

PLANNING CHALLENGES IN HUMAN-ROBOT TEAMING

KARTIK TALAMADUPULA

Committee Members

- Dr. Subbarao Kambhampati, Chair
- Dr. Chitta Baral
- Dr. Huan Liu
- Dr. Matthias Scheutz
- Dr. David E. Smith

Planning for Human-Robot Teaming

- Human-Robot Teaming (HRT) is becoming an important problem
- > Requires a lot of different technologies
 - > Perception (Vision), Actuation, Dialogue, Planning ...
- Most current robots are glorified remote-operated sensors
- > Autonomous Planning is an important capability
 - > Supporting *flexible* HRT with constant changes
- > The broad aims of this **thesis** are to
 - 1. Engineer an effective integration of planning techniques into a Human-Robot Teaming system
 - 2. Analyze the design tradeoffs involved in doing so

Contributions

- 1. Engineering Approach
 - > Planners have not been used extensively in HRT scenarios
 - > Introduce planner into an architecture for HRT
 - > Use/extend automated planning methods
 - 1. QUANTIFIED GOALS in an open world
 - 2. **REPLANNING** for a changing, open world
 - 3. Handling MODEL CHANGE during planning
 - **4. PLAN RECOGNITION** to enhance planning

2. Analysis of Solution Methods

Contributions

- 1. Engineering Approach
 - > Planners have not been used extensively in HRT scenarios
 - > Introduce planner into an architecture for HRT
 - > Use/extend automated planning methods
 - 1. QUANTIFIED GOALS in an open world
 - 2. **REPLANNING** for a changing, open world
 - 3. Handling MODEL CHANGE during planning
 - **4. PLAN RECOGNITION** to enhance planning

2. Analysis of Solution Methods

ଭି*'*କ୍କି'କି'କି'କି'କି'କି'କି'କି'କି

USAR Human Factors Case Study

Joint work with C. Bartlett, N. Cooke, Y. Zhang, S. Kambhampati

Kartik Talamadupula - Ph.D. Dissertation Defense

Planning Challenges in Human-Robot Teaming

1. OPEN WORLD GOALS

- > Provide a way to specify quantified goals on unknown objects
- > Consider a more principled way of handling uncertainty in facts

2. REPLANNING

- Handle state and goal updates from a changing world while executing
- > Present a unified theory of replanning, to analyze tradeoffs

3. MODEL UPDATES

 Accept changes to planner's domain model via natural language

4. PLAN RECOGNITION

> Use belief models of other agents to enhance planning

ASS

Urban Search and Report (USAR)

Joint work with C. Bartlett, N. Cooke, Y. Zhang, S. Kambhampati

ଜି (ଦି) 'ଶି' ଭିଜି 'ସି' ଜି' ଜି' ଭି

3-27-2014

ଢ଼୵ଢ଼ୖଢ଼୵ଢ଼ଢ଼ୖୄୠୖୄୖଢ଼୷ୖଢ଼୵ୖଢ଼

An Integrated System for USAR

Planner's Role

GOAL MANAGER

Fielded Prototype

- > Planning Artifact: Sapa Replan
 - > Extension of Sapa metric temporal planner

> Partial Satisfaction Planning

> Builds on Sapa^{PS} planner

> Replanning

 Uses an execution monitor to support scenarios with real-time execution

[Benton et al., AIJ07] [Talamadupula, Benton, et al., TIST10]

Planning Challenges in Human-Robot Teaming

1. OPEN WORLD GOALS

- > Provide a way to specify quantified goals on unknown objects
- > Consider a more principled way of handling uncertainty in facts

2. REPLANNING

- Handle state and goal updates from a changing world while executing
- > Present a unified theory of replanning, to analyze tradeoffs

3. MODEL UPDATES

 Accept changes to planner's domain model via natural language

4. PLAN RECOGNITION

> Use belief models of other agents to enhance planning

Open World Goals

- When to start sensing?
 - Indicator to start sensing
- > What to look for?
 - > Object type
 - Object properties

- > When to stop sensing?
 - When does the planner know the world is closed?
- > Why should the robot sense?
 - > Does the object fulfill a goal?
 - > What is the reward? Is it a bonus?

