each rover problem was tested with the original approach and then tested with our
extension for varying sizes of case library. The best plan produced by each variation
of the approach is evaluated in the reduced domain space to obtain the best possible
approximation of the robustness. Similar to zenotravel each problem was run multiple

times. The result of the experiment is shown in Figure 6 and Figure 7.

Again we see that with more cases, we are able to produce more robust plans. An
interesting point to note here is the robustness of the best plan produced for the third
problem. Here the robustness of the best plan produced by the original approach is
better than the robustness of the plan produced with two cases, as evaluated in the
smallest domain space. This is because the effect of cases is not uniform across every
plan. As seen here, the addition of two new cases (bringing the total number of cases
to four) affected one plan (the plan selected as the best plan with two cases) more

drastically than the other.
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Figure 7. Comparing the plans produced with 2 cases against 4 cases

As is evident from the above results, the new case-based approach was able to
produce plans with better robustness in the majority of the problems. One interesting
point we noticed was that the plans that appeared to have better robustness in larger
domain space, need not be the better choice when we reduce the domain space. In
many cases, the original approach chose plans with worse actual robustness over those
with better actual robustness values?, as they seemed to have higher robustness in the

larger domain space.

2please note we use the term actual robustness value to represent the robustness value of a plan
in the smallest known domain space. In our case, this usually represents all domains that satisfy the
cases
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5.3 C-PISA as a way to further reduce domain-modeling burden

One of the major drawbacks of APDDL that we pointed out in the last chapter
was the difficulty of creating an APDDL domain. A correct APDDL domain, expects
the domain writer to be not only aware of the fact that the action definition created
may be incomplete, but is also tasked with coming up with a full list of possible
predicates. One of the strong assumptions made by the approach is the fact that
any of the missing predicates are present in the list of possible predicates. C-PISA
provides a way of simplifying this process by assuming each action is incomplete and
by considering all predicates that are not already part of the action definition. For
example, consider an action a with ¢, known preconditions, c, known add effects and
cq known delete effects. If the total number of predicates be IV, then the number of
possible preconditions would be equal to N — ¢,, possible add effects will be N — ¢,
and possible deletes will be N — ¢4. Clearly the number of possible predicates will
be quite high, but we can leverage the successful plan traces to remove the incorrect
annotations.

In order to support all possible predicates as the annotations, we can add some
extra constraints to simplify the domain. For example, whenever we confirm an add

effect, the equivalent delete effect for the same predicate be removed from the action
Pt = ! (5.4)

Similarly if we are adding a predicate to the add effect, we can remove it from the
possible precondition list

vt = e (5.5)
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5.3.1 C-PISA against RIM

Now in order to evaluate the performance of C-PISA on incomplete domains
without any annotations, we need to compare against a method that is designed to
work with such domains. For this we choose to compare our system against RIM|| a
MAX-SAT based approach that has been proposed to refine incomplete models based
on information available from successful plan traces. For each plan trace, the RIM
system extracts a set of soft and hard constraints to capture the executability of each
plan. The constraints are then solved using a MAX-SAT solver to identify a domain
that can support the most number of the given constraints. One interesting aspect of
this approach that differentiates it from PISA is the fact that the approach chooses to
identify a single domain that satisfies the most number of constraints. This makes the
planning process easier, but if the model that has been identified was incorrect, this
can cause all the plans produced by the domain to fail. C-PISA, on the other hand,
takes a safer approach by trying to create plans that can satisfy the largest number of
domains. One way RIM tries to prevent creating incorrect plans is by making use of
macro operators (a sequence of actions), learned from the traces. By using a sequence
of actions already present in the traces, there is a higher chance that the actions in

the sequences are executable.

5.3.2 Evaluation

In order to evaluate the performance of C-PISA in relation with RIM, we compare

the two systems for the domain zenotravel. For the domain random preconditions

and effects are removed from the domain file. This incomplete domain will be used
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directly by the RIM system, while C-PISA uses an equivalent annotated model. The
equivalent annotated model is created by adding all possible predicates not already
part of the precondition and effects of each action. Now the plans produced by each
of the systems are evaluated based on the robustness of the plans being produced.
It is important to note that RIM system itself has no concept of robustness and by
default, there is no way of evaluating the validity of the plans in the absence of the
ground truth.

In zenotravel, with ten missing predicates from the ground truth (with 6 missing
preconditions and 4 missing effects). This is converted to an annotated pddl model
with 56 annotations (20 possible preconditions and 36 possible effects), which is
equivalent to 72057594037927936 domains. We take into account eight possible cases
that were randomly generated, next we try to solve 18 randomly selected plans of
various sizes with varying subsets of total cases(a single plan trace, two cases, four
cases and the complete set). Each plan being generated by both RIM and C-PISA

are then evaluated using the entire case set.

As apparent from Figures 8, 9 and 10 C-PISA clearly does better than RIM for
smaller number of cases. This is because even in the absence of cases the ground
truth is still part of the completion list of the domain. While for RIM, the domain
selected would most likely won’t be the ground truth. Especially for the first problem
C-PISA was able to produce plans with robustness one, this means that those plans
were guaranteed to be executed, while RIM was not even able to produce plans for
these problems. While in Figure 11 we see RIM starts doing better, this would be

true in general for RIM, as RIM is able to learn more and more macro operators. As
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Figure 8. Comparing plans produced by C-PISA vs RIM provided a single case
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Figure 9. Comparing plans produced by C-PISA vs RIM provided two single cases
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Figure 10. Comparing plans produced by C-PISA vs RIM provided with four cases
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Figure 11. Comparing plans produced by C-PISA vs RIM provided with eight cases
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macro operators are action sequences that were already seen in the plan traces, using
these sequences will not add any new constraints and will not reduce the robustness

of a plan.
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Chapter 6
FUTURE WORKS

One of the main reasons for using PISA or C-PISA over other model-lite planning
models would be because of the guarantees it can provide regarding the plans it
generated. For example, if a plan generated by PISA has a robustness value of one, we
can be sure that the plan can be executed on the ground truth. This property can be
extremely valuable when we are dealing with scenarios where security and safety are
a major concern. In such cases, by limiting execution to plans with higher robustness,
we have a greater chance of success. This is a property that is sorely missing in
other approaches like RIM, which chooses to use the most likely domain and does not
provide any guarantees about the plans it produces. Another way we could possibly
utilize APDDL models for safety would be to adapt robustness measure to also reflect

models to also consider safety constraints. So now the robustness measure would be

defined as
WMC(37V Xsare V 2r)
Rsafe(ﬂ') = !
WMC(E7V Egape)

(6.1)

Where Y,.f. are a set of constraints related to domain safety. Now the robustness
measure becomes equal to the ratio between the number of domains where both
plan constraints and safety constraints are met. The safety constraints can either be
specified (for example we could have constraints similar to the one listed in Weld and
Etzioni 1994) or can be learned from safe and even possibly unsafe plans (we would
have to use the negation of the constraints learned from possibly unsafe plans). In
future, I hope to further investigate such connections between APDDL and safety.

