
IMPROVING RETRIEVAL ACCURACY IN WEB DATABASES USING

INTRA-TABLE AND INTER-TABLE DEPENDENCIES

by

Ravi Kumar Gummadi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

December 2009

IMPROVING RETRIEVAL ACCURACY IN WEB DATABASES USING

INTRA-TABLE AND INTER-TABLE DEPENDENCIES

by

Ravi Kumar Gummadi

has been approved

August 2009

Graduate Supervisory Committee:

Pat Langley, Co-Chair
Subbarao Kambhampati, Co-Chair

Jieping Ye

ACCEPTED BY THE GRADUATE COLLEGE

ABSTRACT

This thesis deals with query answering over the Web databases. Since the Web databases

are independently and autonomously populated the Web users, it leads to different prob-

lems. One such problem is missing key information and rendering the direct join infeasible.

Primary key-foreign key (PK-FK) information lies at the heart of traditional databases

and assists in joining tables. In the recent years, increasing amounts of data are populated

by lay users into autonomous Web databases such as Google Base and Amazon SimpleDB.

This has lead to an absence of any centralized control over the data being populated. Issues

such as missing data, imprecise queries and missing PK-FK information began creeping

into Web databases.

In this thesis, a system to deal with the problem of missing PK-FK is described. The

SMARTINT system contains three important modules - Source Selection, Query Processing

and Learning. The key idea underlying the framework is to exploit the mined attribute de-

pendencies present in the data and use them to select a tree of tables which is subsequently

expanded to form the result set. The performance and the accuracy of SMARTINT has been

thoroughly evaluated over test data crawled from Google Base. The precision and recall of

the results given by SMARTINT are significantly higher compared to direct join and single

table approaches which validates the proposed solution. SMARTINT showed an average of

55% higher accuracy (F-measure) than the other two approaches. It also showed the same

amount of improvement in accuracy over all the possible joins. Its learning module showed

over 80% improvement in the execution time over ‘state of the art’ approaches.

iii

To Atluru Subbarao

iv

ACKNOWLEDGMENTS

I sincerely thank Dr. Pat Langley for being my advisor and being supportive even when

my research diverted from his area of interest. His inputs during the period of structuring

the ideas to paper were very helpful. I am grateful to Dr. Subbarao Kambhampati for giving

deep insights in the area of Data Integration and polishing our ideas. I am also thankful

to his constructive criticism during one-on-one meetings and the group meetings. I am

thankful to Dr. Jieping Ye for being in the committee.

I am greatly thankful to Aravind Kalavagattu for his mentoring and friendship. Without

his constant encouragement and suggestions, this work would have not been possible. I

am thankful to Anupam Khulbe for the stimulating discussions, for the sleepless nights we

were working together before deadlines, and for all the fun we have had in the last two

years. I am also thankful to Raju Balakrishnan and Garrett Wolf for their valuable inputs. I

am thankful to members of CIRCAS and Yochan labs for their friendship.

My deepest gratitude goes to my family and Spidy for their unflagging love and support

throughout my life; this work is simply impossible without them. I thank Dhruv, Divya,

Russell, Tarun, Sasireka and Usha for having immense confidence in my abilities and being

there for me during my down times. I am greatly indebted to Aalaya, Anna, Pha, Krishna

Kota, Sushma Uppala, Sankar Tanguturi, Rajesh Voruganti, Praveen Gorthy, Santhosh Gu-

jja, Krishna Kilambi, Harshini, TK, VJ and my wonderful roommates at ASU for their

friendship and camaraderie. I also thank my uncles, Ramu and Bhaskar for their support.

I dedicate my thesis to Atluru Subbarao uncle, whose presence and love we miss each

and every moment.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 MOTIVATION . 2

CHAPTER 3 SMARTINT SYSTEM . 9

3.1 System Description . 9

3.2 Contributions . 11

CHAPTER 4 RELATED WORK . 13

4.1 Data Integration . 13

4.2 Keyword Search on Databases . 13

4.3 Learning Attribute Dependencies . 14

4.4 Querying Incomplete Databases . 15

CHAPTER 5 PRELIMINARIES . 16

5.1 Query . 16

5.2 Attribute Dependencies . 16

5.3 Graph of Tables . 17

CHAPTER 6 QUERY ANSWERING . 18

6.1 Source Selection . 19

6.2 Tuple Expansion . 22

6.2.1 Constructing the Schema . 23

vi

Page

6.2.2 Populating the Tuples . 24

CHAPTER 7 LEARNING ATTRIBUTE DEPENDENCIES 27

7.1 Intra-table Learning . 27

7.1.1 Confidence . 27

7.1.2 Specificity-based Pruning . 29

7.1.3 AFDMiner Algorithm . 31

7.2 Learning Source Statistics . 33

7.3 Inter-table Chaining . 34

CHAPTER 8 EXPERIMENTAL EVALUATION 35

8.1 Methodology and Metrics . 35

8.2 Experimental Design . 37

8.3 Experimental Results . 38

8.4 Comparison with Multiple Join Paths . 43

8.5 Tradeoffs in Number vs. Completeness of the Answers 44

8.6 AFDMiner Evaluation . 45

CHAPTER 9 CONCLUSION AND FUTURE WORK 47

9.1 Conclusion . 47

9.2 Future Work on Query Processing . 47

9.3 Future Work on Learning . 48

CHAPTER 10 STATEMENT ABOUT INDIVIDUAL CONTRIBUTION 50

REFERENCES . 51

vii

LIST OF TABLES

Table Page

I. Schema 1 - Cars(S1) . 5

II. Schema 2 - Reviews (S2) . 5

III. Schema 3 - Engine (S3) . 6

IV. Schema 4 - Dealer Info (S4) . 6

V. Results of Query Q from Table T1 . 7

VI. Results of Query Q using Direct-Join (T1 ./ T3) 7

VII. Results of Query Q using Attribute Dependencies 8

VIII. Fragment of a Car Database . 29

viii

LIST OF FIGURES

Figure Page

1. Overlapping Tables in the Database . 3

2. Architecture of SMARTINT System . 10

3. Graph Representation of Connected Tables in the Database. 17

4. Expanded Attribute Tree for the Query . 24

5. Precision Vs Number of Constraints . 39

6. Recall Vs Number of Constraints . 39

7. Precision Vs Number of Attributes . 40

8. Recall Vs Number of Attributes . 40

9. F-measure Vs Number of Attributes . 41

10. F-measure Vs Number of Constraints . 41

11. SMARTINT Vs Multiple Join Paths . 43

12. Precision, Recall and F-measure Vs Width of the Tuple 44

13. Time Taken by AFDMiner Vs No. of Tuples 45

14. Time Taken by AFDMiner Vs Length of AFD 46

ix

1 INTRODUCTION

In the recent years the amount of data available in Web databases has been significantly

increasing. A lot of users are populating the information about entities corresponding

to different entities in these databases (known as Autonomous Web Databases). In Au-

tonomous Web Databases there is no single administrator who controls the data populated

as opposed to a traditional database. The lay users have both read and write privileges on

the data. This leads to a lot of interesting challenges. Some of the problems which are

identified recently are huge amount of missing data and query impreciseness. Both these

problems are addressed by the DB Yochan lab (at SCI, ASU) with QPIAD[18] and QUIC

[17] systems respectively. My association with this lab allowed me to identify an impor-

tant problem in query answering over Web databases. The autonomous nature of the Web

allows the users to populate the information in an unorganized way. This usually leads to

ad-hoc normalization. Reasonable approaches like answering from single table or using

direct join lead to inaccurate or spurious results. This calls for an effective way of query

answering mechanism in Web databases in such scenario to retrieve accurate results.

This realization lead to developing SMARTINT system, which is a framework to process

queries against Web databases. My association with Aravind Kalavagattu, past member

of DB Yochan lab, for his work on mining AFDs has prompted me to look for possible

application of AFDs in solving the problem. Many of the important ideas and implementa-

tion which went to the development of the system have been developed jointly by Anupam

Khulbe, member of DB Yochan and CIRCAS labs. The specific contributions of the au-

thor are discussed in the conclusion section (Section 10). The next section gives a detailed

motivation of the work and explains the SMARTINT system in detail.

