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ABSTRACT

Research into information integration has shown how to create a single, uniform query
interface to networked information sources. By building a world model over some domain
a user is interested in and modelling information sources as materialized views on that
model, it is relatively straightforward to create an information gathering plan to answer
some query on the world model using the available information sources. These plans,
while theoretically sound, are costly to execute directly.

In this thesis, the researcher considers the problem of optimizing information gathering
plans. First the researcher looks at the general problem and how it fits in with traditional
query optimization. Then the researcher specifically looks at information gathering on the
Internet and list the available knowledge of information sources in this domain that can
be applied to optimization. The researcher then defines the desirable characteristics of an
information gathering plan that access only information sources available on the Internet.
These are source completeness, source minimality, and bandwidth minimality.

The researcher then presents two methods for optimizing an information gathering plan
that uses Internet information sources. First is a greedy method for removing unnecessary
recursion and unnecessary calls to information sources in a plan without affecting the an-
swer returned by the plan. The second is an adaptation of the “bound is easier” database
evaluation heuristic that takes into account the way queries are answered by Internet infor-
mation sources to reduce network traffic when executing a plan.

Finally, the researcher describes an implemented information gatherer, Emerac, that
uses the algorithms and methods described in this thesis and evaluates the methods pre-
sented in this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Information Gathering

The explosive growth and popularity of the world-wide web has resulted in thousands of
queryable structured information sources on the internet, and the promise of unprecedented
information gathering capabilities to lay users. Unfortunately, the promise has not yet
been completely transformed into reality. While there are sources relevant to virtually any
user-queries, the morass of sources presents a formidable hurdle to effectively accessing
the information. One way of alleviating this problem is to develop information gatherers
which take a user’s query over a virtual database, and answer it using real information
sources available over the network. This is illustrated in figure 1.1.

Several first steps have recently been taken towards the development of a theory of
information gathering. The information gathering problem is typically modeled by building
a global relational schema for the information that the user is interested in (also called the
world model), and modelling the available information sources as materialized views on
the global schema. When a query is posed on the global schema, the information gatherer
constructs an information gathering planfor accessing available information sources, and
executes it to answer the query.

Consider we have three relations that define a global relational schema we wish to allow
users to query. The first relation, student-class(S, C), represents every student S enrolled
in class C. The second, class-room(C, R), represents all the pairs of rooms and the classes
held in them. The third, student-class-grade(S, C, G)represents the grades students have
received for classes they are enrolled in.

Given REGISTRAR, which is an information source that provides information about
classes that students are enrolled in, we might relate it to the global schema by defining it
as the following materialized view:

REGISTRAR(C, S) ! class-student(C, S)

We use “!” rather than “:-” when defining the view (for aesthetic reasons, which will be
clear later), but the semantics are the same as in datalog. Further assume we have two more
information sources that provide information on students and their grades, and classrooms:
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GRADELISTING(C, S, G) ! class-student(C, S)̂ student-class-grade(S, C, G)

DIRECTORY(C, R) ! class-room(C, R)

Recent research [8, 9] has resulted in a clean methodology for constructing source
completeand sound information gathering plans for user queries posed in terms of the
global schema using only information sources defined as materialized views on the global
schema. An information gathering plan is a datalog program in which all EDB predicates
are information source predicates. A plan is source complete if executing it results in all
accessible answers to the query.

Given the following query

query(S, R) :- class-student(C, S)̂ class-room(C, R)

which asks for the rooms that every student has a class in, the algorithm presented in [8]
would produce the following source complete information gathering plan to answer the
query:

query(S, R) :- class-student(C, S)̂ class-room(C, R)

class-student(C, S):- REGISTRAR(C, S)

class-student(C, S):- GRADELISTING(C, S, G)

class-room(C, R) :- DIRECTORY(C, R)

Were this plan to be evaluated as a datalog program, it would generate all the available
information that satisfies the user’s query.