Another possible future direction would be to investigate other APDDL related
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tasks. One of the more useful tasks would be to increase the robustness of a given
plan, which has a lot of possible applications. One way we can perform this would
be by replacing part of the plan with the lowest robustness value. If we are given a
plan © = {ay, as, .., a,}, then we need to find the robustness value of each possible
plan prefix m;, where m; = {ay,as,..,a;}. Next, we identify plan prefix with the

greatest reduction in robustness value compared to the previous step (i.e the plan

R(mi)
R(mi—1)

prefix with the smallest value for the ratio with R(my) = 1). Now we rerun the
PISA /C-PISA search with 7;_1 set as the initial plan prefix (instead of an empty plan
prefix) and set the robustness of the original plan as the initial robustness threshold
of the search. We can repeat this till the robustness values converge.

Another possible extension to C-PISA we could consider to produce higher robust-

ness plan would be to consider macro operators similar to RIM. By reusing sequences

seen before we can ensure that the actions do create any new additional constraints.
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Part 11

Multi-agent planning
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Note: The following section’s content were taken from the paper Zhang,
Sreedharan, and Kambhampati 2016, which was presented at ICAPS 2016,

and for which I was a second author.
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Chapter 7

MOTIVATION AND RELATED WORKS

Despite the increased interest in multi-agent planning, one question has remained
largely unaddressed: “under what conditions are multiple agents actually needed to
solve a planning problem?’ This question is of fundamental importance as it clearly
demarcates two distinct uses of multiple agents in a given planning problem: (i) the
situations where multiple agents are used because there is no single agent plan for the
problem, and (ii) those situations where multiple agents are used to improve execution
efficiency, even though a single agent plan is in fact feasible. This latter class of
problems can arguably be viewed as an easier form of multi-agent planning problems,
in as much as they can be solved by first generating a single-agent plan, and then using
a post-processing step to optimize the execution cost by deploying multiple agents.
Without keeping such demarcation in mind when designing benchmark domains, it
can be misleading to compare and evaluate multi-agent planners — in the extreme
case, very fast planners can be designed to solve only problems that do not require
cooperation. Unfortunately, we shall see that most of the domains used in CoDMAP,
a proto multi-agent planning competition at ICAPS 2015, need multiple agents only

for plan efficiency rather than feasibility.

The aim of this section is precisely to shed light on this central question of when
multiple agents need to be involved in the plan to solve a problem.? In particular, we

hope to address the following: @1) Given a multi-agent planning (MAP) problem to

30ur focus in this work is on the number of agents involved in the plan, rather than the planning
process by which the plan is made; see related work for details.
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Room2 Room1

Switch to A | Security
open door ~ || Door

Figure 12. Burglary problem — The goal of this problem is to steal a diamond
(diamondl) from room1, in which the diamond is secured, and place it in room?2.
The diamond is protected by a security system. If the diamond is taken, the system
locks the door (doorl) of room1, so that the insiders cannot exit. There is a switch
(switchl) to manually open doorl but it is located in room2

solve, what are the conditions that make cooperation between multiple agents required;
()2) How do these conditions affect planning for MAP problems; ?3) Can we determine
the minimum number of agents required for a MAP problem. The answer to the first
question separates multi-agent planning problems from single-agent planning (SAP)
problems in a fundamental way. The answer to the second question can inform the
design of future multi-agent planning competitions (e.g., CODMAP in ICAPS 2015) so
that MAP problems that require cooperation can be deliberately introduced to obtain
a clearer understanding of the capabilities of the competing planners. The answer to
the third question has real-world applications, e.g., determining the minimum number
of agents to be assigned.

However, as we shall see shortly, determining whether a MAP problem requires
cooperation is in general no easier than finding a plan for the problem itself, which is
PSPACE-complete. Hence, instead of providing exact answers to questions Q1 — Q3
above, we provide answers in restrictive settings (i.e., for subsets of MAP problems).
First of all, given that the most obvious reason for a MAP problem to require
cooperation is when capabilities of different agents are needed, we divide MAP

problems into two classes: the class of problems where agents have the same capabilities
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Initial State:

location(agentl) room1
location(agent2) room1
location(diamondl) room1
door Locked(rooml) false
location(switchl) room?2

Goal State:

location(diamondl) room?2

Operators:
W alkT hrough(agent, door, fromRoom, toRoom,):

prv: door Locked(door) false
pre: location(agent) fromRoom
post: location(agent) toRoom

Steal(agent, diamond, room, door):

prov: location(agent) room
pre: location(diamond) room
post: door Locked(door) true
post: location(diamond) agent

Switch(agent, switch, room, door):

pru: location(switch) room
prv: location(agent) room
post: door Locked(door) false

Place(agent, diamond, room):

prv: location(agent) room
pre: location(diamond) agent
post: location(diamond) room

Figure 13. The problem and domain descriptions of the Burglary problem using SAS™
in which the value is immediately specified after each variable.
(i.e., homogeneous agents) and the class where agents have different capabilities (i.e.,

heterogeneous agents).