2 MOTIVATION

With the advent of web, data available online is rapidly increasing, and an increasing por-

tion of that data corresponds to large number of web databases populated by web users.

Web databases can be viewed as providing partial but overlapping information about en-

tities in the world. Conceptually, each entity can be seen as being fully described by a

universal relation comprising of all its attributes. Individual sources can be seen as ex-

porting parts of this universal relation. This picture looks very similar to the traditional

database set-up where a universal relation is normalized into smaller relations for effective

storage. The materialized web data sources can thus be viewed as an ad hoc normalization

of the universal relation, and the integration of sources involves reconstructing the universal

relation and running queries on it. There are however two important complications:

• The Primary Key-Foreign Key relationships that are crucial for reconstructing the

universal relation are often missing from the tables. This is in part because partial

information about the entities are independently entered into different tables, and

synthetic keys (such as vehicle ids, model ids, employee ids) are simply ignored.1

• Most users accessing these tables are lay users and are not often aware of all the

attributes of the universal relation. Thus their queries may be “imprecise” [15] in

that they may miss requesting some of the relevant attributes about the entities under

consideration.

Thus a core part of the source integration on the web can be cast as the problem of

reconstructing the universal relation in the absence of primary key-foreign key relations,

and in the presence of lay users (In practice, this reconstruction problem is buried under

1In some cases, such as public data sources about people, the tables may even be ex-
plicitly forced to avoid keeping such key information.

3

Fig. 1. Overlapping Tables in the Database

the more immediate problem of schema heterogeneity, as in addition to the loss of PK-

FK information, different tables tend to rename their columns. Thus, a more accurate

generative model for web data sources is that they are the result of an ad hoc normalization

followed by the attribute name change. Many effective solutions, such as SIMIFLOOD [13]

do exist for computing attribute mappings to handle the name change problem. Rather

than revisit that problem, in this paper we will simply assume that attribute name change

problem has been addressed by one of those methods. This allows us to focus on the central

problem of reconstruction of universal relation in the absence of primary key-foreign key

relationships.)

Traditional data integration techniques (such as GAV/LAV) that rely on manually con-

structed schema mappings are not practical both because of the difficulty of finding experts

able to construct mappings, and because of the difficulty of constructing sound and com-

plete mappings in the absence of PK-FK relationships (see Section 4).

4

Our aim is to provide a fully automated solution to this problem. Let us illustrate the

challenges involved in this enterprise through a motivating example. Consider a set of

tables populated in a Vehicle domain (Figure 1). In the example, there are multiple tables

with different schemas containing information about the vehicle domain. The universal

schema of entity ‘Vehicle’ is described as follows:

Vehicle (VIN, vehicle-type, location, year, door-count, model, make, review, airbags,

brakes, year, condition, price, color, engine, cylinders, capacity, power, dealer, dealer-

address)

Let us assume that the database has the following tables: Table I with Schema S1 - pop-

ulated by normal web users who sell and buy cars, Table II with Schema S2 - populated by

crawling reviews of different vehicles from websites, Table III with Schema S3 - populated

by engine manufacturers/vendors with specific details about vehicle engines and Table IV

with Schema S4. The following shows the schema for these tables and the corresponding

schema mappings among them.

S1 (make, model name, year, condition, color, mileage, price, location, phone)

S2 (model, year, vehicle-type, body-style, door-count, airbags, brakes, review, dealer)

S3 (engine, mdl, cylinders, capacity, power)

S4 (dealer, dealer-address, car-models)

The following attribute mappings are present among the schemas:

(S1: model name = S2: model = S3: mdl, S2: dealer = S4: dealer) The italicized

attribute MID (Model ID) refers to a synthetic primary key which would have been present

5

if the users had complete knowledge about the entity which they are populating. If it is

present, entity completion becomes trivial because you can simply use that attribute to join

the tables, but there can be a variety of reasons why that attribute is not available:

• In autonomous databases, users populating the data are not aware of all the attributes

and may end up missing the ‘key’ information.

• Since each table is autonomously populated, though each table has a key, it might

not be a shared attribute which makes join infeasible.

• The same problem can arise when primary key is intentionally masked, since it de-

scribes sensitive information about the entity(Social Security Number etc).

TABLE I
SCHEMA 1 - CARS(S1)

MID Make Model name Price Other Attrbs
HACC96 Honda Accord 19000 . . .
HACV08 Honda Civic 12000 . . .
TYCRY08 Toyota Camry 14500 . . .
TYCRA09 Toyota Corolla 14500 . . .

TABLE II
SCHEMA 2 - REVIEWS (S2)

Model Review Vehicle-type Dealer Other Attrb
Corolla Excellent Midsize Frank ...
Accord Good Fullsize Frank ...

Highlander Average SUV John ...
Camry Excellent Fullsize Steven ...
Civic Very Good Midsize Frank ...

6

TABLE III
SCHEMA 3 - ENGINE (S3)

MID Mdl Engine Cylinders Other Attrb
HACC96 Accord K24A4 6 ...
TYCRA08 Corolla F23A1 4 ...
TYCRA09 Corolla 155 hp 4 ...
TYCRY09 Camry 2AZ-FE I4 6 ...
HACV08 Civic F23A1 4 ...
HACV07 Civic J27B1 4 ...

TABLE IV
SCHEMA 4 - DEALER INFO (S4)

Dealer Address Other Attrb
Frank 1011 E Lemon St, Scottsdale, AZ ...
Steven 601 Apache Blvd, Glendale, AZ ...
John 900 10th Street, Tucson, AZ ...

Suppose the user is interested in the following query: Give me ‘Make’, ‘Model’ of all

vehicles whose price is less than $15000 and which have 4-cylinder engine. The above

query would translate to the following SQL notation. We use this example throughout the

paper to illustrate working of different modules of the system:

SELECT make,model WHERE price < $15000 AND cylinders = ‘4’.

The query here is “partial” in that it does not specify the exact tables over which the

query is to be run. Part of the challenge is to fill-in that information. Let us examine two

obvious approaches to answer the query on this database:

• Answering from a single table: The first approach is to answer the query from one

table which conforms to the most number of constraints mentioned in the query and

provides maximum number of attributes. In the given query since ‘make’, ‘model’

7

TABLE V
RESULTS OF QUERY Q FROM TABLE T1

Make Model Price
Honda Civic 12000
Toyota Camry 14500
Toyota Corolla 14500

TABLE VI
RESULTS OF QUERY Q USING DIRECT-JOIN (T1 ./ T3)

Make Model Price Cylinder Engine Other attrbs
Honda Civic 12000 4 F23A1 ...
Honda Civic 12000 4 J27B1 ...
Toyota Corolla 14500 4 F23A1 ...
Toyota Corolla 14500 4 155 hp ...

and ‘price’ map onto Table I, we can directly query that table by ignoring constraint

on the ‘cylinders’. The resulting tuples are shown in Table V. The second tuple

related to ‘Camry’ has 6 cylinders and is shown as an answer. Hence ignoring con-

straints would lead to erroneous tuples in the final result set which do not conform to

the constraints.

• Direct Join: The second and a seemingly more reasonable approach is joining the

tables using whatever shared attribute(s). The result of doing a direct join based on

the shared attribute(‘model’) is shown in Table VI. If we look at the results, we can

see that even though there is only one ‘Civic’ in Table I, we have two Civics in the

final results. The same happens for ‘Corolla’ as well. These errors are due to absence

of Primary Key - Foreign Key relationship between these two tables. This leads to

spurios results.

8

TABLE VII
RESULTS OF QUERY Q USING ATTRIBUTE DEPENDENCIES

Make Model Price Cylinders Review Dealer Address
Honda Civic 12000 4 Very Good Frank 1011 E St
Toyota Corolla 14500 4 Excellent Frank 1011 E St

Apart from the limitations discussed above, these approaches fail to get other attributes

which describe the entity. In such a scenario, providing the complete information about the

entity to users requires:

• Linking attributes and propagating constraints spanning across multiple tables,

and retrieving precise results.

• Increasing the completeness of the individual results by retrieving additional

relevant attributes and their associated values from other overlapping tables

not specified in the query(thereby reconstructing the universal relation from

different local schemas).

