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PLANYOCHAN

Planning for Human-Robot Teaming

› Human-Robot Teaming (HRT) is becoming an 
important problem

› Requires a lot of different technologies
› Perception (Vision), Actuation, Dialogue, Planning …

› Most current robots are glorified remote-operated 
sensors

› Autonomous Planning is an important capability
› Supporting flexible HRT with constant changes

› The broad aims of this thesis are to
1. Engineer an effective integration of planning techniques into 

a Human-Robot Teaming system

2. Analyze the design tradeoffs involved in doing so
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Contributions

1. Engineering Approach

› Planners have not been used extensively in HRT scenarios

› Introduce planner into an architecture for HRT

› Use/extend automated planning methods

1. QUANTIFIED GOALS in an open world

2. REPLANNING for a changing, open world

3. Handling MODEL CHANGE during planning

4. PLAN RECOGNITION to enhance planning

2. Analysis of  Solution Methods
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USAR Human Factors Case Study
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Joint work with C. Bartlett, N. Cooke, Y. Zhang, S. Kambhampati
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Planning Challenges in Human-Robot Teaming

1. OPEN WORLD GOALS
› Provide a way to specify quantified goals on unknown objects

› Consider a more principled way of handling uncertainty in facts

2. REPLANNING
› Handle state and goal updates from a changing world while 

executing

› Present a unified theory of replanning, to analyze tradeoffs

3. MODEL UPDATES
› Accept changes to planner’s domain model via natural 

language

4. PLAN RECOGNITION
› Use belief models of other agents to enhance planning
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Urban Search and Report (USAR)
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Joint work with C. Bartlett, N. Cooke, Y. Zhang, S. Kambhampati
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An Integrated System for USAR
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Planner’s Role
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Coordinate with Humans
[IROS14]

Replan for the Robot

[AAAI10, DMAP13]

Communicate with 

Human in the Loop

Open World Goals

[IROS09, AAAI10, TIST10]

Action Model Information

[HRI12]

Handle Human Instructions

[ACS13, IROS14]
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Problem Updates

[TIST10]

Planning for 

Human-Robot 
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Kartik Talamadupula - Ph.D. Dissertation Defense

Goal 

Manager



PLANYOCHAN

Fielded Prototype

› Planning Artifact: Sapa Replan

› Extension of Sapa metric temporal planner

› Partial Satisfaction Planning

› Builds on SapaPS planner

› Replanning

› Uses an execution monitor to support 

scenarios with real-time execution
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[Benton et al., AIJ07]
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Open World Goals
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› When to start
sensing?
› Indicator to start 

sensing

› What to look for?
› Object type

› Object properties

› When to stop sensing?
› When does the planner know the world is closed?

› Why should the robot sense?
› Does the object fulfill a goal?

› What is the reward? Is it a bonus?

[Talamadupula, Benton et al., ACM TIST 2010]
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Open World Quantified Goals 

(OWQGs)

(:open (forall ?r – room

(sense ?p – person 

(looked_for ?p ?r)

(and (has_property ?p wounded)

(in ?p ?r))

(:goal 

(and (reported ?p wounded ?r) 

[100] - soft))))

Quantified Object(s) [1]

Sensed Object [2]

Closure Condition [3]

Quantified Facts [2]

Quantified Goal [4]

1. When to sense

2. What to sense

3. When to stop

4. Why sense

[Talamadupula, Benton et al., ACM TIST 2010]

Kartik Talamadupula - Ph.D. Dissertation Defense 15

“Wounded persons may be in rooms. 
Report the locations of as many 
wounded people as possible.”
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Solution Approach
Tricking the Robot for Profit

1. OWQG is provided to the planner

2. Planner uses an optimistic determinization

› Given an OWQG, assume the presence of object

› Create a runtime object (may exist only in planner)

› E.g.: For every room, assume wounded person

3. Replan
› Make a new plan that uses runtime object to achieve the 

open world goal; (assumed) profit from reward

4. Execute
› Up to the sensing action (closure condition)

› Delete runtime object

› Real object either exists, or doesn’t 
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Replanning for Changing Worlds