1.2 Optimizing Internet Information Gathering Plans

The process of building a query plan is just the first step in information gathering. The
next step, which we focus on in this thesis, is query plan optimization. Traditional database
query optimization highlights two important steps that must be performed during optimiza-
tion: query plan rewriting, and execution ordering. Query plan rewriting is the logical
rewriting of an inefficient or sub-optimal plan to make it more efficient. Execution order-
ing is the process of finding the best order in which to access information sources in order
to minimize execution cost. The full process of query planning is shown in figure 1.2.

Consider the sample query plan above. What if the REGISTRAR information source con-
tains all possible class-student(C, S)pairs? In this case, the reference to GRADELISTING

in the plan above is unnecessary. An information gathering plan query optimizer should
be able to rewrite the original query plan above into a logically equivalent plan, based on
the knowledge of the completeness of the REGISTRAR information source, to achieve the
following:



3

query(S, R) :- class-student(C, S)̂ class-room(C, R)

class-student(C, S):- REGISTRAR(C, S)

class-room(C, R) :- DIRECTORY(C, R)

This is an example of a query plan rewriting technique, in which inefficiencies in a plan
can be reasoned out logically.

Now consider the order in which to execute the rewritten plan above. Ultimately the
plan boils down to a simple join between the REGISTRAR and DIRECTORY information
sources. When gathering information on the Internet, we cannot instruct the two sources
to join with each other, because we assume they do not have that capability. It is necessary
to select all the data from one source then iteratively query the second information source,
or select all the data from both sources and perform the join locally. The choice of which
method and which order to use in order to minimize cost is addressed during the execution
ordering phase of query optimization.

1.3 Contributions

We make two contributions in this thesis. The first is a method for rewriting a source com-
plete information gathering plan to remove unnecessary information sources and recursion
in order to speed up execution of the plan. The second is a notation for easily informing
the information gatherer of the relative querying costs of information sources, and an adap-
tation of the traditional “bound is easier” heuristic for query execution ordering that takes
advantage of the notation.

1.4 Organization

The thesis is divided into four parts. In chapter 2 we discuss the knowledge and assump-
tions we have about information gathering on the Internet, the desired aspects of an optimal
information gathering plan, and a method for building source complete information gath-
ering plans. In chapter 3 we present an algorithm for rewriting an information gathering
plan to minimize unnecessary information sources and recursion in the plan. Chapter 4
discusses how to order access to information sources using knowledge of their query costs
in order to reduce network traffic. Chapter 5 discusses Emerac, the information gatherer
we have implemented.
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CHAPTER 2

INFORMATION GATHERING ON THE INTERNET

2.1 Introduction

In this chapter we describe the assumptions we make about information sources available
on the Internet for information gathering. We describe the querying capabilities of the
sources and the knowledge of their contents that is available to the information gatherer.
Then we describe the desirable aspects of an optimal information gathering plan that gath-
ers information from sources over the Internet. Finally, we show how a simple, unoptimized
information gathering plan is created.

2.2 Information Source and World Model Assumptions

Current information gathering research makes some simplifying assumptions about the in-
formation gathering problem. The first is that information sources can all be modelled as
relational databases, possibly with query binding constraints. This leads to the formulation
of the world model as a relational schema and the mappings of the contents of the infor-
mation sources to the world model as materialized viewson the world model. Information
sources are assumed to be able to answer simple relational queries that possibly require
specific binding patterns to be satisfied.

We currently assume four pieces of information are available to the information gatherer
for building and optimizing plans: descriptions of sources as materialized views, LCW
statements about the guaranteed contents of sources, valid query patterns for each source,
and relative query costs. Ultimately it would be nice if the owners of each information
source would provide the information about the contents of the source, but it is more likely
that the designer of the world model provides this information.

2.2.1 Views

We can relate our information sources to the world model by creating views that define the
information sources’ contents in terms of queries on the world model. Each information
source is defined by a unique predicate that appears in the head of a view, and in the body
is a query over the world model that would produce equivalent information as contained in
the source. For example:
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WHITEPAGES(Name, Area, Phone, Co), name(Name)̂

phone-of(Name, Area, Phone)^

phone(Area, Phone)̂

phone-company(Name, Co)

In doing this, we are defining all the tuples that satisfy the world model relations in the
body as being exactly those that exist in the information source named in the head.