Addressing these two needs poses serious challenges. In the absence of information on

how the tables overlap, it is not possible to link the attributes across tables. We can find

the mappings between attributes using algorithms like Similarity Flooding [13]. However,

these alone would not be enough. Since attribute mappings between tables still leaves the

problem of absence of key information open, the usual process of getting results through di-

rect join would result in very low precision. Moreover discovering additional attributes re-

lated to those mentioned in the query requires knowledge of attribute dependencies, which

are not apparent.

3 SMARTINT SYSTEM

In the previous chapter we discussed in detail about the problem of missing key informa-

tion in Web databases and why other approaches fail. This chapter describes about the

SMARTINT system and how different components work at higher level. It also enlists the

contributions of this thesis.

3.1 SYSTEM DESCRIPTION

Our approach for addressing these challenges involves starting with a base table contain-

ing a subset of query-relevant attributes, and attempting to “complete” the tuples by pre-

dicting the values of the remaining relevant attributes. The prediction/completion of the

tuples is made possible by approximate functional dependencies, which are automatically

mined from samples of individual tables. The selection of base table itself is influenced

by the confidences of the available AFDs. Intuitively, the base table should contain im-

portant attributes for whose values cannot be predicted accurately, but which can help in

predicting other attributes. Our base table selection step formalizes this intuition in terms

of the confidence of the available AFDs. As a simple illustration of the idea, suppose the

following simple AFDs are mined from our tables (note that the actual mined AFDs can

have multiple attributes on the left hand side): (1) S2 : {model} → vehicle type, (2)

S2 : {model} → review, (3) S3 : {model} → cylinders. Rule 3 provides us information

about the number of cylinders which helps in conforming the results to the ‘4 cylinder’

constraint. Rules 1 & 2 provide information on vehicle type and review for a given model,

and hence provide more information in response to the query. They allow us to expand par-

tial information about the car model into more complete information about vehicle type,

10

LEARNING MODULE QUERY ANSWERING

Query

AFD Miner

Stat Learner

Source

Statistics

AFDs

Source

Selector

Web

Database

Tree of Tables

A1 A2 A3

R
e

s
u

lt
 S

e
t

Tuple

Expander

SMART-INT : Smart Integrator

T1

T2 T3

Fig. 2. Architecture of SMARTINT System

review and cylinders. The results using attribute dependencies are shown in Table VII and

conform to the constraints and are more informative compared to other approaches.

Conceptually, the operation of SMARTINT can thus be understood in terms of (i) min-

ing AFDs and source statistics from different tables and (ii) actively using them to prop-

agate constraints and retrieve attributes from other non-joinable tables. Figure 2 shows

the SMARTINT system architecture. In this framework a user issues a query on the web

databases. The system has two distinct components, query answering and learning. Query

11

answering comes into picture immediately after the user issues a query. When user submits

a query, the source selector first selects the most relevant ‘tree’ of tables from the available

set of tables. Source selector uses the source statistics mined from the tables to pick the

tree of tables. The tuple expander module operates on the tree of tables provided by the

source selector and then generates the final result set. Tuple expander first constructs the

expanded schema using the AFDs learned by AFDMiner and then populates the values in

the schema using source statistics. As shown in the Figure 2, SMARTINT learns AFDs and

source statistics from individual tables and stores them which are used by source selec-

tor and tuple expander. In the Section 6 and Section 7, we discuss in detail how the two

modules, Query Answering and Learning work.

3.2 CONTRIBUTIONS

The specific contributions of SMARTINT system can be summarized as follows:

1. We have developed a query answering mechanism that utilizes attribute dependencies

to recover entities fragmented over tables, even in the absence of primary key–foreign

key relations.

2. We have developed a source selection method using novel relevance metrics that

exploit the automatically mined AFDs to pick the most appropriate set of tables.

3. We have developed techniques to efficiently mine approximate attribute dependen-

cies.

The rest of the paper is organized as follows. Section 4 discusses related work about

current approaches for query answering over web databases. Section 5 discusses some

12

preliminaries. Section 6 proposes a model for source selection and query answering using

attribute dependencies. Section 7 provides details about the methods for learning attribute

dependencies. Section 8 presents a comprehensive empirical evaluation of our approach.

Section 9 provides conclusion and future work.

4 RELATED WORK

4.1 DATA INTEGRATION

The standard approaches investigated in the database community for the problem recov-

ering information split across multiple tables is of course data integration [12, 10]. The

approaches involve defining a global (or mediator) schema that contains all attributes of

relevance, and establishing mappings between the global schema and the source schemas.

This latter step can be done either by defining global schema relations as views on source

relations (called GAV approach), or defining the source relations as views on the global

schema (called LAV approach). Once such mappings are provided, queries on the global

schema can be reformulated as queries on the source schemas. While this methodology

looks like a hand-in-glove solution to our problem, its impracticality lies in the fact that it

requires manally established mappings between global and source schemas. This is infea-

sible in our context where lay users may not even know the set of available tables, and even

if they do, the absence of PK-FK relations makes establishment of non-lossy (sound and

complete) mappings impossible. In contrast, our approach is a fully automated solution

that does not depend on the availability of GAV/LAV mappings.

4.2 KEYWORD SEARCH ON DATABASES

There has been considerable research on keyword search over databases [4] [3] [1] [2]. The

work on Kite system extends keyword search to multiple databases as well [16]. While

Kite doesn’t assume that PK-FK relations are pre-declared, it nevertheless assumes that the

columns corresponding to PK-FK relations are physically present in the different tables if

only under different names. In the context of our running example, Kite would assume

that the model id column is present in the tables, but not explicitly declared as a PK-FK

14

relation. Thus Kite focuses on identifying the rekevant PK-FK columns using key discovery

techniques (c.f. [5]). Their techniques do not work in the scenarios we consider where the

key columns are simply absent (as we have argued in our motivating example).

4.3 LEARNING ATTRIBUTE DEPENDENCIES

Though rule mining is popular in the database community, the problem of AFD mining is

largely under explored. Earlier attempts were made to define AFDs as an approximation to

FDs ([6], [5]) with few error tuples failing to satisfy the dependency. In these lines, CORDs

[6] introduced the notion of Soft-FDs. But, the major shortcoming of their approach is,

they are restricted to rules of the type C1→C2, where C1 and C2 are only singleton sets

of attributes. TANE [5] provides and efficient algorithm to mine FDs and also talks about

a variant of it to learn AFDs. But, their approach is restricted to minimal pass rules (Once

an AFD of type (X Y) is learnt, the search process stops without generating AFDs of

the type (Z Y), where X⊂Z. Moreover, these techniques are restricted to a single table,

but we are interested in learning AFDs from multiple tables and AFDs involving shared

attributes. In this paper, we provide a learning technique that treats AFDs as a condensed

representation of association rules (and not just approximations to FDs), define appropriate

metrics, and develop efficient algorithms to learn all the intra and inter-table dependencies.

This unified learning approach has an added advantage of computing all the interesting

association rules as well as the AFDs in a single run.

15

4.4 QUERYING INCOMPLETE DATABASES

Given a query involving multiple attributes, SMARTINT starts with a base table containing

a subset of them, and for each of the tuples in the base table, aims to predict the remaining

query attributes. In this sense it is related to systems such as QPIAD [18]. However,

unlike QPIAD which uses AFDs learned from a single table to complete null-valued tuples,

SMARTINT attempts to extend the base table by predicting entire columns using AFDs

learned from other tables. Viewed this way, the critical challenge in SMARTINT is the

selection of base table, which in turn is based on the confidences of the mined AFDs (see

Section 6.A).

5 PRELIMINARIES

This section describes different aspects of our query answering system: Semantics of the

query, attribute dependencies and the architecture of the system.

5.1 QUERY

Our system assumes that the user does not have knowledge about different tables in the

database and has limited knowledge about attributes he is interested in querying (This is a

reasonable assumption, since most web databases do not expose the tables to the users). So

we model the query in the following form where the user just needs to specify the attributes

and constraints:

Definition 5.1.1 (Query). Q =< Ā, C̄ > where Ā are the projected attributes which are of

interest to the user and C̄ are the set of constraints (i.e. attribute-label, value pairs)

5.2 ATTRIBUTE DEPENDENCIES

In section 2, we mentioned that we use attribute dependencies in our query answering

mechanism. Here we describe the details about the particular kind of attribute dependencies

we use. Attribute dependencies are represented in the form of Functional Dependency.