› New Information
› Sensors

› Human teammate

› New Goals
› Orders: Humans

› Requests

› Requirement
› New plan that works in new world (state)

› Achieves the changed goals

Kartik Talamadupula - Ph.D. Dissertation Defense 17

[Talamadupula et al. AAAI10]
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How to Replan
The Engineering Solution

› Problem changes from [I, G] to [I`, G`]

› Solution:

1. Stop execution of old plan π

2. Assimilate state changes I  I`

3. Assimilate goal changes G  G`

4. Give the new instance [I`, G`] to planner

5. Execute the new plan π`

› (Re)Planning System: Sapa Replan
Kartik Talamadupula - Ph.D. Dissertation Defense 18
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Sapa Replan: Execution Monitor

› Implement rational choice over possible 
courses of action
› Two possible choices

› Continue currently executing plan

› Deliberate (replan)

› Objective Selection
› Two possibilities

› Update goal description: Replan

› Update goal description: Replan + Restart search

› Net Benefit
› Partial Satisfaction Planning

Kartik Talamadupula - Ph.D. Dissertation Defense 19

[ASU-TR08, IROS09, TIST10, AAAI10, SPARK11]
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Specifying Changes

› Use an update syntax

› Example

Kartik Talamadupula - Ph.D. Dissertation Defense 20

U = <O, E, Gn, T>

O:  Set of objects (constants)

E:   Set of new events (predicates)

Gn: Set of new goals

T:   Current time point

1 (:update

2 :objects

3 room3 - room

4 :events

5 (at 125.0 (not (at room2)))

6 (at room3)

7 (visited room3)

8 :goal (visited room4) [500] - hard

9 :now 207.0)

[Talamadupula et al. AAAI10]
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Replanning + Open World Goals
USAR Example

21

(:open (forall ?r – room

(sense ?p – person 

(looked_for ?p ?r)

(and (has_property ?p wounded)

(in ?p ?r))

(:goal 

(and (reported ?p wounded ?r) 

[100] - soft))))

Original Plan
(move-hallway hall_start hall1)

(move-hallway hall1 hall2)

(move-hallway hall2 hall3)

(move-hallway hall3 hall_end)

(deliver medkit1)

New Plan
(move-hallway hall2 hall3)

(enter room1 hall3)

(sense-for !person1 room1)

(report !person1 room1)

(exit room1 hall3)

(move-hallway hall3 hall_end)

(deliver medkit1)

(:update

:objects

room1 - room

:events

(at 90.0 (not (at hall1)))

(at hall2)

(connected hall3 room1)

:goal

:now 103.0)

Kartik Talamadupula - Ph.D. Dissertation Defense
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Model Updates
(via natural language)

› “To go into a room when you 
are at a closed door, push it 
one meter.”

› Precondition: “you are at a closed 
door”

› Action definition: “push it one 
meter”

› Effect: “go into a room”

› NLP Module
i. Reference resolution

ii. Parsing

iii. Background knowledge

iv. Action submission (to planner)

22Kartik Talamadupula - Ph.D. Dissertation Defense

[Cantrell, Talamadupula et al., HRI 2012] [In collaboration with hrilab, Tufts University]



PLANYOCHAN

Example: Action Addition

Kartik Talamadupula - Ph.D. Dissertation Defense 23

New Action: “push”

(:durative-action push

:parameters (?door - doorway ?cur_loc - hallway ?to_loc - zone)

:duration (= ?duration (dur_push))

:condition (and  (at start (at ?cur_loc))

(at start (door_connected ?door ?cur_loc ?to_loc))

(over all (door_connected ?door ?cur_loc ?to_loc)))

:effect (and (at start (not (at ?cur_loc)))

(at end (open ?doorway))

(at end (at ?to_loc))))

From natural language Background knowledgeArchitecture

“To go into a room when you are at 
a closed door, push it one meter.”
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Why Support Model Updates? 