For the first and more restrictive class with homogeneous agents, it may appear
that cooperation is only required when joint actions are present (which are actions
that must be executed by multiple agents at the same time). This intuition, however,
is falsified by a simple problem with only sequential actions as shown in Fig. 12, which
is referred to as the Burglary problem in the later part of this section. We show
that, in this class of problems, RC can be caused by the “traversability” or the “causal
loops” in the causal graph of the agent state variables. Our main theorem shows that

these two causes are exhaustive when agents are homogeneous: if the causal graph of
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agents is traversable and contains no causal loops, a single agent alone is sufficient
for the problem (Q1). However, none of them individually represent a sufficient or
necessary condition for RC. When these two causes are present in a problem, we show
that upper bounds of the number of agents required can be provided (Q3).

For the second class where agents can have different capabilities, the analysis
becomes more complex. Hence, we further divide the problems in the second class
into two subclasses: the subclass of problems where the causes of RC in the first class
do not appear, and the subclass of the remaining problems. For the first subclass, one
observation is that the number of agents that are required can often be significantly
reduced if agents are simply made to be “transformable” (Q3). Although this does
not necessarily lead to the reduction of agents in the final plan for these problems, we
show that the planning performance can be significantly improved (Q2). The second
subclass corresponds to the most difficult setting and an analysis needs to be provided
in future work. Finally, as a practical contribution of our investigation we develop a
planner called RCPLAN, based on the idea of transformable agents above to efficiently
solve MAP problems. We show that RCPLAN outperforms one of the best performers

in the IPC CoDMAP competition.

7.1 Related Work

The term “multi-agent planning” has traditionally been quite loosely defined as
“planning in the presence of multiple agents” (c.f. Jonsson and Rovatsos 2011).

This definition blurs multi-agent plans and distributed planning by confounding
two distinct types of agents: agents that are involved in the planning process (“planning

agents”) and agents involved in plan execution (“execution agents”).
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A multi-agent plan is one that involves multiple execution agents; whereas dis-
tributed planning involves using multiple planning agents, which, normally, also
happen to be the execution agents. However, these two types of agents have orthogo-
nal properties: it is possible to have multiple planning agents working together make a
plan involving a single execution agent, just as it is possible to have a single planning
agent make a plan involving multiple execution agents (aka “centralized multi-agent
planning”).

When we refer to “multi-agent planning” problems in this section of the document,
our focus is on the plans of these problems for execution agents, regardless of how
many planning agents were involved in the planning process. Such plans may be
the result of centralized Kvarnstrom 2011; Muise, Lipovetzky, and Ramirez 2015 or
distributed planning

Our analysis of required cooperation in multi-agent plans is similar in spirit to
Cushing et. al.’s analysis of temporal planning Cushing, Kambhampati, et al. 2007;
Cushing, Weld, et al. 2007. Just as concurrency is sometimes seen as a way to improve
the running time of the plan, execution agents are someimes viewed as “resources” that
can be added to the plan to improve its efficiency Pape 1990. While Cushing et. al.
focus on characterizing conditions where concurrency is required to solve a planning
problem, we focus on conditions where cooperation between multiple execution agents
is required to solve a planning problem.

Our analysis of required cooperation uses SAS™ formalism Backstrom and Nebel
1996 with causal graphs Knoblock 1994; Helmert 2006, which are often discussed in
the context of factored planning Bacchus and Yang 1993; Amir and Engelhardt 2003;

Brafman 2006; Brafman and Domshlak 2013. A causal graph captures the interactions
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between state variables; intuitively, it can also capture the interactions between agents
since they affect each other through these variables Brafman and Domshlak 2013.
In the next section, we start by looking at the definition of required cooperation
and the various subclasses of multi-agent problems, we will be looking at. Next, we
look at each of these sub-classes separately and try to identify the conditions in each
subclass which can lead to required cooperation. We also propose a new planner
that makes use of the ideas discussed in the previous section to solve a sub-set of

multi-agent problems more efficiently.
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Chapter 8

REQUIRED CO-OPERATION

For this work, we focus on required cooperation (RC) in scenarios with instanta-
neous actions and sequential execution. The possibility of RC can only increase when
we extend the model to the temporal domains in which concurrent or synchronous
actions must be considered. We develop our analysis of RC based on SAS* Backstrom

and Nebel 1996.

Definition 1 A SAST problem is given by a tuple P = (V, A, I, G), where:

o V ={v} is a set of state variables. Each variable v is associated with its domain
D(v).

o A= {a} is a set of actions (i.e., ground operators). Fach action a is a tuple
(pre(a), post(a), prv(a)), in which prv(a) denotes prevail conditions which are
preconditions that persist through a.

e [ and G denote initial and goal state, respectively.

A plan in SAS™ is often defined to be a total-order plan, which is a sequence of
actions. For details of SAS™, see Backstrom and Nebel 1996. To extend the SAS™

formalism to MAP, we minimally modify the definitions.

Definition 2 A SAS™ MAP problem is given by a tuple P = (V,®,1,G) (|| > 1),
where ® = {@} is the set of agents; each agent ¢ is associated with a set of actions

A(9).
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Definition 3 A plan myap in MAP is a sequence of agent-action pairs wyap =
((a1,¢(a1)), ..., (ar,¢(ar))), in which ¢(a;) represents the agent executing the action

a; and L is the length of the plan.

We assume that the reference of the executing agent is encoded and appears as the

first argument in an action, similar to the operators (ungrounded actions) in Fig. 13.

8.1 Required Cooperation for MAP Problems

Next, we formally define the notion of required cooperation and a few other terms
used. We assume throughout this section that more than one agent is considered (i.e.,

| > 1).

Definition 4 (k-agent Solvable) Given a MAP problem P = (V,®,I,G) (|®| > k),
the problem is k-agent solvable if 30y, C & (|Pk| = k), such that (V, @y, I, G) is solvable.

Definition 5 (Required Cooperation (RC)) Given a MAP problem P =

(V,®,1,G), there is required cooperation if P is solvable but not 1-agent solvable.

In other words, given a MAP problem that satisfies RC, any plan must involve
more than one agent. Note also that to satisfy RC, a MAP problem must first be

solvable.

Lemma 1 Given a solvable MAP problem P = (V,®.1,G), determining whether it
satisfies RC is PSPACE-complete.