A functional dependency (FD) is a constraint between two sets of attributes in a relation

from a database. Given a relation R, a set of attributes X in R is said to functionally

determine another attribute Y, also in R, (written X → Y) if and only if each X value

is associated with precisely one Y value. Since the real world data is often noisy and

incomplete, we use approximate dependencies to represent the attribute dependencies.

An Approximate Functional Dependency (AFD) is an approximate determination of

the form X A over relation R, which implies that attribute set X, known as the

17

Fig. 3. Graph Representation of Connected Tables in the Database.

determining set, approximately determines A, called the determined attribute. An AFD

is a functional dependency that holds on all but a small fraction of tuples. For example, an

AFD model body style indicates that the value of a car model usually (but not always)

determines the value of body style.

5.3 GRAPH OF TABLES

The inter-connections between different tables in the database are modelled as a graph(refer

to Figure 3). Each attribute match is represented as an undirected edge and any PK-FK

relationship is represented as a directed edge pointing towards the table containing the

primary key. This model would help in using the PK-FK relationships available—either as

part of the input, or can be identified automatically (as done in KITE [16]). When neither

is feasible, we rely on tuple completion.

6 QUERY ANSWERING

In this section, we provide an overview of our query answering approach and its detailed

description. We assume that attribute dependencies are provided upfront for the system and

describe how our work uses them to answer the queries over multiple tables. We outline

our approach in terms of solutions to challenges identified earlier in Section 2:

1. Information distributed across tables needs to be integrated: The information needs

to be integrated since both answering queries with attributes spanning over multiple

tables and providing additional information to the user needs horizontal integration

of the tuples across tables. In the absence of PK-FK relationships, performing mean-

ingful joins to integrate data is not feasible (as illustrated in Section 2). Instead we

start with a ‘base set of tuples’ (from a designated base table chosen by the source

selector) and successively expand those tuples horizontally by appending attribute

values predicted by the attribute dependencies. This expansion is done recursively

till the system cannot chain further or it reconstructs the universal relation. We use

attribute determinations along with attribute mappings to identify attributes available

in other tables, whose values can be predicted using values of the selected attributes.

2. Constraints need to be translated: The base table provides a set of tuples, i.e. tuples

which conform to the query constraints. Generation of ‘base set of tuples’ requires

taking into account constraints on non-base tables. We use attribute mappings and

attribute determinations for translating constraints onto the base table. Basically, we

need to translate the constraint on a non-base table attribute to a base table attribute

through attribute determinations. In the example discussed in Section 2, suppose T1

is designated as a base table and T3 is a non-base table which has an AFD (model

19

vehicle-type). If the query constrains the attribute vehicle-type to be ‘SUV’, then this

constraint can be evaluated over the base table, if information about the likelihood of

a model being an ‘SUV’ is given. Attribute determinations provide that information.

Now we explain how these solution approaches are embedded into SMARTINT frame-

work. Query answering mechanism involves two main stages: Source Selection and Tuple

Expansion. We explain these in detail in the next few sections.

6.1 SOURCE SELECTION

In a realistic setting, data is expected to be scattered across a large number of tables, and not

all the tables would be equally relevant to the query. Hence, we require a source selection

strategy aimed at selecting the top few tables most relevant to the query. Given our model

of query answering, where we start with a set of tuples from the base table which are then

successively expanded, it makes intuitive sense for tuple expansion to operate over a tree

of tables. Therefore source selection aims at returning the most relevant tree of tables over

which the Tuple Expander operates.

Given a user query, Q =< Ā, C̄ > and a parameter ‘k’ (the number of relevant tables

to be retrieved and examined for tuple expansion process), we define source selection as

selecting a tree of tables of maximum size k which has the highest relevance to the query.

The source selection mechanism goes through the following steps:

1. Generate a set of candidate tables Tc.

Tc = {T ∈ T |relevance(T) ≥ threshold}

20

This acts as a pruning stage, where tables with low relevance are removed from

further consideration.

2. As observed in Figure 3, not all tables have a shared attribute. We need to pick a

connected sub-graph of tables, Gc, with highest relevance.

3. Select the tree with the highest relevance, among all the trees possible in Gc. This

step involves generating and comparing the trees in Gc, which can be computation-

ally expensive ifGc is large. We heuristically to estimate the best tree with the highest

relevance to the query among all the trees. The relevance metrics used are explained

below.

We will explain how source selection works in the context of the example described in in-

troduction. In order to answer the query Q, SELECT make,model WHERE price <

$15000 AND cylinders = ‘4’, we can observe that the projected attributes make,

model and constraint price < $15000 are present in Table I and constraint cylinders = ‘4′

is present in Table III. Given this simple scenario, we can select either Table I or Table

III as the base table. If we select Table III as the base table, we should translate the con-

straint price < $15000 from Table I to Table III using the AFD, model price. On the

other hand if we designate Table I as base table, we would need to translate the constraint

cylinders = ‘4′ from Table III to Table I using the AFD, model cylinders. Intuitively

we can observe that the AFD model cylinders generalizes well for a larger number of

tuples than model price. Source selection tries to select the table which emanates high

quality AFDs as the base table and hence yield more precise results.

Here we discuss the different relevance functions employed by the source selection stage:

21

• Relevance of a table: Ideally the relevance of a table T has to be calculated by

summing the relevance over each tuple. But evaluating the relevance of each tuple

during query time is not feasible. Hence we approximate it as

relevance(T , q) ≈ PT (C̄) ∗ tupleCountT ∗
|AT ∩ Ā|
|Ā|

where PrT (C̄) is the probability that a random tuple from T conforms to constraints

C̄, tupleCountT is the number of tuples in T , and AT is the set of attributes in T .

The fraction measures the ratio of query attributes provided by the table.1

• Relevance of a tree: While selecting the tree of relevant tables, the source selection

stage needs to estimate the relevance of tree. As we have explained above, the rele-

vance of tree takes into account the confidence of AFDs emanating out of the table.

So the relevance function should also capture the same intuition. Relevance of a tree

Tr rooted at table T w.r.t queryQ < Ā, C̄ > can be expressed as a recursive formula:

relevance(Tr, q) = relevance(T , q) +

PT (C̄) ∗ tupleCountT ∗
∑

a∈Ā−Ab
pred accuracy(a)

where Ab are the set of attributes present in the base table, pred accuracy(a)

gives the accuracy with which the attribute a can be predicted. When the attribute is

in the neighbouring table it is equal to the confidence of AFD and when its not in the

immediate neighbour its calculated the same way as in AFD chanining (Explained

in Section 7).
1Presently we give equal weight to all the attributes in the system, this can be general-

ized to account for attributes with different levels of importance.

22

The above relevance functions rely on the conformance probability PT (C) = ΠiPT (Ci).

PT (Ci) denotes the probability that a random tuple from T conforms to the constraint Ci

(of the form X = v), and is estimated as:

• PT (Ci) = PT (X = v), ifX ∈ AT , where AT is the set of attributes in T

• PT (Ci) =
∑

i PT (Y = vi) ∗ PT ′(X = v|Z = vi), if T : Y = T ′ : Z, i.e. T ’s

neighboring table T ′ provides attribute X.2

• PT (Ci) = ε (small non-zero probability), otherwise

Algorithm 1 Source Selection

Require: Query q, Threshold τ , Number of tables k, Set of AFDs Ā
1: Tc = {∅}
2: for all table T in T do
3: if relevance(T , q) ≥ τ then
4: add T to Tc

5: Gc := Set of connected graphs over Tc up to size k
6: Trees = {∅}
7: for all g ∈ Gc do
8: Treesg = Set of trees from graph g
9: add Treesg to Trees

10: treesel = arg maxtree∈Trees relevance(tree, q)
11: return treesel

In this section we explained the source selection mechanism. We discuss how the tuple

expansion mechanism answers the query from the selected sources in the next section.