It may be the case that our information sources do not map up exactly to a query in the
world model. For instance, we might have a phone book information source which does not
contain all name and phone number pairs that would be available in the world model, and
we cannot define a specific enough (and reasonably small enough) query over the world
model that exactly defines all the tuples contained in the source. In this case we will de-
fine a view where the body is over-general and describes more information than is possibly
contained in the information source (just so we do not miss anything during information
gathering). We will write the view definition with a “!” rather than a “,” to denote that
while all the information described in the head of the rule is contained in the information
described in the body, it is not the case the all the information described in the body is
contained in the head. Our new definition for our white pages database will be:

WHITEPAGES(Name, Area, Phone, Co)! name(Name)̂

phone-of(Name, Area, Phone)^

phone(Area, Phone)̂

phone-company(Name, Co)

We are also now going to refer to the white pages database as being incomplete. An
information source is incomplete if the information contained in it is less than the infor-
mation that would be generated by executing the world query in its view on the conceptual
database of all information that the world model describes. Conversely, if execution of
the world query in the information source’s view would generate exactly the same infor-
mation that is in the information source, we say the information source is complete. Our
notion of completeness, then, is defined as how accurately the information contained in
some information source can be described in terms of the world model.

This notion of completeness is important, because the information gatherer should re-
trieve as much information described in the world query as possible, while at the same time
minimizing the amount of redundant information gathered. If we do not state that some
information sources are incomplete, the information gatherer might incorrectly reason that
the information it has retrieved from some information sources completely answers a world
query, when it actually does not. Also, the information gatherer might needlessly retrieve
information from two sources where both of them contain exactly the same information.
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2.2.2 LCW Statements

Materialized view definitions alone do not adequately provide enough information about
our knowledge of information sources. We can more accurately describe the information
sources by using localized closed world (LCW)statements1 [10, 11]. Where a materialized
view definition describes all possible information an information source might contain in
terms of a global schema, an LCW statement describes what information the source is
guaranteed to contain in terms of the global schema. Defining an LCW statement for an
information source is similar to defining a view. We use the “ ” symbol to denote an LCW
definition. Consider the following LCW definitions:

SOURCEA(X, Y)  j(X, Y)^ k(Y, “Duschka”)

SOURCEB(S, A)  j(X, Y)

In this example, SOURCEB contains all possible instances of the j relation, and SOURCEA
contains a subset of those instances.

The exact meaning of an LCW statement also depends on how the notion of time and
change is taken into account. An information source with an LCW statement that proclaims
to have all book titles published before 1910 is relatively straightforward. However, an
information source with an LCW statement claiming to contain all book titles may be
correct at the current point in time, but be incorrect within a month, when new books have
been written but not added to the database. We assume that whatever LCW statements the
planner is using at the current point in time are correct, and the completeness of the answers
the planner returns will be dependant upon this assumption.

2.2.3 Binding Restrictions

Often a real-world information source cannot answer all arbitrary queries over the infor-
mation it contains. In this case, we say that the information source has query constraints
and is not, in database terminology, fully relational. One important class of restrictions are
binding restrictions, where an information source requires that some attributes be bound in
any query sent to it. Our white pages information source, for example, might require the
Nameattribute in any query posed to it be bound. So the following query is valid:

WHITEPAGES(Name, Area, Phone, Co)̂ Name = “Eric Lambrecht”

but the next query is not, because the Nameattribute is not bound to any value:

WHITEPAGES(Name, Area, Phone, Co)̂ Co = “USWest”

By convention, we express these binding restrictions in the description of the information
source in terms of the world view by putting a “$” character in front of the attributes that

1In [6], the notion of a conservative viewis equivalent to our LCW statements, and the notion of a liberal
viewis equivalent to our normal materialized view.
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must be bound for a query. For example, we can express that the whitepages information
source has the binding restriction on its Nameattribute by defining its world view as:

WHITEPAGES($Name, Area, Phone, Co)! name(Name)̂

phone-of(Name, Area, Phone)^

phone(Area, Phone)̂

phone-company(Co)

2.2.4 Relative Query Data Transfer Costs

The cost of answering specific query patterns (in terms of amount of data returned in re-
sponse to the query) on different information sources on the Internet varies between the
different types of information sources. All queries posed on wrapped web pages have the
same cost: the entire web page must be transferred over the Internet. The amount of data
returned from a query posed on a cgi script or relational database may change depending
on how specific the query is. For instance, a cgi script that accepts a student’s first name
and, optionally, the student’s major and returns a list of students matching the input would
more likely return less data for a query with both a name and major specified than a query
with only a name specified.