[Talamadupula, Benton et al., ACM TIST 2010]

Open World Quantified Goals (OWQGs)

- 1. When to sense
- 2. What to sense
- 3. When to stop
- 4. Why sense

"Wounded persons may be in rooms. Report the locations of as many wounded people as possible."

[Talamadupula, Benton et al., ACM TIST 2010]

Solution Approach

Tricking the Robot for Profit

- 1. OWQG is provided to the planner
- 2. Planner uses an optimistic determinization
 - > Given an OWQG, assume the presence of object
 - > Create a runtime object (may exist only in planner)
 - > E.g.: For every room, assume wounded person
- 3. Replan
 - > Make a new plan that uses runtime object to achieve the open world goal; (assumed) profit from reward

4. Execute

- > Up to the sensing action (closure condition)
- > Delete runtime object
- > Real object either exists, or doesn't

Replanning for Changing Worlds

- New Information
 - Sensors
 - > Human teammate
- New Goals
 - > Orders: Humans
 - > Requests

> Requirement

- > New plan that works in new world (state)
- > Achieves the changed goals

How to Replan

The Engineering Solution

- > Problem changes from [I, G] to [I`, G`]
- Solution:
 - 1. Stop execution of old plan π
 - 2. Assimilate state changes $I \rightarrow I$
 - **3**. Assimilate goal changes $G \rightarrow G^{}$
 - 4. Give the new instance [I`, G`] to planner
 - 5. Execute the new plan π `
- > (Re)Planning System: Sapa Replan

Sapa Replan: Execution Monitor

- Implement rational choice over possible courses of action
 - > Two possible choices
 - > Continue currently executing plan
 - > Deliberate (replan)

> Objective Selection

- > Two possibilities
 - > Update goal description: **Replan**
 - > Update goal description: Replan + Restart search
- > Net Benefit
 - > Partial Satisfaction Planning

Specifying Changes

> Use an update syntax

 $U = \langle O, E, G_n, T \rangle$

- O: Set of objects (constants)
- E: Set of new events (predicates)
- G_n: Set of new goals
- T: Current time point

> Example

```
(:update
2
   :objects
3
            room3 - room
4
   :events
5
            (at 125.0 (not (at room2)))
6
            (at room3)
7
            (visited room3)
            (visited room4) [500] - hard
8
   :goal
9
            207.0)
   :now
```


Replanning + Open World Goals USAR Example

Original Plan

```
(move-hallway hall_start hall1)
(move-hallway hall1 hall2)
(move-hallway hall2 hall3)
(move-hallway hall3 hall_end)
(deliver medkit1)
```

New Plan

```
(move-hallway hall2 hall3)
(enter room1 hall3)
(sense-for !person1 room1)
(report !person1 room1)
(exit room1 hall3)
(move-hallway hall3 hall_end)
(deliver medkit1)
```

```
(:update
:objects
            room1 - room
:events
                (at 90.0 (not (at hall1)))
                     (at hall2)
                          (connected hall3 room1)
:goal
:now 103.0)
```


Model Updates (via natural language)

- * "To go into a room when you are at a closed door, push it one meter."
 - Precondition: "you are at a closed door"
 - Action definition: "push it one meter"
 - Effect: "go into a room"

> NLP Module

- i. Reference resolution
- ii. Parsing
- iii. Background knowledge
- iv. Action submission (to planner)

[In collaboration with hrilab, Tufts University]

[Cantrell, Talamadupula et al., HRI 2012]

Example: Action Addition

New Action: "push"

"To go into a room when you are at a closed door, push it one meter."

Why Support Model Updates?