6.2 TUPLE EXPANSION

Source selection module gives a tree of tables which is most relevant to the query. Tuple

expansion operates on the tree of tables given by that module. One of the key contributions

2These probabilities are learnt as source statistics.

23

of our work is returning the result tuples with schema as close to the universal relation as

possible. We need to first construct the schema for the final result set and then populate

tuples that correspond to that particular schema from other tables. These steps are described

in detail in the sections that follow.

6.2.1 CONSTRUCTING THE SCHEMA

One important aspect of tuple expansion is that it is a hierarchical expansion. The schema

grows in the form of a tree because attributes retrieved from other tables are relevant only

to the determining attribute(s)(refer to the definition of AFD in Section 5). This module

returns a hierarchical list of attributes, AttrbTree, rather than a flat list. This is more clearly

illustrated by the attribute tree generated for query discussed in Section 2 shown in Figure

4. The base table (T1) contains attributes Make, Model, Price. Tables T1, T2 and T3 share

the attribute Model. In table T2, we have the AFDs Model Cylinders and Model

Engine. These two determined attributes are added to the base answer set, but these are

only relevant to the attribute ‘model’, so they form a branch under the attribute ‘model’.

Similarly, review, dealer and vehicle type form another branch under ‘Model’. In the next

level, T3 and T4 share ‘dealer-name’ attribute. ‘Dealer-Name’ is a key in T4, therefore all

the attributes in T4 (‘dealer-address’, ‘phone-number’ etc) are attached to the AttrbTree.

The final attribute tree is shown in the Figure 4. Algorithm 2 gives formal description of

the schema construction algorithm.

24

Fig. 4. Expanded Attribute Tree for the Query

Algorithm 2 Construct Attribute Tree

Require: Source-table-tree S, Set of AFDs Ā;
1: AttrbTreeAt := {∅}
2: S0 := Get all the attributes from base table Tb

3: while S has children do
4: D := Get all determined attributes in current child c
5: add child D to At for corresponding attribute
6: return AttrbTreeT

6.2.2 POPULATING THE TUPLES

The root of the selected tree of tables given by the source selection is designated as the base

table. Once the attribute hierarchy is constructed, the system generates a ‘base set’ of tuples

from the base table which form the ‘seed’ answers. We refer to this base set as the most

likely tuples in the base table which conform to the constraints mentioned in the query. We

call them ‘most likely’ tuples because when constraints are specified on one of the children

of the base table, we propagate constraints from child to base table. But since we have

approximate dependencies between attributes, the translated constraints do not always hold

on the base set. To clearly illustrate this, let us revisit the example of Vehicle domain from

25

Section 2. We assume that Table I has been designated as the base table. The constraint

price < $15000 is local for the base table and hence each tuple can be readily evaluated for

conformance. The constraint cylinders = ‘4’, on the other hand, is over Table III and needs

to be translated on to the base table. Notice that these two tables share the attribute ‘model’

and this attribute can approximately determine cylinder in Table III (model Cylinders

). (model Cylinders) implies that the likelihood of a model having certain number of

cylinders can be estimated, which can be used to estimate the probability that a tuple in

Table 1 would conform to the constraint Cylinders = ‘4′. We can see that model ‘Civic’

is more likely to be in the base set than ‘Accord’ or ‘Camry’.

Once the base tuple set has been generated, each of those tuples are expanded horizon-

tally by predicting the values for the attributes pulled from children tables. Given a tuple

from the base set, all the children tables (to the base table) are looked up for determined

attributes, and the most likely value is used to expand the tuple. Further, values picked from

the children tables are used to pick determined attributes from their children tables and so

on. In this way, the base tuple set provided by the root table is expanded using the learned

value dependencies from child tables.

In tuple expansion, if the number of shared attributes between tables is greater than one,

getting the associated values from other tables would be an interesting challenge. For

instance, in our running example, Table I also had the year attribute and Table II is selected

as the base table. We need to predict the value of price from Table I. If we consider both

Model and Year to predict the price, results would be more accurate, but we do not have

the values of all combinations of Model and Year in Table I to predict the price. However,

if we just use Model to predict the price, the precision might go down. Another interesting

26

scenario where taking multiple attributes might not boost the prediction accuracy is the

following: Model, Number tyres Price is no better than Model Price. In order to

counter this problem, we propose a fall back approach of the AFDs to ensure high precision

and recall.

This method can be formally described as this: If X is the set of shared attributes be-

tween two tables T1 and T2, where T1 is the base table and T2 is the child table. We need to

predict the values of attribute Y from T2 and populate the result attribute tree. If the size of

X is equal to n (n ≥ 1), we would first start with AFDs having n attributes in determining

set and ‘significantly higher’ confidence than any of their AFDs. We need ‘significantly

higher’ confidence because if the additional attributes do not boost the confidence much,

they will not increase the accuracy of prediction as well. If the AFDs do not find matching

values between two tables to predict values, we ‘fall back’ to the AFDs with smaller de-

termining set. We do this until we would be able to predict the value from the other table.

Algorithm 3 describes it.

Algorithm 3 Tuple Expansion

Require: Source-table-tree St; Result-attribute-tree At, Set of AFDs Ā
1: R := {∅} {Initializing the result set with schema At }
2: b := Root(St) {Setting the base table}
3: Translate the constraints onto base table
4: Populate all the attributes in level 0 of At from b
5: for all child c in At do
6: if b and c share n attributes then
7: fd = AFDs with n attrbs in detSet
8: while n > 0 do
9: if c has the specified combination then

10: Populate R using predicted values using fd from c
11: break
12: fd = Pick AFDs with n− 1 attributes in detSet
13: return Result Set R

7 LEARNING ATTRIBUTE DEPENDENCIES

We have seen in the previous section how attribute dependencies within and across ta-

bles help us in query answering by discovering related attributes from other tables. But it

is highly unlikely that these dependencies will be provided up front by autonomous web

sources. In fact, in most cases the dependencies are not apparent or easily identifiable. We

need an automated learning approach to mine these dependencies.

As we have seen in the Section 6, we extensively use both attribute-level dependencies

(AFDs) and value-level dependencies. The value level dependencies are nothing but asso-

ciation rules. The notion of mining AFDs as condensed representations of association rules

is discussed in detail in [7]. Our work adapts the same notion, since it helps us in learning

dependencies both at attribute and value level. The following sections describe how rules

are mined within the table and how they are propagated across tables.

7.1 INTRA-TABLE LEARNING

In this subsection we describe the process of learning AFDs from a single table. But, only

few of these AFDs are useful to us. To capture this, we define two metrics Confidence and

Specificity for an AFD and learn those AFDs that have high Confidence and low Specificity

values above the specified thresholds.

7.1.1 CONFIDENCE

If an Association rule is of the form (α β), it means that if we find all of α in a row,

then we have a good chance of finding β. The probability of finding β for us to accept this

rule is called the confidence of the rule. Confidence denotes the conditional probability of

head given the body of the rule.

28

To define confidence of an AFD, we would expect a similar definition, that it should

denote the chance of finding the value for the dependent attribute, given the values of the

attributes in the determining set. We define Confidence in terms of the confidences of

the underlying association rules. Specifically, we define it in terms of picking the best

association rule for every distinct value-combination of the body of the association rules.

For example, if there are two association rules (Honda Accord) and (Honda Civic),

given Honda, the probability of occurrence of Accord is greater than the probability of

occurrence of Civic. Thus, (Honda Accord) is the best association rule, for (Make =

Honda) as the body.

Confidence (X A) =
N

′∑
x

arg max
y∈[1,Nj]

(support (αx)×

Confidence(αx βy)) (1)

Here, N ′ denotes the number of distinct values for the determining set X in the relation.

This can also be written as,

Confidence (X A) =
N

′∑
x

arg max
y∈[1,Nj]

(support (αx) βy) (2)

Example: For the database relation displayed in table VIII, Confidence of the AFD

(Make Model) = Support (Make : Honda Model : Accord) + Support

(Make : Toyota Model : Camry) = 3
8

+ 2
8

= 5
8
. 1

1It is interesting to see that, this turns out to be equal to (1 - g3), where g3 is one of
the standard error measures for defining AFDs. The g3 error measure [8] has a natural
interpretation as the fraction of tuples with exceptions or errors affecting the dependency.