First, it is not difficult to show that the RC decision problem belongs to PSPACE,

since we only need to verify that P = (V, ¢, I, G) is unsolvable for all ¢ € @, given that
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the initial problem is known to be solvable. Then, we complete the proof by reducing
from the PLANSAT problem, which is PSPACE-complete in general Bylander 1991.
Given a PLANSAT problem (with a single agent), the idea is that we can introduce a
second agent with only one action. This action directly achieves the goal but requires
an action of the initial agent (with all preconditions satisfied in the initial state) to
provide a precondition that is not initially satisfied. We know that this constructed
MAP problem is solvable. If the algorithm for the RC decision problem returns that
cooperation is required for this MAP problem, we know that the original PLANSAT

problem is unsolvable; otherwise, it is solvable.

Definition 6 (Minimally k-agent Solvable) Given a MAP problem P =
(V,®,1,G) (|1®] > k), P is minimally k-agent solvable if it is k-agent solvable,

and not (k—1)-agent solvable.

Corollary 1 Given a solvable MAP problem P = (V,® I, G), determining the mini-

mally solvable k (k < |®|) is PSPACE-complete.

Hence, directly querying for RC is intractable even when the problem is known
to be solvable. Instead, we aim to identify conditions that can potentially cause RC.
First, note that although actions (or ground operators) are unique for each agent,

they may be identical except for the executing agent.

Definition 7 (Action Signature (AS)) An action signature is an action with the

reference of the executing agent replaced by a global AGgx symbol.

For example, an action signature in the IPC logistics domain is drive(AGgx, pgh-
poT, pgh-airport). As a result, different agents can share the same action signatures.

We denote the set of action signatures for any ¢ € ® as AS(¢).
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Definition 8 (Agent Variable (Agent Fluent)) A wvariable (fluent) is an agent

variable (fluent) if it is associated with the reference of an agent.

Agent variables are used to specify agent state. For example, location(truck-pgh)
is an agent variable since it is associated with an agent truck-pgh. We use V,, C V' to
denote the set of agent variables that are associated with an agent ¢ (i.e., variables
that are present in the initial state or actions of ¢), and V, to denote the set of
non-agent variables. Furthermore, we assume that agents can only interact with each
other through non-agent variables (i.e., V,).* This assumption implies that agent

variables are associated with one and only one reference of an agent. Thus, we have

VonVy =0 (¢ # ¢).

Definition 9 (Variable (Fluent) Signature (VS)) Given an agent variable (flu-

ent), its signature is the variable (fluent) with the reference of agent replaced by AGgx .

For example, location(truck-pgh) is an agent variable for truck-pgh and its sig-
nature is location(AGgx). We denote the set of variable signatures for Vj, as V.S(¢),
and use V'S as an operator such that V.S(v) returns the signature of a variable v (it

returns any non-agent variable unchanged).

49



/ MAP

MAP with Heterogeneous Agents MAP with Homogeneous Agents
having Traversable and Loop Free
Causal Graphs R/C RC

~ B.1 DVCRC
~<o / /\

~

S~ B. Type-2 A. Type-1
B.Type-1RC / A. Type-1RC 7z b

~ -

N B.2 Mixed cause region / 7 B.1. DVCRC 8.2
~“(RC caused by only DVC)

o / o B.11 B.12
(Connected DVC RC)
/ Transformer-agent solvable

Figure 14. Division of MAP problems into MAP with heterogeneous and
homogeneous agents. Consequently, RC problems are also divided into two classes:
Type-1 RC involves problems with homogeneous agents (A) and Type-2 RC involves
problems with heterogeneous agents (B). Type-1 RC is only caused when the causal
graph is non-traversable or contains loops. Type-2 RC problems are further divided
into DVC RC problems (B.1) where RC is caused only by the heterogeneity of agents,
and RC problems with mixed causes (B.2). B.1.1 and B.1.2 represent DVC RC
problems with and without connected state spaces, respectively.

8.2 Classes of Required Cooperation (RC)

In this work, we focus on MAP problems with goals that do not involve agent
variables (i.e., G NV, = 0) (because having agent variables in goals forces RC in a
trivial way). We divide MAP problems into two classes to facilitate the analysis of
RC. The division of MAP problems (the rectangle shaped region) as shown in Fig. 14
correspondingly also divides RC problems (the oval shaped region) into two classes
based on the heterogeneity of the agents:

Agent Heterogeneity: Given a MAP problem P = (V,®, I, G), the heterogeneity

of the agents can be characterized by these conditions: 1) Domain Heterogeneity

4 Tt is possible to compile away exceptions by breaking an agent variable (with more than one
reference of agent) into multiple agent variables and introducing non-agent variables to correlate
them. Given that this compilation only increases the problem size linearly (in the number of agents)
for each such agent variable, it does not influence our later discussions.
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(DH): Jv € V, and D(V') \ D(v) # 0, in which V' = {V'|vV € Vy(¢' # ¢) and
VS(v) =VS()}. 2) Variable Heterogeneity (VH): 3¢ € ®,VS(®\ ¢) \ VS(¢) # 0.
3) Capability Heterogeneity (CH): 3¢ € &, AS(®\ @)\ AS(¢) # 0. D(V') above denotes
the joint domain of all v € V.

We define heterogeneous agents as a set of agents in which DH, VH or CH is
satisfied for any agent. This condition is also referred to as the heterogeneity condition.
In contrast, we define homogeneous agents as a set of agents in which neither DH,

VH nor CH is satisfied for any agent. This allows us to divide RC problems into:

Definition 10 (Type-1 (Homogeneous) RC) An RC problem belongs to type-1

RC if the heterogeneity condition is not satisfied (i.e., agents are homogeneous).

Definition 11 (Type-2 (Heterogeneous) RC) An RC problem belongs to type-2
RC if ¢ € ®, such that DH or VH or CH is satisfied.

It is worth noting that when considering certain entities (e.g., truck and plane
in the logistics domain) as agents rather than as resources (such as in CoODMAP
competition Stolba, Komenda, and Kovacs 2015), many problems in the IPC domains

have RC and belong to type-2.
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Chapter 9
ANALYSIS OF TYPE-1 (HOMOGENEOUS) RC

We start with type-1 RC which represents a class of more restrictive problems and
hence are easier to analyze.