> One ground truth model of the world

- > Neither human nor robot have this
- > Human may know more though ...

> Impossible to specify everything up-front

> But during execution ...

1. Addition

> Human sees a closed door, but knows robot can push it

2. Deletion

Taking a picture might ignite vapors

3. Modification

> No power, so robot must needs light for taking a picture

Model Revision

- Model represented in PDDL
- > PDDL domain model

$$\mathsf{I\!M}=\langle\mathbb{C},\mathbb{P},\mathbb{F},\mathbb{A}\rangle$$

- > \mathbb{C} : set of constants (objects)
- > \mathbb{P} : set of predicates
- > \mathbb{F} : set of functions
- > A : set of actions (operators)
- Revision should support modification of any of these on the fly

How to Update a Model

(The Engineering Solution)

1. Pause execution of the current plan

2. Provide a way of **updating an existing model**

- (Currently restricted to only actions)
- > Planner API for architecture can access and edit various action constituents
 - i. Cost
 - ii. Duration
 - iii. Variables (Parameters)
 - iv. Preconditions
 - v. Effects

3. Replan with new model, generate new plan

Discard old plan

4. Execute new plan

Plan & Intent Recognition

[In collaboration with hrilab, Tufts University]

[Talamadupula, Briggs et al., IROS14]

Proposed Approach

- 1. Map the robot's beliefs and knowledge about CommX into a new planning instance
- Generate a plan for this instance prediction of CommX's plan
- 3. Extract relevant information from the predicted plan
 - > Which medkit will CommX pick up?
- 4. Use the extracted information to deconflict robot's plan

PREDICTED PLAN FOR COMMX

move commx room3 hall5 move_reverse commx hall5 hall4 move_reverse commx hall4 hall3 move_reverse commx hall3 hall2 move_reverse commx hall2 hall1 move_reverse commx hall1 room1 pick_up_medkit commx mkeast room1 conduct_triage commx room1

Contributions

1. Engineering Approach

- > Planners have not been used extensively in HRT scenarios
- > Introduce planner into an architecture for HRT
- > Use/extend automated planning methods
 - 1. QUANTIFIED GOALS in an open world
 - 2. **REPLANNING** for a changing, open world
 - 3. Handling MODEL CHANGE during planning
 - **4. PLAN RECOGNITION** to enhance planning

2. Analysis of Solution Methods

<u>׀</u> ׀ַּםָּי עָ*וֹ*וֹי עָרָוֹי עָרָי עָרָי עָרָי עָרָי עָרָי עָרָי

Relevant Publications

1. 2. 3.	Coordination in Human-Robot Teams Using Mental Modeling and Plan Recognition. Talamadupula, K.; Briggs, G.; Chakraborti, T.; Scheutz, M.; and Kambhampati, S. Proceedings of the IFFF/PSU tector Ro Th of Tal arX Arc Opt	ICAPS 2011 Sy Placed 3rd for Planning for Edit Follow	rstems Best D Humor	Demos and Exhibits emo Google Scholar Citation indices All Since 20 Citations 170 h-index 7 i10-index 6	enton, J.; hop 164 7 horn, P.; 6 TIST),
	Tala Change photo	Cited by	Year		l Robot:
4.	Cogi On t Tala Planning for human-robot teaming in open worlds Planning for human-robot teaming in Open worlds	34	2010	2008 2009 2010 2011 2012 2013 2014 Co-authors Edit	bati, S.;
5.	ICAP: K Talamadupula, J Benton, S Kantonamp and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions on Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intelligent Systems and Technology (IIST) 1 (2), 14 ACM Transactions of Intell	dy 33	2009	Subbarao Kambhampati J. Benton William Cushing	Robot:
6.	ICAPS ICAPS Workshop on Bridging the Gap Period (DMA	30	2012	Yuheng Hu Daniel Weld Mausam	nti, S.; d
	Updat R Cantrell, K Talamadupula, Y on all ACM/IEEE international contention of the seventh annual ACM/IEEE international contentinternation of the seve	udy 30	2010 P : Be	Gordon Briggs Hankz Hankui Zhuo	ring
-	Confere Proceedings of the Twenty-Fourth Advar Contestant Proceedings of the Twenty-Fourth Advar Contestant	Kambhampati	, S. f tha II	EEE / PSI International Conference	on Intelligent