29

TABLE VIII
FRAGMENT OF A CAR DATABASE

ID Make Model Year Body Style
1 Honda Accord 2001 Sedan
2 Honda Accord 2002 Sedan
3 Honda Accord 2005 Coupe
4 Honda Civic 2003 Coupe
5 Honda Civic 1999 Sedan
6 Toyota Sequoia 2007 SUV
7 Toyota Camry 2001 Sedan
8 Toyota Camry 2002 Sedan

7.1.2 SPECIFICITY-BASED PRUNING

The distribution of values for the determining set is an important measure to judge the

“usefulness” of an AFD. For an AFD X A, the fewer distinct values of X and the

more tuples in the database that have the same value, potentially the more relevant possible

answers can be retrieved through each query, and thus a better recall. To quantify this, we

first define the support of a value αi of an attribute set X , support(αi), as the occurrence

frequency of value αi in the training set.

support(αi) = count(αi)/N,

where N is the number of tuples in the training set.

Now we measure how the values of an attribute set X are distributed using Specificity.

Specificity is defined as the information entropy of the set of all possible values of attribute

set X: {α1, α2, . . . , αm }, normalized by the maximal possible entropy (which is achieved

when X is a key). Thus, Specificity is a value that lies between 0 and 1.

30

Specificity (X) =
−

∑m
1 support(αi)× log2(support(αi))

log2(N)

When there is only one possible value of X , then this value has the maximum support

and is the least specific, thus we have Specificity equals to 0. When all values of X are

distinct, each value has the minimum support and is most specific. In fact, X is a key in

this case and has Specificity equal to 1.

Now we overload the concept of Specificity on AFDs. The Specificity of an AFD is

defined as the Specificity of its determining set.

Specificity (X A) = Specificity (X)

The lower Specificity of an AFD, potentially the more relevant possible answers can be

retrieved using the rewritten queries generated by this AFD, and thus a higher recall for a

given number of rewritten queries.

Intuitively, Specificity increases when the number of distinct values for a set of attributes

increases. Consider two attribute setsX and Y such that Y⊃X. Since Y has more attributes

than X , the number of distinct values of Y is no less than that of X , Specificity (Y) is no

less than Specificity (X).

Definition 7.1.1 (Monotonicity of Specificity). For any two attribute sets X and Y such

that Y⊃X, Specificity (Y) ≥ Specificity (X). Thus, adding more attributes to the attribute

set X can only increase the Specificity of X . Hence, Specificity is monotonically increas-

ing w.r.t increase in the number of attributes.

31

This property is exploited in pruning the AFDs during the mining, by eliminating the

search space of rules with Specificity less than the given threshold.

Algorithms for mining AFDs face two costs: the combinatorial cost of searching the rule

space and the cost of scanning the data to calculate the required metrics for the rules. In

query processing the AFDs which we are mostly interested are the ones with the shared

attributes in determining set of the rule. If X A is an AFD, we are interested in rules

where X ∈ S, where S is the set of shared attributes between two tables. Since number

of such attributes is typically small, we can use this as a one of the heuristics to prune off

unwanted rules.

7.1.3 AFDMINER ALGORITHM

We formally define the AFD Mining problem in general as below:

Definition 7.1.2 (AFD Mining Problem). Given a database relation r, and user-specified

thresholds minConf (minimum confidence) and maxSpecificity (maximum Specificity),

generate all the Approximate Functional Dependencies (AFDs) of the form (X A) from

r for which Confidence (X A) ≥ minConf and Specificity (X) ≤ maxSpecificity

To find all dependencies according to the definition above, we search through the space

of non-trivial dependencies and test the validity of each dependency. We follow a breadth

first search strategy and perform a level-wise search in the lattice of attributes, for all the

required AFDs. Bottom-up search in the lattice starts with singleton sets and proceeds up-

wards level-wise in the lattice, searching bigger sets. For AFDs, the level-wise bottom-up

algorithm has a powerful mechanism for pruning the search space, especially the pruning

based on Specificity .

32

Search starts from singleton sets of attributes and works its way to larger attribute sets

through the set containment lattice level by level. When the algorithm is processing a set

X, it tests AFDs of the form X \ A A, where A ∈ X.

Algorithm 4 briefly presents the main AFDMiner algorithm.

Algorithm 4 AFDMiner: Levelwise search of dependencies

1: L0 := {∅}
2: L1 := {{A} | A ∈ R}
3: ` := 1
4: while L` 6= ∅ do
5: ComputeDependenciesAtALevel(L`)
6: PRUNE(L`)
7: L`+1 := GenerateNextLevel(L`)
8: ` := ` + 1

GenerateNextLevel computes the level L`+1 from L`. The level L`+1 will con-

tain only those attribute sets of size ` + 1 which have their subsets of size ` in L`.

(ComputeDependenciesAtALevel(L`)) computes all the AFDs that hold true at the given

level of the lattice. In this process, it computes the confidence of eah association rule con-

stituting the AFDs. PRUNE(L`) implements the pruning strategies and prunes the search

space of AFDs. It computes the Specificity of each rule, and if it is less than the specified

threshold, eliminates all the rules with whose determining sets are supersets of it.

The process of mining AFDs for all attributes can be viewed as finding the best feature

set for each attribute in the dataset. It is easy to see that the number of possible AFDs in a

database table is exponential to the number of attributes in it; thus AFD mining is in general

expensive. In order to achieve some computational savings, we consider only the attributes

shared across tables in the determining set and employ a pruning strategy to stop the search

based on the defined metrics. A more efficient alternative, which we may consider in the

33

future, is to incorporate greedy approaches for learning determinations. Techniques for

decision table induction, [9, 11], which use wrapper methods to select relevant features,

provide an efficient mechanism for this purpose. In contrast to AFD mining, these greedy

approaches scale linearly with the number of attributes.

7.2 LEARNING SOURCE STATISTICS

Storing association rules: The probabilities which we used extensively in the

query answering phase are nothing but the confidence of the association rules. So we

store all the association rules mined during the process of AFD mining (specifically, in

ComputeDependenciesAtALevel(L`))) and use them at query time. This saves us the ad-

ditional cost of having to compute the association rules separately by traversing the whole

lattice again.

Here we describe the value level source statistics gathered by the system, which are

employed by the query answering module for constraint propagation and attribute value

prediction. As mentioned earlier, AFD mining involves mining the underlying association

rules. During association rule mining, following statistics are gathered from each source

table T :

1. PT (X = xi): Prior probabilities of distinct values for each attribute X in AT

2. PT (X = xi|Y = yj): Conditional probabilities for distinct values of each attribute

X conditioned on those of attribute Y in AT . Recall that this is nothing but the

confidence of an association rule. Only the shared attributes are used as evidence

34

variables, since value prediction and constraint propagation can only be performed

across shared attributes.

7.3 INTER-TABLE CHAINING

After learning the AFDs within a table, we need to use them to derive inclusion dependen-

cies which are used in query answering phase. In order to combine AFDs from different

tables, we need anchor points. These anchor points are provided by the attribute mappings

across tables, so we extend our attribute dependencies using them. When two AFDs be-

tween neighboring tables are combined, the resultant AFD would have a confidence equal

to the product of the two confidences.

8 EXPERIMENTAL EVALUATION

In this section, we describe the implementation and an empirical evaluation of our system

SMARTINT for query processing over multiple tables and learning attribute dependencies.

Our prototype works on a local copy of the web databases for both efficiency as well as

due to access restrictions for many of the Web databases. We implemented our system in

Java and used MySQL database to store the tables. Before describing the experimental

design, we state the experimental hypothesis.

Hypothesis: In the context of autonomous Web databases, if you learn Approxi-

mate Functional Dependencies (AFDs) and use them in query answering, then it would

result in a better retrieval accuracy than using direct-join and single table approaches.

8.1 METHODOLOGY AND METRICS

To perform an oracular study based on a ground truth, we start with a master table which

contains the tuples with universal relation and then randomly fragment it into multiple

tables with varying number of shared attributes among them. This helps us not only in

comparing SMARTINT with approaches without learning but also with ground truth. In or-

der to compare the effectiveness of retrieving relevant answers and propagating constraints,

we generalize the standard notion of precision and recall. As we shall see the, the general-

ization is needed as our answers can differ from ground truth(provided by the master table)

both in terms of how many answers we get and how correct and complete each answer is.