There is a simple way to inform the gatherer as to what types of queries on an informa-
tion source might reduce the data it transfers over the network. When defining the unique
predicate to represent an information source, for every argument of the predicate that, if
bound, might reduce the amount of data transferred over the network in response to a query
on the information source, we adorn with a “%”.

Assume we have some fully relational database represented by the predicate
RELATIONAL-SOURCE. We can adorn it as in the following:

RELATIONAL-SOURCE(%X, %Y)

The “%” on the X denotes that if the gatherer can bind X to some values before sending
the query to RELATIONAL-SOURCE, we expect the amount of data to be transferred over the
network in response to a query to be smaller than if we were to query RELATIONAL-SOURCE

without binding X to any values. This also applies to the Y argument. Thus, we would ex-
pect the amount of data transferred over the network as a result of the query

RELATIONAL-SOURCE(X, Y)

to be larger than the amount of data due to the query

RELATIONAL-SOURCE(“Eric”, Y)

which in turn is expected to be larger than the amount of data due to query
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RELATIONAL-SOURCE(“Eric”, “Lambrecht”)

Consider that WEB-SOURCE represents a wrapped web page. We do not adorn WEB-SOURCE

with any “%” signs. This is because binding values to the arguments of WEB-SOURCE be-
fore querying it have no effect on the amount of data transferred due to the query. That is,
we do not expect the amount of data transferred over the network from the query

WEB-SOURCE(“Amol”, Y)

to be smaller than that transferred due to the query

WEB-SOURCE(X, Y)

Finally, assume that CGI-SCRIPT represents a cgi-script that accepts some input parameter
W and returns a corresponding X or, if given no inputs, returns all (W, X)pairs. we annote
CGI-SCRIPT as

CGI-SCRIPT(%W, X)

because we only expect that binding values to W will reduce the amount of data transferred
over the network. Since CGI-SCRIPT does not accept bindings for X as part of the queries
it will answer, any selections on X must be computed locally by the gatherer after querying
CGI-SCRIPT for tuples with the given W bindings.

2.3 Optimal IG Plans

Now that we have described the information available to an Internet information gath-
erer, we can describe the desired aspects of an optimal Internet information gathering plan.
There are three goals that we strive for: source completeness, source minimality, and band-
width minimality.

Source completemeans that there should be no other information gathering plan, given
the same set of information sources and available data, that can generate more answers to
the query.

For a plan to be source minimal, the plan should contain the fewest number of infor-
mation sources in it needed to answer the query as completely as possible. If two sets
of information sources conribute overlapping information to the query, the query planner
should remove one of the sets so duplicate information is not sent over the network.

A bandwidth minimalplan means that execution of the plan transfers the smallest
amount of data over the network during execution, without affecting the completeness of
the plan. This goal is important because of the relatively large amount of time it takes to
transfer data over the Internet.
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2.4 Building Source Complete Information Gathering Plans

Building a source complete information gathering plan is quite easy, and is the initial step
we take towards building a plan to satisfy all three goals. It is this plan that we will optimize
in order to also achieve the goals of source and bandwidth minimality. In this section we
review the algorithm for generating source complete plans.

Given a query on a some database schema and a set of materialized views defined
over the same schema, it has been shown in [8] that a datalog program in which all EDB
predicates are materialized views can be constructed to answer the query, if such a pro-
gram exists. We call such a datalog program an information gathering plan. This method
has been extended in [9] to deal with functional dependency information and information
sources with query binding pattern requirements. The heart of the algorithm is a simple
materialized view inversion algorithm.