› One ground truth model of the world
› Neither human nor robot have this

› Human may know more though …

› Impossible to specify everything up-front
› But during execution …

1. Addition

› Human sees a closed door, but knows robot can push it

2. Deletion

› Taking a picture might ignite vapors

3. Modification

› No power, so robot must needs light for taking a picture

Kartik Talamadupula - Ph.D. Dissertation Defense 24
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Model Revision

› Model represented in PDDL

› PDDL domain model

› : set of constants (objects)

› : set of predicates

› : set of functions

› : set of actions (operators)

› Revision should support modification of 

any of these on the fly
25Kartik Talamadupula - Ph.D. Dissertation Defense
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How to Update a Model
(The Engineering Solution)

1. Pause execution of the current plan

2. Provide a way of updating an existing model
› (Currently restricted to only actions)

› Planner API for architecture can access and edit various 
action constituents

i. Cost

ii. Duration

iii. Variables (Parameters)

iv. Preconditions

v. Effects

3. Replan with new model, generate new plan
› Discard old plan

4. Execute new plan
Kartik Talamadupula - Ph.D. Dissertation Defense 26
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Plan & Intent Recognition

Kartik Talamadupula - Ph.D. Dissertation Defense 27

[In collaboration with hrilab, Tufts University]

[Talamadupula, Briggs et al., IROS14]
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Proposed Approach

1. Map the robot’s beliefs and knowledge about CommX
into a new planning instance

2. Generate a plan for this instance – prediction of 
CommX’s plan

3. Extract relevant information from the predicted plan

› Which medkit will CommX pick up?

4. Use the extracted information to deconflict robot’s plan

Kartik Talamadupula - Ph.D. Dissertation Defense 28
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Solution

PREDICTED 

PLAN FOR

COMMX

Comm X’s Goal

29Kartik Talamadupula - Ph.D. Dissertation Defense
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PLAN & INTENT RECOGNITION

› Modeling human agent key to teaming
› Can augment robot’s planning capabilities

› Information can be used for inter-plan coordination

› Required information
› Action/capability model of the human agent

› Goal(s) of the human agent

› Current state of the human agent

› Planner simulates human’s mental process
› Produces a predicted plan that can be used by robot for 

coordination purposes

Kartik Talamadupula - Ph.D. Dissertation Defense 33

[Talamadupula, Briggs et al., IROS14]
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Can Belief Models Enhance Planning?

› Communication Bandwidth
› Even with good NLP, there are still bandwidth issues 

between humans and robots

› Humans are not always fully explicit about what they 
are going to do, or what they want

› Natural Teaming
› Agents have good models of each other

› Enables them to
› Anticipate: Actions of other teammates

› Recognize: The intentions of other teammates

› Can affect the robot’s planning in turn

Kartik Talamadupula - Ph.D. Dissertation Defense 34
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Beliefs, Intentions & Teaming

› Agents have beliefs and 

intentions

› An agent can model its team 

members’ beliefs and intentions

› This information can be used to 

predict the plans of team 

members

Kartik Talamadupula - Ph.D. Dissertation Defense 35

[Briggs & Scheutz, SIGDIAL11]
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Proposed Approach

1. Map the robot’s beliefs and knowledge about CommX
into a new planning instance

2. Generate a plan for this instance – prediction of 
CommX’s plan

3. Extract relevant information from the predicted plan

› Which medkit will CommX pick up?

4. Use the extracted information to deconflict robot’s plan
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[Talamadupula, Briggs et al., IROS14]
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Mapping to Planning

› Used for high-level plan synthesis 

› Can be used to simulate the agent’s plan

› Based on known beliefs and intentions

› Some information about agent’s capabilities

› Automated Planning Instance:

› Initial State: All known beliefs of that agent

› Goal Formula: All known goals of that agent

› Action Model: Precondition/Effect description

Kartik Talamadupula - Ph.D. Dissertation Defense 37

[Talamadupula, Briggs et al., IROS14]
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› Beliefs of another agent α