We explain how each of these metrics is measured below:

• Correctness of a tuple (crt): If the system returns a tuple with m attributes of n

attributes in the universal relation, the correctness of a tuple is defined as the ratio of

36

total number of correct values in the tuple to number of attributes returned.

crt =
Number of correct attribute values in the tuple

Number of attributes in ‘returned result set’ (m)

• Precision of the result set (Prs): Precision of the result set is defined as the average

of correctness of a tuple in the result set.

Prs =
Σcrt

Total number of tuples in ‘returned result set’

• Completeness of a tuple(cpt): If the system returns a tuple with m attributes of n

attributes in universal relation, the correctness of a tuple is defined as the ratio of total

number of correct values in the tuple to number of attributes in universal relation.

cpt =
Number of correct values in the tuple

Number of attributes in ‘master table’ (n)

• Recall of the result set (Rrs): is defined as the ratio of the cumulative completeness

of the tuples returned by the system to the total number of answers.

Rrs =
Σcpt

Number of tuples retrieved from ‘master table’

We compare SMARTINT results with two approaches discussed in Section 2 which do not

learn attribute dependencies(1) SINGLE TABLE: In this approach, results are retrieved

from a single table which has maximum number of attributes/constraints mentioned in the

query mapped on it.(2) DIRECT-JOIN: The other approach we are comparing with is

joining the tables based on the shared attributes. As explained in the introduction, it results

in a lot of erroneous results which hurts the precision.

The query format allows two variable parameters, projected attributes and constraints.

The implications of changing them are discussed below.

37

• Number of Attributes: With the increase in number of attributes, the source tables

they map on to are also likely to increase, which implies having to do more data

integration (through tuple expansion) in order to provide more complete answers.

• Number of Constraints: As the number of constraints in the query increase, it

becomes more likely that they will map on to different tables. Hence, it requires

more constraint propagation, in order to provide more precise answers.

8.2 EXPERIMENTAL DESIGN

To evaluate the SMARTINT system, we evaluated Vehicles database. We used around

350,000 records probed from Google Base for the experiments. We created a master ta-

ble with 18 attributes which do not have ‘null’ values. We divided this master table into

multiple child tables with overlapping attributes. This helps us in evaluating the returned

‘result set’ with respect to the results from master table and establish how our approach

compares with the ground truth.We have divided the master table into 5 different tables

with the following schema

• Vehicles Japanese: (condition, price type, engine, model, VIN, vehicle type, pay-

ment,door count, mileage, price, color , body style, make)

• Vehicles Chevrolet: (condition, year, price, model, VIN, payment, mileage, price, color,

make),

• Vehicles Chevrolet Extra: (Model, Door Count, Type, Engine)

• Vehicles Rest: (condition, year, price ,model, VIN, payment, mileage, price, color, make)

38

• Vehicles Rest Extra: (Engine, Model, Vehicle Type, door count, body style)

The following (implicit) attribute overlaps were present among the fragmented tables.

• Vehicles Chevrolet:Model↔ Vehicles Rest:Model

• Vehicles Chevrolet:Year↔ Vehicles Rest:Year

• Vehicles Rest:Year↔ Vehicles Rest Extra:Year

• Vehicles Chevrolet Extra:Model↔ Vehicles Rest Extra:Model.

We posed automatically generated random queries to the system and measured the recall

and precision (which are described earlier) of SMARTINT system. We compared the per-

formance of SMARTINT with ‘Single table’ and ‘direct Join’ approach discussed in Section

2. The following are the input parameters which are changed: (1) Number of Attributes

and (2) Number of Constraints. We measured the value of precision and recall by taking

the average of the values for different queries. While measuring the value for a particular

value of a parameter we varied the other parameter. While we are measuring precision for

‘Number of attributes = 2’, we posed queries to the system with ‘Number of constraints =

2, 3 and 4’ and took the average of all these values and plotted them. Similarly, we varied

the ‘Number of attributes’ while we are measuring the Precision for each value of ‘Number

of constraints’. The same process is repeated for measuring the recall as well.

8.3 EXPERIMENTAL RESULTS

In this section, we present the results from experiments and analyze them.

39

Fig. 5. Precision Vs Number of Constraints

Fig. 6. Recall Vs Number of Constraints

40

Fig. 7. Precision Vs Number of Attributes

Fig. 8. Recall Vs Number of Attributes

41

Fig. 9. F-measure Vs Number of Attributes

Fig. 10. F-measure Vs Number of Constraints

42

In the simple case of queries mapping on to a single table, the precision and recall values

are independent of attribute dependencies, since query answering does not involve con-

straint propagation or tuple expansion through attribute value prediction.

In cases where queries span multiple tables, some of the attribute values have to be

predicted and constraints have to propagated across tables. Availability of attribute depen-

dency information allows accurate prediction of attributes values and hence boosts preci-

sion. As shown in Figures 5 and 7, our approach scored over the other two in precision.

Direct join approach, in absence of primary-foreign key relationships, ends up generating

non-existent tuples through replication, which severely compromises the precision. In cases

where query constraints span over multiple tables, single table approach ends up dropping

all the constraints except the ones mapped on to the selected best table. This again results

in low precision.

In terms of recall (Figures 6 and 8), performance is dominated by the direct join ap-

proach, which is not surprising. Since direct join combines partial answers from selected

tables, the resulting tuple set contains most of the real answers, subject to completeness of

individual tables. Single table approach, despite dropping constraints, performs poorly on

recall. The selected table does not cover all the query attributes, and hence answer tuples

are low on completeness, which affects recall.

When accurate attribute dependencies are available, our approach processes the dis-

tributed query constraints effectively and hence keeps the precision fairly high. At the

same time, it performs chaining across tables to improve the recall. Figures 9 and 10 show

that our approach scores higher on F-measure, hence suggesting that it achieves a better

balance between precision and recall.

43

Fig. 11. SMARTINT Vs Multiple Join Paths

Time Taken for Query Execution: We have observed that the quality of SMARTINT

results is better when compared to other approaches like direct join and single table.

SMARTINT also exhibits lower query execution time than the direct join approach. In

one experiment, SMARTINT took an average of 5.14 seconds for query execution, whereas

direct join took 72.94 seconds, over ten times as long.

8.4 COMPARISON WITH MULTIPLE JOIN PATHS

In the previous evaluation the data model had one shared attribute between the tables, but

there can be multiple shared attributes between the tables. In such scenarios, direct join

can be done based any combination of the shared attributes. Unless one of the attribute

happens to be a key column the precision of the joins is low. In order to illustrate this, we

considered the data model with more than one shared attribute and measured the precision

44

Fig. 12. Precision, Recall and F-measure Vs Width of the Tuple

and recall for all the possible join paths between the tables. The experimental results (See

Figure 11) show that SMARTINT had higher F-measure than all possible join paths.

8.5 TRADEOFFS IN NUMBER VS. COMPLETENESS OF THE ANSWERS

Normal query processing systems are only concerned about retrieving top-k results since

the width(number of attributes) of the tuple is fixed. But SMARTINT chains across the ta-

bles to increase the extent of completion of the entity. This poses an interesting tradeoff: In

a given time, the system can retrieve more tuples with less width or fewer tuples with more

width. In addition to this, if user is only interested high confidence answers, each tuple

can expand to variable width to give out high precision result set. We analyze how preci-

sion and recall varies with ’w’ (number of attributes to be shown). The Figure 12 shows

how precision, recall and F-measure varies as more number of attributes are predicted for a

specific result set(The query constraints are make=‘BMW’ and year=‘2003’). In scenarios,

45

Fig. 13. Time Taken by AFDMiner Vs No. of Tuples

when SMARTINT has to deal with infinite width tuples, F-measure can be used to guide

SMARTINT when to stop expanding.