Type-1 RC Caused by Traversability: One condition that can cause RC in
type-1 RC problems is the traversability of the state space. One obvious example is
related to non-restorable resources such as energy. For example, a robot may have all
the capabilities to achieve the goal but insufficient amount of battery power. Since
traversability is associated with the evolution of variables and their values, we analyze

it using causal graphs.

Definition 12 (Causal Graph) Given a MAP problem P = (V,®, 1, G), the causal
graph G is a graph with directed and undirected edges over the nodes V. For two nodes
v and v’ (v#1'), a directed edge v — V' is introduced if there exists an action that
updates v while having a prevail condition associated with v. An undirected edge v —v'

15 introduced if there exists an action that updates both.

An example of a causal graph for an agent is in Fig. 15. When we use agent

()

o
/\

Figure 15. Example of a causal graph.
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variable signatures to replace agent variables in the graph, the causal graphs for
all agents in type-1 problems are the same. We refer to any of these graphs as an
individual causal graph signature (ICGS). Next, we define the notions of closures and

locally traversable state space.

Definition 13 (IC and its OC) Given a causal graph, an inner closure (IC) is any
set of vartables for which no other variables are connected to them with undirected
edges; an outer closure (OC) of an IC is the set of nodes that have directed edges going

into nodes in the I1C.

In Fig. 15, {ve,v3} and {v,} are examples of ICs. The OC of {vy,v3} is {v1} and
the OC of {v4} is {vs}.

Definition 14 (Locally Traversable State Space) An inner closure (IC) in a
causal graph has a locally traversable state space if and only if: given any two states of
this IC, denoted by s and s, there exists a plan that connects them, assuming that the

state of the outer closure (OC) of this IC' can be changed freely within its state space.

In other words, an IC has a locally traversable state space if its traversal is only
dependent on the variables in its OC. This also means that when the OC of an IC is
empty, the state of the IC can change freely. In the case of non-restorable resources,
the ICs that include variables for these resources would not satisfy this requirement
(hence non-restorable). When all the ICs in the causal graph of an agent satisfy this,
the causal graph is referred to as being traversable.

Type-1 RC Caused by Causal Loops: A problem with a traversable causal
graph, however, may still require RC. Let us revisit the Burglary problem in Fig.
12. We construct the individual causal graph signature (ICGS) for this type-1 RC

example in Fig. 16. It is not difficult to verify that this ICGS is traversable, given that
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Figure 16. ICGS for the Burglary problem to illustrate causal loops that cause RC in
type-1 RC problems. Actions (without arguments) are labeled along with their
corresponding edges. Variables in G are shown as bold-box nodes and agent variable
signatures are shown as dashed-box nodes.

location(diamondl) and door Locked(doorl) form an IC with the other two variables
as its OC. More specifically, when assuming that the agent location can change freely,
we can also update the location of the diamond as well as the status of the door
to arbitrary values. One key observation is that a single agent cannot address this
problem due to the fact that WalkThrough with the diamond to room?2 requires
door Locked(doorl) = false, which is violated by the Steal action to obtain the

diamond in the first place. This is clearly related to the causal loop in Fig. 16:

Definition 15 (Causal Loop) A causal loop in a causal graph is a directed loop
that contains at least one directed edge (undirected edges are considered as edges in

both directions when checking for loops).

9.0.1 When Cooperation Is Not Required
The following theorem establishes that the two causes discussed above are exhaus-

tive — when none of them are present in a solvable MAP problem with homogeneous

agents, it can be solved by a single agent.
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Theorem 1 Given a solvable MAP problem with homogeneous agents, and for which
the individual causal graph signatures (ICGSs) are traversable and contain no causal

loops, any single agent can also achieve the goal.

Given no causal loops, the directed edges in the ICGS divide the variables into
stratified levels, in which: 1) variables at each level do not appear in other levels; 2)
higher level variables are connected to lower level variables with only directed edges
going from higher levels to lower levels; 3) variables within each level are either not
connected, or connected with undirected edges. For example, the variables in Fig. 15
are divided into the following levels (from high to low): {v;}, {va, v3}, {vs}, {vs, v},
{vg, vs}. Note that this division is not unique.

The intuition is to show that there exists a single agent plan that can lead to
any goal state given an initial state. We prove the result by induction on the level.
Suppose that the ICGS has k levels and the following holds: given any trajectory of
states for all variables, there exists a plan whose execution traces of states include
this trajectory in the correct order.

When the ICGS has k 4 1 levels: given any state s for all variables from level 1 to
k + 1, we know from the assumption that the ICGS is traversable that there exists a
plan that can update the variables at the k + 1 level from their current states to the
corresponding states in s. This plan, denoted by m, requires the freedom to change the
states of variables from level 1 to k. Given the induction assumption, we know that
we can update these variables to their required states in the correct order to satisfy
7; furthermore, these updates (at level £ and above) do not influence the variables
at the k + 1 level (hence do not influence 7). Once the states of the variables at the
k + 1 level are updated to match those in s, we can then update variables at level 1

to k to match their states in s accordingly. Using this process, we can incrementally

55



build a plan whose execution traces of states contain any trajectory of states for all
the variables in the correct order.

Furthermore, the induction holds when there is only one level given that ICGS
is traversable. Hence, the induction conclusion holds. The main conclusion directly
follows.

Note that Theorem 1 provides an answer for the inverse of the first question
(Q1) in the introduction: Theorem 1 is used to determine when cooperation is not
required instead of when it is. More specifically, the conjunction of the conditions
(traversable ICGS and no causal loop) is a sufficient condition for a MAP problem with
homogeneous agents to be single-agent solvable (i.e., no RC). However, the absence
of any of these conditions does not necessarily lead to RC. Theorem 1 provides an

insight into the separation of SAP and MAP for problems with homogeneous agents.