7. Planning for Agents with Changing Goals. Talamadupula, K.; Schermerhorn, P.; Benton, J.; Kambhampati, S.; and Scheutz, M.

Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 3912--3917, 2009.

Related Work

Human-Robot Teaming

Symbiotic Autonomy [Rosenthal et al. 2010]

Seeking Human Help [Rosenthal & Veloso 2012]

Replanning with Dynamic Information [Coltin & Veloso 2013]

Generalized Architectures for Distributed Human-Robot Teams [Scerri et al. 2003] [Schurr et al. 2005]

Mixed-Initiative Planning [Bagchi et al. 1996]

Advisable Planning [Myers 1996]

Continuous Planning & Execution [Myers 1998]

TRAINS-95 [Ferguson et al. 1996]

(Open World) Goals

Local Closed Worlds [Etzioni et al. 1997]

Sensing Goals [Scherl & Levesque 1993] [Golden & Weld 1996]

Temporal Goals [Baral et al. 2001] [Bacchus & Kabanza 1996]

Trajectory Constraints (Preferences) [Gerevini et al. 2009]

Replanning & Execution Monitoring

Contingent Planning [Albore et al. 2009] [Meauleau & Smith 2003]

CASPER [Knight et al. 2001]

IxTeT-eXeC [Lemai & Ingrand 2003]

STRIPS [Fikes et al. 1972]

Plan Stability & Repair [Fox et al. 2006] [Van Der Krogt & De Weerdt 2006]

Minimal Perturbation Planning [Kambhampati 1990]

Plan Re-Use [Nebel & Koehler 1995]

Plan Validity [Fritz & McIlraith 2007]

Multi-Agent Systems

Inter and Intra Agent Commiments [Wagner et al. 1999]

Inter-Agent Commitments [Meneguzzi et al. 2013] [Komenda et al. 2012] [Komenda et al. 2008] [Bartold & Durfee 2003] [Wooldridge 2000]

Coordination Using Mental Models

Joint Human Behavior [Klein et al. 2005]

Common Ground [Clark & Brennan 1991]

Coordinated Assembly Tasks [Kwon & Suh 2012]

Object Hand-overs [Strabala 2013]

Kartik Talamadupula - Ph.D. Dissertation Defense

PLAN & INTENT RECOGNITION

> Modeling human agent key to teaming

- Can augment robot's planning capabilities
- > Information can be used for inter-plan coordination

> Required information

- Action/capability model of the human agent
- Goal(s) of the human agent
- > Current state of the human agent

Planner simulates human's mental process

 Produces a predicted plan that can be used by robot for coordination purposes

> Communication Bandwidth

- Even with good NLP, there are still bandwidth issues between humans and robots
- Humans are not always fully explicit about what they are going to do, or what they want

Natural Teaming

- > Agents have good models of each other
- Enables them to
 - > Anticipate: Actions of other teammates
 - > **Recognize**: The intentions of other teammates

> Can affect the robot's planning in turn

Beliefs, Intentions & Teaming

- Agents have beliefs and intentions
 - An agent can model its *team* members' beliefs and intentions

 $\{ \phi \mid bel(\alpha, \phi) \in Bel_{self} \} \\ \{ goal(\alpha, \phi, P) \mid goal(\alpha, \phi, P) \in Bel_{self} \} \end{cases}$