8.6 AFDMINER EVALUATION

We invoke AFDMiner to learn the association rules and the AFDs. As explained in Section

V AFD mining is an expensive process and might end up taking huge time. For the current

data setup, AFDMiner took approximately 15 minutes to learn the AFDs. Figure 13 and 14

show the comparison between the time taken for AFDMiner and the approach which does

not use specificity metric, with varying tuplesize and the length of the AFD respectively.

We can observe that the AFDMiner takes significantly less time than other approach and

makes the mining process tractable. For a detailed experimentation on AFDMiner, we ask

the reader to refer to [7]

46

Fig. 14. Time Taken by AFDMiner Vs Length of AFD

9 CONCLUSION AND FUTURE WORK

In this section the thesis is summarized and the future extensions for the work are discussed.

9.1 CONCLUSION

Our work is an attempt to provide better query support for web databases having tables with

shared attributes using learned attribute dependencies but missing primary key - foreign

key relationship. We use learned attribute dependencies to make up for the missing PK-

FK information and recover entities spread over multiple tables. Our experimental results

demonstrate that the approach used by SMARTINT is able to strike a better balance between

precision and recall than can be achieved by relying on a single table or employing direct

joins.

9.2 FUTURE WORK ON QUERY PROCESSING

There are certain extensions to this work that we are aiming to pursue.

1. The current system assumes the user is equally interested in seeing each of the at-

tributes specified in the query. Similarly, we assume that each of the additional at-

tributes would contribute equally to the relevance. This model can be generalized

with attributes having different weights of “interestingness”.

2. In the current system we assume that there is a finite width universal relation and

tuple expander would either terminate if it cannot get more relevant attributes or if

it reaches the maximum number of attributes. If we do not assume the finite width

model for universal relation, the tuple expander would continuously expand to in-

crease it relevance and improve its recall. This would lead to result tuples with a

large number of attributes and information overload. This problem can be countered

48

by employing a ‘discounted reward model’ which penalizes the tuple expander for

expanding beyond a certain number of attributes.

3. As the number of tables increase, the number of relevant attributes base set can be

quite large. Presenting all the relevant attributes would overwhelm the user with

information. In such cases having more granular relevance for attributes for the user

is important. [14] is similar in spirit, and we consider adapting such works for our

scenarios. Analyzing query logs to mine attribute relevance would be an interesting

extension of our work.

4. Furthermore, in the scenarios we consider, it is quite possible that all the query con-

straints cannot be evaluated on the sources. In such a case, it would be interesting to

have constraints with degrees of “strictness”, which can then be evaluated according

to their priority so as to keep the precision high.

9.3 FUTURE WORK ON LEARNING

In this work, we learn rules within the table and chain them across tables using shared

attributes (anchor points). We have observed that this technique works quite well for the

setting which we described in section 2. In fact we could have done the chaining of rules

before hand (as a part of learning module) and used them as rules across tables. But an

interesting problem is to mine rules across the tables without need for anchor points. This

would remove the limitation of the query answering module of using anchor points to

predict the target value. These kind of generalized mappings would help in predicting the

values which are not seen in the training data. Generalized mappings are useful when

49

mapping across two different partitions of tables from the same universal relation. Apart

from this, they are also useful in mapping between two different domains.

Learning these kind of dependencies could use ideas from Inductive Logical Pro-

gramming (ILP). In order to use this approach for the learning task, the elements from

the database tables must be represented in terms of relations and arguments. One such

representational scheme would denote an attribute from a table by a relation, and the tuple

identifier and the assigned value as the arguments. This representational scheme would

enable learning at the level of select attributes and values, rather than using entire tables.

These directions for future research will build on the existing work, and offer promising

possibilities for using Web databases in meaningful ways.

10 STATEMENT ABOUT INDIVIDUAL CONTRIBUTION

As mentioned in the Introduction (Section 1), this work is done in collaboration with Anu-

pam Khulbe, my colleague in DB Yochan and CIRCAS labs. This section gives a brief

overview of specific contributions I made individually versus jointly. The whole work con-

sisted of three important parts - problem identification, system development and writing

the draft.

• Problem Identification and Formalization: My association with DB Yochan lab

and its previous work in the area of Web databases has lead to my interest in this

domain. We figured out that missing PK-FK relations lead to inaccurate results by

direct-join technique. I developed the idea of using AFDs to complete the tuple

spread across different tables. Khulbe dealt with source selection problem.

• System Development and Evaluation: I played primary role in setting up the initial

framework of the system and getting the data. I have developed the tuple expansion

module and performed the experiments for multiple join paths and variable width

expansion. The experiments which compare SMARTINT performance with other ap-

proaches are jointly performed by Khulbe and me.

• Writing: We have submitted this work for SIGMOD, VLDB and ICDE conferences.

The main portion of this thesis is taken from those submissions. I have written the

Motivation (Section 2), System Description and Related Work (Section 4) sections.

We both jointly wrote the Learning (Section 7) and Experimental Evaluation (Section

8) sections.

REFERENCES

[1] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. Objectrank:
authority-based keyword search in databases. In VLDB ’04: Proceedings of the Thir-
tieth international conference on Very large data bases, pages 564–575. VLDB En-
dowment, 2004.

[2] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, S. Sudarshan,
and I.I.T. Bombay. Keyword searching and browsing in databases using banks. Data
Engineering, International Conference on, 0:0431, 2002.

[3] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient ir-style key-
word search over relational databases. In VLDB ’2003: Proceedings of the 29th in-
ternational conference on Very large data bases, pages 850–861. VLDB Endowment,
2003.

[4] Vagelis Hristidis and Yannis Papakonstantinou. Discover: keyword search in rela-
tional databases. In VLDB ’02: Proceedings of the 28th international conference on
Very Large Data Bases, pages 670–681. VLDB Endowment, 2002.

[5] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An effi-
cient algorithm for discovering functional and approximate dependencies. The Com-
puter Journal, 42(2):100–111, 1999.

[6] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. Cords:
automatic discovery of correlations and soft functional dependencies. In SIGMOD
’04: Proceedings of the 2004 ACM SIGMOD international conference on Manage-
ment of data, pages 647–658, New York, NY, USA, 2004. ACM.

[7] Aravind Krishna Kalavagattu. Mining approximate functional dependencies as con-
densed representations of association rules. Master’s thesis, Arizona State University,
2008.

[8] Jyrki Kivinen and Heikki Mannila. Approximate dependency inference from rela-
tions. In ICDT, pages 86–98, 1992.

[9] Ron Kohavi. The power of decision tables. In ECML ’95: Proceedings of the 8th
European Conference on Machine Learning, pages 174–189, London, UK, 1995.
Springer-Verlag.

[10] Eric Lambrecht, Subbarao Kambhampati, and Senthil Gnanaprakasam. Optimizing
recursive information-gathering plans. In IJCAI ’99: Proceedings of the Sixteenth

52

International Joint Conference on Artificial Intelligence, pages 1204–1211, San Fran-
cisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[11] Pat Langley. Induction of condensed determinations. In In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96, pages
327–330. AAAI Press, 1996.

[12] Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages
233–246, 2002.

[13] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In Data Engineering,
2002. Proceedings. 18th International Conference on, pages 117–128, 2002.

[14] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a crowd: Selecting
attributes for maximum visibility. Data Engineering, 2008. ICDE 2008. IEEE 24th
International Conference on, pages 356–365, April 2008.

[15] Ullas Nambiar and Subbarao Kambhampati. Answering imprecise queries over au-
tonomous web databases. In ICDE, page 45, 2006.

[16] Mayssam Sayyadian, Hieu LeKhac, AnHai Doan, and Luis Gravano. Efficient key-
word search across heterogeneous relational databases. Data Engineering, Interna-
tional Conference on, 0:346–355, 2007.

[17] Garrett Wolf, Hemal Khatri, Yi Chen, and Subbarao Kambhampati. Quic: A sys-
tem for handling imprecision & incompleteness in autonomous databases (demo). In
CIDR, pages 263–268, 2007.

[18] Garrett Wolf, Hemal Khatri, Bhaumik Chokshi, Jianchun Fan, Yi Chen, and Subbarao
Kambhampati. Query processing over incomplete autonomous databases. In VLDB
’07: Proceedings of the 33rd international conference on Very large data bases, pages
651–662. VLDB Endowment, 2007.