9.0.2 Towards an Upper Bound for Type-1 RC

When the causal graph is not traversable or there are causal loops in type-1 RC
problems, we find that upper bounds on the £ in Def. 6 can be provided. We first
investigate when causal loops are present and show that the upper bound on k is
associated with how the causal loops containing agent variable signatures (agent VSs)
can be broken in the individual causal graph signature (i.e., ICGS). The observation is
that certain edges in these loops can be removed when there is no need to update the
associated agent VSs. In our Burglary problem, when there are two agents in room1
and room2, respectively, there is no need to WalkThrough to change locations (to
access the switch after stealing the diamond). Hence, the associated edges can be

removed to break the loops as shown in Fig. 17.
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Figure 17. Causal loop breaking for the Burglary problem, in which the loop is
broken by removing the edge marked with a triangle in previous figure. Two agent
variable signatures (VSs) are introduced to replace the original agent VS.

Lemma 2 Given a solvable MAP problem with homogeneous agents having traversable
ICGSs, if all causal loops contain agent VSs and all the edges going in and out of
agent VSs are directed, the minimum number of agents required is upper bounded by
Hyecr@ | DW)| (|1D(v)| denotes the size of the domain for variable v) when assuming

that the agents can choose their initial states.

CR(®) is created by: 1) adding the set of agent VSs in the causal loops to CR(®);
2) adding in any agent VS to C'R(®) if there is a directed edge going into it from any
variable in CR(®); 3) iterating 2 until no agent VSs can be added.

For each variable in C'R(®), denoted by v, we introduce a set of variables N =
{v1,v2, ..., vpw)|} to replace v. Any edges connecting v with other variables are
duplicated on all variables in N, except for the directed edges that go into v. Each
variable v; € N has a domain with a single value; this value for each variable in N is
different and chosen from D(v). These new variables do not affect the traversability
of the ICGS and all loops are broken.

From Theorem 1, we know that a virtual agent ¢ that can assume the joint state
specified by C'R(®) can achieve the goal. We can simulate ¢t using Iyccpe)|D(v)|
agents as follows. We choose the agent initial states according to the permutations of

states for CR(®), while choosing the same states for all the other agent VSs according
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to ¢*. Given a plan for ¢, we start from the first action. Given that any permutations
of states for CR(®) is assumed by an agent, we can find an agent, denoted by ¢, that
can execute this action with the following three cases (we show that all three cases
can be simulated):

1) If this action updates an agent VS in CR(®), we do not need to execute this
action based on the following reasoning. Given that all edges going in and out of agent
VSs are directed, we know that this action does not update V,. (Otherwise, there
must be an undirected edge connecting a variable in V, to this agent VS. Similarly,
we also know that this action does not update more than one agent VS.). As a result,
it does not influence the execution of the next action.

2) If this action updates an agent VS that is not in CR(®), we know that this
action cannot have variables in C'R(®) as preconditions or prevail conditions, since
otherwise this agent VS would be included in CR(®) given its construction process.
Hence, all agents can execute the action to update this agent VS, given that all the
agent VSs outside of C'R(®) are always kept synchronized in the entire process (in
order to simulate ¢T).

3) Otherwise, this action must be updating only V, and we can execute the action
on ¢.

Following the above process for all the actions in ¢™’s plan to achieve the goal.
Hence, the conclusion holds. The requirement on the traversability of ICGS in Lem.

2 is further relaxed below:

Corollary 2 Given a solvable MAP problem with homogeneous agents, if all the edges
going in and out of agent VSs are directed in the causal graphs, the minimum number
of agents required is upper bounded by Il ,cys@)|D(v)|, assuming that the agents can

choose their initial states.
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Given a valid plan mp4p for the problem, we can solve the problem using
Myevs@y|D(v)| agents as follows: first, we choose the agent initial states accord-
ing to the permutations of state for V.S(®).

The process is similar to that in Lemma 2. We start from the first action. Given
that all permutations of V.S(®) are assumed by an agent, we can find an agent,
denoted by ¢, that can execute this action: if this action updates some agent VSs in
V.S(®), we do not need to execute this action; otherwise, the action must be updating
only V, and we can execute the action on ¢.

Following the above process for all the actions in 7, 4p to achieve the goal. Hence,
the conclusion holds.

The bounds above are upper bounds. Nevertheless, for our Burglary problem, the
assumptions for both are satisfied and the 2 is returned for both, which happens to
be exactly the k£ for which the problem is minimally k-agent solvable. In future work,

we plan to establish the tightness of these bounds.

99



Chapter 10

ANALYSIS OF TYPE-2 (HETEROGENEOUS) RC

For the class of problems with heterogeneous agents, the most obvious cause for
required cooperation (RC) in type-2 RC problems is the requirement of capabilities
from different agents (due to domain, variable and capability heterogeneity). In the
logistics domain, for example, the domain of the location variable for a truck agent can
be used to force the agent from visiting certain locations in a city (domain heterogeneity
— DH). When there are packages that must be transferred between different locations
within a city, at least one truck agent that can access each location is required (hence
RC). In the rover domain, a rover that is equipped with a camera sensor would be
associated with the agent variable equipped for imaging(rover). When we need
both equipped _for imaging(rover) and equipped _ for rock analysis(rover), and
no rovers are equipped with both sensors (variable heterogeneity — VH), we have
RC. In the logistics domain, given that the truck cannot fly (capability heterogeneity
— CH), when a package must be delivered from a city to a non-airport location of
another city, at least a truck and a plane are required.

We note that 1) the presence of DH, VH or CH (i.e., the heterogeneity condition)
in a solvable MAP problem does not always cause RC. In other words, a solvable MAP
problem that satisfies the heterogeneity condition may not have RC (e.g., when the
problem does not need the different capabilities); 2) the presence of the heterogeneity
condition in a type-2 RC problem is not always the sole cause of RC. For example, the
conditions that cause RC in type-1 problems may also cause RC in type-2 problems

(see the mixed cause region in Fig. 14).
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Due to the complexities above, to continue the analysis, we further divide MAP
problems with heterogeneous agents into two subsets as shown in Fig. 14, which in
turn divides type-2 RC problems into two subclasses — problems in which RC can only
be caused by the heterogeneity of the agents (termed DVC RC), and the remaining
problems. In other words, no causes for type-1 (homogeneous) RC are present in DVC
RC problems. For DVC RC, we can improve the planning performance using a simple

compilation.

10.0.1 DVC RC in Type-2 RC

In particular, we show that the notion of transformer agent allows us to significantly
reduce the number of agents to be considered in planning for DVC RC problems,
which can be solved first with a single or a small set of transformer agents. The

transformer-agent plans can then be expanded to use agents in the original problems.