› Intentions of another agent α

› Mapping to a planning problem 

Kartik Talamadupula - Ph.D. Dissertation Defense 38

bel α = { φ | bel(α,φ) ∈ belself }

goals α = { goal(α,φ,P) | goal(α,φ,P) ∈ belself }
where P is a goal priority

I = { φ | bel(α,φ) ∈ belrobot }

G = { φ | goal(α,φ,P) ∈ belrobot }

O = { o | o ∈ (φ | φ ∈ (I ∪ G) }

Mapping to Planning

[Talamadupula, Briggs et al., IROS14]

[Briggs & Scheutz, SIGDIAL11]
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Use Case Scenario

Kartik Talamadupula - Ph.D. Dissertation Defense 39

[In collaboration with hrilab, Tufts University]

[Talamadupula, Briggs et al., IROS14]



Use Case Scenario
Comm X’s Goal

Kartik Talamadupula - Ph.D. Dissertation Defense 40

CommY: “CommX is going to perform triage at Room 1.”

Robot: “Okay.”

CommY: “I need you to take a medkit to Room 5.”

Robot: “Okay…”

“I am picking up the medkit at Room 4.”

[Talamadupula, Briggs et al., IROS14]
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Solution

PREDICTED 

PLAN FOR

COMMX

Comm X’s Goal

41Kartik Talamadupula - Ph.D. Dissertation Defense
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Preliminary Evaluation

Kartik Talamadupula - Ph.D. Dissertation Defense 42

[In collaboration with hrilab, Tufts University]

[Talamadupula, Briggs et al., IROS14]



But what if we don’t have full 

knowledge regarding the 

team member’s goal(s)?

Kartik Talamadupula - Ph.D. Dissertation Defense 43



Intent Recognition

• Extend the goal set to a hypothesized goal set

– Contains all possible goals of CommX

• Given a sequence of observations of CommX’s actions, 
recompute the probability distribution over the 
hypothesized goal set

– Plan recognition as planning [Ramirez & Geffner 2010]

– Compiles plan recognition problem into a classical planning 
problem

• Given more observations, the distribution converges 
towards the most likely goal

– (assuming correct observations and rational agency)

• Incremental Plan Recognition

– Can accept a stream of observations

– Incremental re-recognition: Replanning when compiled to 
classical planning

44Kartik Talamadupula - Ph.D. Dissertation Defense
[Talamadupula, Briggs et al., IROS14]



Evaluation: Intent Recognition I

BELIEF IN GOAL

Kartik Talamadupula - Ph.D. Dissertation Defense 45

[Talamadupula, Briggs, Chakrabarti et al., IROS14]



Evaluation: Intent Recognition II

BELIEF IN GOAL
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[Talamadupula, Briggs, Chakrabarti et al., IROS14]
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Limitations & Extensions

› Intentions (and goals) of human fully known

› Use observations to determine most likely goals 
being pursued

› Model of human is fully known (and correct)

› Incomplete models: [Nguyen et al. ICAPS14]

› High level observations are given up-front

› Currently given by human (CommY) 

› Going from sensors to observations non-trivial

Kartik Talamadupula - Ph.D. Dissertation Defense 47

[Talamadupula, Briggs et al., IROS14]



Motivating Scenario: Automated Warehouses
 Used by Amazon (Kiva Systems) for warehouse management

Human: Packager
 Only human on the entire floor; remotely located

 Issues goals to the robotic agents

Robot(s): Kiva Robots
 Can transport items from shelves to the packager

Goals: Order requests; come in dynamically
 Goals keep changing as orders pile up

 World changes as shelves are exhausted; break downs

Kartik Talamadupula - Ph.D. Dissertation Defense
48

[IROS09, AAAI10, TIST10, DMAP13, arXiv14]
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Replanning Example: Warehouses

Kartik Talamadupula - Ph.D. Dissertation Defense 49

[Talamadupula, Smith et al., Submitted 2014]
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GRIDSQUARE

SHELF

TRANSPORT

GARAGE

PACKAGE

PACKAGER

(HUMAN)

PACKAGE

(DELIVERED)

TOWTRUCK
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GRIDSQUARE

SHELF
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(DELIVERED)

TOWTRUCK
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A Generalized Model of Replanning
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Replanning Constraints

Kartik Talamadupula - Ph.D. Dissertation Defense 53

M1

REPLANNING AS RESTART

(From scratch)