 This information can be used to predict the plans of team members

Proposed Approach

- 1. Map the robot's beliefs and knowledge about CommX into a new planning instance
- Generate a plan for this instance prediction of CommX's plan
- 3. Extract relevant information from the predicted plan
 - > Which medkit will CommX pick up?
- 4. Use the extracted information to deconflict robot's plan

Mapping to Planning

- > Used for high-level plan synthesis
- > Can be used to **simulate** the agent's plan
 - > Based on known beliefs and intentions
 - Some information about agent's capabilities
- > Automated Planning Instance:
 - > Initial State: All known beliefs of that agent
 - > Goal Formula: All known goals of that agent
 - > Action Model: Precondition/Effect description

Mapping to Planning

Beliefs of another agent α

 $bel_{\alpha} = \{ \varphi \mid bel(\alpha, \varphi) \in bel_{self} \}$

> Intentions of another agent α

 $goals_{\alpha} = \{ goal(\alpha, \phi, P) \mid goal(\alpha, \phi, P) \in bel_{self} \}$ where P is a goal priority

Mapping to a planning problem

$$I = \{ \varphi \mid bel(\alpha, \varphi) \in bel_{robot} \}$$

$$G = \{ \phi \mid goal(\alpha, \phi, P) \in bel_{robot} \}$$

$$O = \{ o \mid o \in (\phi \mid \phi \in (I \cup G)) \}$$

[Briggs & Scheutz, SIGDIAL11] [Talamadupula, Briggs et al., IROS14]

Use Case Scenario

[In collaboration with hrilab, Tufts University]

[Talamadupula, Briggs et al., IROS14]

CommY: Robot: CommY: Robot: "CommX is going to perform triage at Room 1." "Okay."

"I need you to take a medkit to Room 5." "Okay..."

"I am picking up the medkit at Room 4."

PREDICTED PLAN FOR COMMX

move commx room3 hall5 move_reverse commx hall5 hall4 move_reverse commx hall4 hall3 move_reverse commx hall3 hall2 move_reverse commx hall2 hall1 move_reverse commx hall1 room1 pick_up_medkit commx mkeast room1 conduct_triage commx room1

ଢ଼ୖଢ଼ୖଢ଼ଢ଼ୖୄୠୖୄଢ଼ୖଢ଼ୖୄଢ଼ୖ୷

Preliminary Evaluation

[In collaboration with hrilab, Tufts University]

[Talamadupula, Briggs et al., IROS14]

Kartik Talamadupula - Ph.D. Dissertation Defense

But what if we don't have full knowledge regarding the team member's goal(s)?

Kartik Talamadupula - Ph.D. Dissertation Defense

Intent Recognition

- Extend the goal set to a *hypothesized goal set*
 - Contains all possible goals of CommX
- Given a sequence of observations of CommX's actions, recompute the probability distribution over the hypothesized goal set
 - Plan recognition as planning [Ramirez & Geffner 2010]
 - Compiles plan recognition problem into a classical planning problem
- Given more observations, the distribution converges towards the most likely goal
 - (assuming correct observations and rational agency)
- Incremental Plan Recognition
 - Can accept a *stream* of observations
 - Incremental re-recognition: Replanning when compiled to classical planning

Evaluation: Intent Recognition I

[Talamadupula, Briggs, Chakrabarti et al., IROS14]

BELIEF IN GOAL

(conducted_triage commX room1) (conducted_triage commX room5)

observations -

move commx room3 hall5 move_reverse commx hall5 hall4 move_reverse commx hall4 hall3 move_reverse commx hall3 hall2 move_reverse commx hall2 hall1 move_reverse commx hall1 room1 pick_up_medkit commx mkeast room1 conduct_triage commx room1

Evaluation: Intent Recognition II

[Talamadupula, Briggs, Chakrabarti et al., IROS14]

BELIEF IN GOAL

(conducted_triage commX room1) (conducted_triage commX room5)

observations -

move commx room3 hall4 move_reverse commx hall4 hall3 move_reverse commx hall3 hall2 move_reverse commx hall2 hall1 move_reverse commx hall1 room1 pick_up_medkit commx mkeast room1 conduct_triage commx room1