Consider that we have the information source SOURCEA represented as a materialized
view as follows:

SOURCEA(X, Y) ! j(X, Y)^ k(Y, Z)

Also, consider that we have the query:

query(X, Y) :- j(X, Y)

We can easily build an information gathering plan that will answer the query (at least par-
tially) using only our materialized view above. This method works by invertingall materi-
alized view definitions, then adding them to the query. The inverse, v�1, of the materialized
view definition with head v(X1; : : : ; Xm) is a set of logic rules in which the body of each
new rule is the head of the original view, and the head of each new rule is a relation from
the body of the original view. All variables that appear in the head of the original rule
are unchanged, but every variable in the body of the original view that does not appear in
the head is replaced with a new function constant fN(X1; : : : ; Xm). When we invert our
definition above, we achieve

j(X, Y) :- SOURCEA(X, Y)

k(Y,f1(X, Y)) :- SOURCEA(X, Y)

When these rules are added to the original query, they effectively create a logic program to
answer the original query. Notice that the global schema predicates that were considered
EDB predicates are now IDB, and all EDB predicates are now materialized views.

Function constants in the constructed logic program can easily be removed through a
flattening procedure, to convert it into a true datalog program. Note that function constants
only appear through inverted rules, which are never recursive, so there will never be an in-
finite number of function constants in the plan. We can remove function constants through
a simple derivative of bottom up evaluation. If bottom up evaluation of the logic program
can yield a rule with a function constant in an IDB predicate, then a new rule is added with
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the corresponding function constant. Then, function constants that appear in IDB predi-
cates are replaced with the arguments to the function constants, and the name of the IDB
predicate is annotated to indicate this replacement. Thus, the rule

edge(X, f(X, Y)) :- v(X, Y)

is replaced with

edge<1;f(2;3)>(X, X, Y) :- v(X, Y)

In this fashion, all function constants in the logic program are removed, and it becomes
a true datalog program. This completes our creation of an information gathering plan to
answer the original query.

The materialized view inversion algorithm can be modified in order to model databases
that cannot answer arbitrary queries, and have binding pattern requirements. Consider that
we have a second information source, SOURCEC that has a binding constraint on its first
argument. Its view is as follows:

SOURCEC($X, Y) ! j(X, Y)^ k(Y, Z)

The inversion algorithm can be modified to handle this constraint as follows. When in-
verting a materialized view, for every argument Xn of the head that must be bound, the
body of every rewrite rule produced for this materialized view must include the domain
relation dom(Xn). Also, for every argument Xi that is not required to be bound in the head,
SOURCE(X1; : : : ; Xm), of some materialized view we must create a rule for producing dom
relations. The head of each domain relation producing rule is dom(Xi), and the body is the
conjunction of the information source relation and a dom(Xn) relation for every variable
Xn that is required to be bound. Thus, after inverting the materialized view definitions for
the SOURCEC view and the SOURCEA view with the modified algorithm, we obtain

j(X, Y) :- SOURCEA(X, Y)

k(Y,f1(X, Y)) :- SOURCEA(X, Y)

dom(X) :- SOURCEA(X, Y)

dom(Y) :- SOURCEA(X, Y)

j(X, Y) :- dom(X)^ SOURCEC(X, Y)

k(Y,f2(X, Y)) :- dom(X)^ SOURCEC(X, Y)

dom(Y) :- dom(X)^ SOURCEC(X, Y)

What is interesting to note here is that the plan to solve a non-recursive query with no
recursion might contain recursion as a result of the method used to model query constraints
on information sources. In fact, if any information sources with binding pattern require-
ments are available and relevent to the user’s query, then the plan that answers the query



12

will contain recursion through the dompredicates 2.

2.5 Summary and Related Work

In this section, we have reviewed all the information we assume an information gatherer has
about information sources on the Internet, and we have described that information gathering
plans we wish to build should be source minimal, source complete, and bandwidth minimal.
We have reviewed an algorithm for constructing source complete information gathering
plans.

Other methods for building IG plans are presented in [17, 14, 22]. None of the algo-
rithms effectively deal with binding pattern limitations or recursive queries. The algorithm
in [22] might be easily extended to handle recursion, however.