› No Constraints

M2

REPLANNING AS REUSE

(Similarity)

› Depends on the similarity metric between plans

› ACTION SIMILARITY

› CAUSAL SIMILARITY

M3

REPLANNING TO KEEP 

COMMITMENTS 

› Dependencies between π and other plans

› Project down into commitments that π` must fulfill

› Exact nature of commitments depends on π

› E.g.: Multi-agent commitments (between rovers)

min | π Δ π` |

min | CL(π) Δ CL(π`) |
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Replanning: Solution Techniques
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M1

REPLANNING AS 

RESTART

(From scratch)

CLASSICAL PLANNING
› Solve new instance [I`,G`] for 

π` using classical planner

M2

REPLANNING AS 

REUSE

(Similarity)

ITERATIVE PLAN REPAIR

(Local Search)

› Start from π

› Minimize differences while 

finding a candidate π`

› Stop when [I`,G`] satisfied

M3

REPLANNING TO 

KEEP 

COMMITMENTS 

COMPILATION

(Partial Satisfaction Planning)

› Commitments are constraints
on plan generation process

› Commitments = Soft Goals Gs

› Add Gs to G`  G``

› Run PSP planner with [I`,G``]
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There exist multiple replanning solution techniques,

founded in addressing different constraints during the

replanning process.

1. To what extent do the constraints imposed by one 

type of replanning formulation act as a surrogate in 

tracking the constraints of another?

2. Are the different replanning metrics good surrogates 

of each other?

Research Question

[Talamadupula, Smith et al., Submitted 2014]
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1. Generate randomized problem instances of increasing 
complexity

2. Set up replanning constraints for each replanning metric

a. Speed: No constraints

b. Similarity: Number of differences with previous plan

c. Commitment Satisfaction: Enumerate commitment 
violations

3. Perturb the initial problem instance; create a perturbed 
instance for each case (2a, 2b, 2c)

4. Run problem instances with a PSP or preference based 
planner
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Limitations & Extensions

› Coverage: IPC Benchmark Domains
› Additional experimental conditions

› Modeling Execution Failures
› Currently initial state is perturbed

› Approximation of execution failure

› Solution: Perturb state where execution stopped

› Compilation to Classical Planning

› Replanning Metrics
› Realistic cost and penalty estimates
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[HCOMP13, ICAPS14, IAAI14, HCOMP14]

Broader Impact: HIL Planning
Planning for Crowdsourcing
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Information 

Retrieval on Twitter
• Improving Twitter Search using 

source & content trustworthiness

[CIKM13, AAAI-LBP13, Submitted]

• Hashtag rectification problem

Foundations of 

Automated Planning
• Required Concurrency (in Temporal 

Planning domains) [ICAPS07]

• Search Space Plateaus [ICAPS10]

• Compilation of Replanning Techniques 

[DMAP13, arXiv14]

Other Work

Planning for 

Network Security
• Apply automated planners to the 

Strategic Planning problem

[arXiv:1305.2561]
(Work done as part of an IBM internship)

Analyzing Tweet 

Content
• Analyzing language content to 

detect formalness [ICWSM13]

• Predicting user engagement with 

real-world events [Submitted]
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Conclusion
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Challenges Addressed

1. OPEN WORLD GOALS
› Provide a way to specify quantified goals on unknown objects

› Consider a more principled way of handling uncertainty in facts

2. REPLANNING
› Handle state and goal updates from a changing world while 

executing

› Present a unified theory of replanning, to analyze tradeoffs

3. MODEL UPDATES
› Accept changes to planner’s domain model via natural 

language

4. PLAN RECOGNITION
› Use belief models of other agents to enhance planning
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› Planning for Human-Robot Teaming (HRT) 

is an important problem

› Demonstrated the successful integration of a planner with an 

architecture for HRT

› Detailed techniques used in that integration, and novel 

extensions and analysis of some of them
1. Replanning 

2. Plan & Intent Recognition

3. Open World Quantified Goals

4. Model Updates

› Broader Implications: Human-in-the-Loop Planning

Summary
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