Limitations & Extensions

- Intentions (and goals) of human fully known
 - Use observations to determine most likely goals being pursued
- > Model of human is fully known (and correct)
 - > Incomplete models: [Nguyen et al. ICAPS14]
- > High level observations are given up-front
 - Currently given by human (CommY)
 - Going from sensors to observations non-trivial

REPLANNING FOR HUMAN-ROBOT TEAMING

Motivating Scenario: Automated Warehouses

• Used by Amazon (Kiva Systems) for warehouse management

Human: Packager

- Only human on the entire floor; remotely located
- Issues goals to the robotic agents

Robot(s): Kiva Robots

Can transport items from shelves to the packager

Goals: Order requests; come in dynamically

- Goals keep changing as orders pile up
- World changes as shelves are exhausted; break downs

[IROS09, AAAI10, TIST10, DMAP13, arXiv14]

ଢ଼୵ଢ଼ୢଢ଼ୣଢ଼ୄଢ଼ୄୖଢ଼ଢ଼ୢଢ଼୵ୄୖଢ଼

ଢ଼୵ଢ଼୵ଢ଼୵ଢ଼ଢ଼ୄୖୄୖୠୖଡ଼ଢ଼ୖ୶ଢ଼୵ଢ଼ୖ Warehouses: Commitments Transports holding Packages 1. 2. Towtrucks towing Transports 3. Packages delivered to Packager PACKAGE SHELF TOWTRUCK PACKAGE (DELIVERED) **TRANSPORT** PACKAGER (HUMAN) GRIDSQUARE GARAGE

A Generalized Model of Replanning

Replanning Constraints

M1 REPLANNING AS RESTART (From scratch)	> No Constraints	
M2 REPLANNING AS REUSE (Similarity)	 Depends on the similarity metric between plans ACTION SIMILARITY min π Δ π` CAUSAL SIMILARITY min CL(π) Δ CL(π`) 	
M3 REPLANNING TO KEEP COMMITMENTS	Dependencies between π and other plans Project down into commitments that π ` must fulfill Exact nature of commitments depends on π E.g.: Multi-agent commitments (between rovers)	

Replanning: Solution Techniques

M1 REPLANNING AS RESTART (From scratch)	CLASSICAL PLANNING	 Solve new instance [I`,G`] for π` using classical planner
M2 REPLANNING AS REUSE (Similarity)	ITERATIVE PLAN REPAIR (Local Search)	 > Start from π > Minimize differences while finding a candidate π` > Stop when [I`,G`] satisfied
M3 REPLANNING TO KEEP COMMITMENTS	COMPILATION (Partial Satisfaction Planning)	 Commitments are <i>constraints</i> on plan generation process Commitments = Soft Goals G_s Add G_s to G` → G`` Run PSP planner with [I`,G``]

Research Question

There exist multiple replanning solution techniques, founded in addressing different constraints during the replanning process.

 To what extent do the constraints imposed by one type of replanning formulation act as a surrogate in tracking the constraints of another?

2. Are the different replanning metrics good surrogates of each other?

[Talamadupula, Smith et al., Submitted 2014]

Experimental Setup

1. Generate randomized problem instances of increasing complexity

2. Set up replanning constraints for each replanning metric
a. Speed: No constraints
b. Similarity: Number of differences with previous plan
c. Commitment Satisfaction: Enumerate commitment violations

- 3. Perturb the initial problem instance; create a perturbed instance for each case (2a, 2b, 2c)
- 4. Run problem instances with a PSP or preference based planner

ୢୖ୷**ୖଈ**୰ୖୖୖୖୖୖ୷ୖୄୖୖୖୖୖ୕୷ୖୄୖ୷ୖୄୖୖ୕ୖ୷୰ୖୖୖୖୖୖୄଈ୰ୖୖୖୖୖ

Experimental Results

Time to Replan (ms.)