Definition 16 (DVC RC) A DVC RC problem is an RC problem in which all agents

have traversable causal graphs with no causal loops.

DVC RC problems can be solved by the construction of transformer agents (defined
below), which are virtual agents that combine all the domain values, variable signatures
and action signatures of the agents in the original MAP problem (i.e., ®). To ensure
that this combination is valid, we make the following assumption: agent variables for
different agents are positively (i.e., no negations in preconditions or prevail conditions
and non-exclusively defined. Exclusively defined variables can be compiled away.
Two variables are exclusively defined when associating them with the same agent
can introduce conflicts or lead to undefined states. For example, using gas(AGgx)

and using kerosene(AGgx) can lead to undefined states, if an agent can use either
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gas or kerosene but the state in which both are used is undefined (i.e., the agent
cannot be flying and driving at the same time). This issue can be compiled away, e.g.,
using(AGgrx) = {gas, kerosene}, potentially with a few complications to handle the

transition between the values. Given a MAP problem P = (V,®, I, G),

Definition 17 (Transformer Agent) A transformer agent is an agent ¢* that sat-
isfies: 1) Yv € Vg, Jv* € Vo, D(v*) = D(V), in which V. = {v|v € Vg and
VS(v*) =VS(w)}. 2) VS(¢*) = VS(®). 3) AS(¢*) = AS(®D).

An intuitive way to think about a transformer agent is that it is a single agent that
can “transform” into any agent in the original MAP problem. A transformer agent
can use any other agent’s capabilities (but not simultaneously). Before discussing how
the initial states of these transformer agents can be specified, we introduce a subset
of DVC RC problems that can be solved by efficiently.

Connected DVC RC: A subset of DVC RC problems, referred to as Connected
DVC RC (B.1.1 in Fig. 14), can be solved by a single transformer agent. To define

Connected DVC RC, we first define state space connectivity for agents.

Definition 18 (State Space Connectivity) Given two agents ¢ and ¢' that have
traversable causal graphs with no causal loops, denote their state spaces as Sy and S,
respectively, Sy and SY, are connected if Is € Sy, 3" € Sy, V.S(s)NVS(s") # DAV €
sn, VS(s)[v] = VS(s)[v], in which sn = V.S(s) NVS(s") and VS(s)[v] denotes the

value of variable v in state s.

Intuitively, when two agents have connected state spaces, the transformer agent is
allowed to transform from one agent to the other agent and vice versa in the shared
states (i.e., s and s’ above). This is necessary to ensure that a single transformer

agent can traverse the state spaces of both agents. For example, the prerequisite for a
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truck-plane agent to be able to deliver a package that is at the airport of a city to a
non-airport location in another city is that the truck and plane agents in the original

problem must be able to meet at the destination airport to transfer the package.

Definition 19 (Connectivity Graph) In a DVC RC (or DVC MAP) problem, a
connectivity graph is an undirected graph in which the nodes are the agents and any

two nodes are connected if they have connected state spaces.

Definition 20 (Connected DVC RC) A connected DVC RC problem is a DVC

RC problem in which the connectivity graph is a single connected component .

The result of Theorem 1 can be extended below:

Lemma 3 Given a connected DVC RC problem, it is solvable by a single transformer

agent for any specification of its initial state.

Given that the causal graphs are traversable and contain no causal loops for
all agents in DVC RC, the only condition that can cause RC is the heterogeneity
condition (i.e., DH, VH or CH). Given that the state spaces of agents are connected,
a transformer agent can traverse the state spaces of all agents. Hence, the problem is

solvable by this transformer agent based on Theorem 1.

Corollary 3 A DVC RC problem in which all the goal variables lie in a single
connected component in the connectivity graph can be solved by a single transformer

agent, given a proper specification of the initial state.

The initial state of the transformer agent only needs to lie within the connected
component. We refer to problems that can be solved by a single transformer agent as

transformer-agent solvable (B.1.1) in Fig. 14. Many problems in the IPC domains
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belong to Connected DVC RC (e.g., logistics and rover domains) and are transformer-

agent solvable.

Lemma 4 Given a DVC RC problem P = (V,®, 1, G) in which all the goal variables
lie in a single connected component in the connectivity graph, the single transformer-

agent plan that solves this problem can be expanded to a multi-agent plan using P.

The proof is by construction. Given the initial state of the transformer agent, from
previous discussions, we know that the transformer agent “is assuming the form” of
an agent in ® for which the transformer agent is executing an action (i.e., the first
action in the single transformer-agent plan). Given that this agent has a traversable
causal graph with no causal loops, we can plan it to reach the current state of the
transformer agent while keeping the values of variables in V,, and then let it execute
the first action. The same process continues until the last action of the transformer
agent is executed, and the goal is achieved.

For example, in the logistics domain, suppose that we have a package to be delivered
to a non-airport location in city c¢. The package is initially at the airport in city b, the
plane agent is at the airport in city a, and the truck agent is at a non-airport location
in city c¢. We solve this problem with a truck-plane agent initially at the airport in
city b. This transformer agent can fly to ¢ with the package, “transform” to the truck
agent, drive to the non-airport location to deliver. To create the plan for the original
problem, we need to first expand the single transformer-agent plan by sending the
plane agent from city a to b. We then follow the transformer-agent plan until the
package arrives at the airport in city ¢. Next, we expand the plan again by sending

the truck agent to the airport in ¢ to pick it up. The “transformation” forces the plane
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agent to unload and the truck agent to load the package at the airport. The plan then

follows through.

Corollary 4 Given a DVC RC problem in which the connectivity graph is separated
into connected components, the number of transformer agents to solve the problem is
upper bounded by the number of connected components (assuming proper specifications

of the initial states); the plan can be expanded to use agents in the original problem.

For DVC RC problems with more than one connected component in the connectivity
graph (B.1.2 in Fig. 14), we can similarly expand the multiple transformer-agent
plans into plans for ® in the original problem.

Hence, given a MAP problem with heterogeneous agents, we can first construct the
causal graphs for all agents and execute algorithms to determine whether the causal
graphs are traversable and loop free. If the problem is not determined to belong to
DVC MAP, we can use any single-agent planner to solve the problem by considering
agents as resources. Otherwise, we first create the connectivity graph. We do not
need to construct the exact graph; a partial graph (with a subset of the edges) only
increases our estimation of the number of transformer agents needed. When more time
is allowed, we can continue completing the graph. At any time during this process,
if the graph is determined to be connected, we can stop immediately, in which case
we know that we have a connected DVC RC problem. When the upper bound is
estimated from the graph, we can create a set of transformer agents accordingly to
solve the problem. If a plan is not found, we know that the MAP problem is unsolvable;
otherwise, we can then expand the plan into a plan for the original problem. A similar
process can be used to implement a planner with homogeneous agents in which case

the results from Lemma 2 and Corollary 2 can also be utilized.
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Chapter 11

USING THE TRANSFORMER AGENT COMPILATION

We now turn our attention to performance in practice. Specifically, we show how
the transformer agent compilation can be used to improve the planning performance.
We compare with one of the best performing centralized planners, MAP-LAPKT
(planner entry is SIW--then-BFS(f)) Stolba, Komenda, and Kovacs 2015; Muise,
Lipovetzky, and Ramirez 2015, in CoDMAP, MAP-LAPKT also uses a compilation
approach in which a MAP problem is converted into a single-agent planing problem;
an off-the-shelf planner is then used to solve it. MAP-LAPKT’s performance is very
close to the best MA planner in CoDMAP (which is ADP). We could not compare
against ADP since their approach does not use compilation and is incorporated as a
heuristic in the planning process.

We implemented a planner called RCPLAN. First, we determine whether the
problem belongs to connected DVC MAP (e.g., whether the causal graph is traversable
and contains no causal loops, and whether the connectivity graph is a single connected
component, which are often determined by the domain). If it is, we compile the
problem into a problem with a single transformer agent based on Def. 17. We then
solve this new problem with an existing planner (i.e., FastDownward). Finally, we use
Metric FF to expand the tranformer-agent plan to a plan for the original problem as

explained in Lemma 4.

RCPLAN | MAP-LAPKT | RCPLAN MAP-LAPKT | RCPLAN MAP-LAPKT

2*Problem Type Coverage IPC Agile Score (Time Score) | IPC Sat Score (Quality Score) | 2¥# Domains | 2%# Agents

CoDMAP Problems | 219 (98.6%

214 (96.4%) 214.37 186.73 187.31 204.08 11 2-20

)
Large Problems | 51 (98.1%) 41 (78.8%) 44.54 34.90 49.38 38.81 3 2-

Table 1. Performance Comparison between RCPLAN and MAP-LAPKT
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To remove the influence of the underlying planner, we replace the internal planner
in MAP-LAPKT with our FastDownward (without optimizations). For CoDMAP
competition domains, we use 11 out of 12 domains, since the Wireless domain does
not satisfy our compilation criteria (i.e., the goals contain agent variables). Due
to the additional expansion process, we expect RCPLAN to improve performance
particularly over large problems (in terms of number of agents). Hence, besides the
CoDMAP domains, we also generate larger problems for three CODMAP domains
(i.e., Rover, Blocksworld and Zenotravel) using standard IPC generators.

The results are listed in Table 1. Both RCPLAN and MAP-LAPKT are given
30min to solve each problem. We use the IPC Agile (for time) and IPC Sat (for plan
quality) scores. ° The experiments were run on a 3.0 GHz quad-core linux machine
with 7GB memory. We can see that RCPLAN performs better than MAP-LAPKT
in time performance (i.e., IPC Agile) consistently, although slightly worse in IPC
Sat for CoODMAP problems. This performance improvement is mainly due to the
reduction of instantiated actions in the compiled transformer agent problem. For
example, for one of the Zenotravel problem with 6 agents, RCPLAN instantiated
9152 actions while the number of agent actions used in MAP-LAPKT is 54912. Our
planner achieves a higher IPC Sat score for the larger problems due to the coverage.
We can always post-process plans to improve quality Nakhost and Miiller 2010. Our
results confirm that many IPC domains (also chosen in CoDMAP as MAP domains)

are in fact (single) transformer-agent solvable!

5 For each problem: the IPC Agile score is W
planner and T* is the time taken by the fastest planner for that problem; similarly, the formula for
IPC Sat score is QQ where @ is the plan quality produced by a given planner and @* is the highest
quality produced for the problem. For most domains, we use the inverse of the plan length as the

quality. The final scores are the sum of scores for all problems.

where T is the time taken by a given
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Chapter 12

THESIS CONCLUSION

In this document, I have investigated two topics from the field of automated
planning, namely model-lite planning models and multi-agent planning. In the For
model-lite planning models, I chose to investigate APDDL and the related application
of robust planning. For this model, I proposed an extension (named C-PISA) to the
existing robust planning approach (PISA) to allow the use of external information
(available through cases) during planning. This extension also provides the method a
way of overcoming one of its main drawbacks, namely the need for a domain writer to
identify the annotations. Finally we also took a look at possible way we can utilize
APDDL and robust planning for practical application and possible extensions to the
existing approach.

In the second section of the document, we introduced the notion of required
cooperation (RC). First, we showed that directly querying for RC is intractable. As
a result, we started the analysis with a class of more restrictive problems where
agents are homogeneous. We identified an exhaustive set of causes of RC for this
class and provided bounds for the number of agents required in different problem
settings.For the remaining problems where agents are heterogeneous, we showed that
a subclass of problems in which RC is only caused by the heterogeneity of the agents
(i.e., DH, VH or CH) can be solved with a smaller number of transformer agents
than with the agents in the original problems. This RC analysis makes theoretical
contributions to the understanding of multi-agent planning problems, informs the

design of future multi-agent planning competitions, and presents practical applications,
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e.g., determining how many agents to be assigned to each given task when agent
resources are limited. We implemented a planner using our theoretical results and
compared it with one of the best IPC CoDMAP planners. Results show that our
planner improved performance on most IPC CoDMAP domains,which incidentally
implies that only a subset of MAP problems were covered (i.e., Connected DVC RC)

in this competition.
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