30 25 20 15 10 A-X.O.A 0 P16 718 P26 2 4 P6 **P**8 710 P12 24 P20 P22 P30 P32 P36 P38 P40 P46 2 P24 228 P34 P42 44 --- Restart ····× Similarity Commitments

Kartik Talamadupula - Ph.D. Dissertation Defense

Limitations & Extensions

- > Coverage: IPC Benchmark Domains
 - Additional experimental conditions
- Modeling Execution Failures
 - Currently initial state is perturbed
 - > Approximation of execution failure
 - Solution: Perturb state where execution stopped

Compilation to Classical Planning

> Replanning Metrics

Realistic cost and penalty estimates

Other Work

Planning for Network Security

 Apply automated planners to the Strategic Planning problem
 [arXiv:1305.2561]
 (Work done as part of an IBM internship)

Foundations of Automated Planning

- Required Concurrency (in Temporal Planning domains) [ICAPS07]
- Search Space Plateaus [ICAPS10]
- Compilation of Replanning Techniques [DMAP13, arXiv14]

i cant rite Analyzing Tweet Content Iol

- Analyzing language content to detect formalness [ICWSM13]
- Predicting user engagement with real-world events [Submitted]

Information Retrieval on Twitter

- Improving Twitter Search using source & content trustworthiness [CIKM13, AAAI-LBP13, Submitted]
- Hashtag rectification problem

Collaborators

> Arizona State University

- > Subbarao Kambhampati
- > J. Benton (SIFT)
- > William Cushing (UC Berkeley)
- > Yuheng Hu (IBM Almaden)
- > Srijith Ravikumar (Amazon)
- > Raju Balakrishnan (Groupon)
- > Lydia Manikonda
- > Tathagata Chakraborti
- > Sumbhav Sethia
- > Sushovan De (Google)
- > Paul Reesman
- Hankz Hankui Zhuo (Sun-Yat Sen U.)
- > Yu Zhang
- Nancy Cooke (ASU Poly)
- > Cade Bartlett (ASU Poly)

> Tufts University

Citation Matthias Scheutz

> Gordon Briggs

NASA Ames Research Center

- Citation& h-index i10-index
- > 6 David E 8 Smith

> Indiana University

- > Paul Schermerhorn (SOARTech)
- Rehj Cantrell (Nuance Communications)

> IBM Research (TJ Watson)

- > Anton V. Riabov
- Octavian Udrea
- > Anand Ranganathan

IBM Research (India)

- > Shalini Kapoor (IBM Global Services)
- > Shachi Sharma (IRL Delhi)
- > Biplav Srivastava (IRL Delhi)

University of Washington

- > Daniel S. Weld
- > Mausam (IIT Delhi)

University of Freiburg

- Patrick Eyerich
- > Robert Mattmueller

Challenges Addressed

1. OPEN WORLD GOALS

- > Provide a way to specify quantified goals on unknown objects
- > Consider a more principled way of handling uncertainty in facts

2. REPLANNING

- Handle state and goal updates from a changing world while executing
- > Present a unified theory of replanning, to analyze tradeoffs

3. MODEL UPDATES

 Accept changes to planner's domain model via natural language

4. PLAN RECOGNITION

> Use belief models of other agents to enhance planning

Summary

 Planning for Human-Robot Teaming (HRT) is an important problem

"THEY ALL SAY THEY'RE AGNOSTIC, UNTIL IT'S TIME FOR DIAGNOSTICS."

- Demonstrated the successful integration of a planner with an architecture for HRT
- Detailed techniques used in that integration, and novel extensions and analysis of some of them
 - 1. Replanning
 - 2. Plan & Intent Recognition
 - 3. Open World Quantified Goals
 - 4. Model Updates
- > Broader Implications: Human-in-the-Loop Planning