In our system we only make use of LCW statements that describe sources in terms of
the global schema. Information sources might also have pairwise or n-ary LCW statements
between each other. That is, the completeness of one or more information sources could be
defined in terms of one or more other information sources. Pairwise LCW statements are
used in [11]. It should be possible to incorporate n-ary LCW statements into the minimiza-
tion algorithm in this thesis. For example, the algorithm might be modified to take them
into account during the uniform containment check, or they might be used as a second step
to further minimize the plan produced with this algorithm.

The method we use for denoting binding restrictions assumes that all information sources
have a fixed set of mandatory bindings and a fixed set of optional bindings. There are in-
formation sources whose binding restrictions are a little more complex (only one paper,
[15], has addressed this). Rather than explicitly list all the possible legal binding patterns,
we chose the simplicity of expressing binding patterns using the $ notation. Adapting
Duschka’s inversion algorithm to invert view definitions with arbitrary binding patterns,
however, is relatively straightforward.

While we have focused our optimization efforts on source minimality, bandwidth min-
imality, and source completeness, these constitute only a single optimization scenario out
of many. For instance, information source latency, availability, and actual monetary cost
might be taken into account and given more importance. Also, completeness of a plan
might be considered less important than the time it takes to return an answer.

2Of course, we might use a specific domtype for each domain type, like dom:integeror dom:string, but
in a reasonably sized domain this only delays the onset of recursion, rather than eliminate it



CHAPTER 3

REWRITING TECHNIQUES

3.1 Introduction

In this chapter, we discuss a method for rewriting an information gathering plan to remove
unnecessary recursion and overlapping information sources to achieve our goal of source
minimal and bandwidth minimal plans. We argue that provably maximally removing all
unnecessary information sources and recursion is computationally hard. We then present
a greedy algorithm guided by heuristics that makes use of LCW statements and an algo-
rithm for reducing a datalog program under uniform equivalence to optimize an information
gathering plan.

3.2 Preliminaries

3.2.1 LCW Reasoning & Rule Subsumption

Consider that we have two datalog rules, each of which has one or more information source
predicates in its body that also have LCW statements, and we wish to determine if one rule
subsumes the other. We cannot directly compare the two rules because information source
predicates are unique and therefore incomparable. However, if we make use of the sources’
view and LCW statements, we can determine if one rule subsumes the other [7, 11].

Given some rule, A, let A[s 7! s^v] be the result of replacing every information source
predicate si that occurs in A with the conjunction of si and the body of its view. Also let
A[s 7! s _ l] be the result of replacing every information source relation si that occurs in
A with the disjunction of si and the body of its LCW statement. Given two rules, A and B,
rule A subsumes B if there is a containment mapping from A[s 7! s _ l] to B[s 7! s ^ v]
[8].

Consider the following rules:

r1: j(X, Y) :- dom(X)^ SOURCEC(X, Y)

r2: j(X, Y) :- SOURCEB(X, Y)

We can prove that rule r2 subsumes rule r1 by showing a containment mapping from one
of the rules from r2[s 7! s _ l], which is:
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r3: j(X, Y) :- SOURCEB(X, Y)

r4: j(X, Y) :- j(X, Y)

to r1[s 7! s ^ v], which is

r5: j(X, Y) :- dom(X)^ SOURCEC(X, Y)̂ j(X, Y)^ k(Y, Z)

It is easy to see that there is indeed a containment mapping between r4 and r5. This proves
that r2 subsumes r1 and so r1 can be removed from any plan with these two rules without
affecting the answer

3.2.2 Uniform Equivalence

To minimize a datalog program, we might try removing one rule at a time, and check-
ing if the new program is equivalent to the original program. Two datalog programs are
equivalent if they produce the same result for all possible assignments of relations in the
programs [18]. Checking equivalence is known to be undecidable. Two datalog programs
are uniformly equivalent if they produce the same result for all possible assignments for all
initial relations. Uniform equivalence is decideable, and implies equivalence. A method
for minimizing a datalog program under uniform equivalence, from [18] is presented here,
and later adapted for our information gathering plan minimization.

The technique for minimizing a datalog program under uniform equivalence involves
removing rules from the program, one at a time, and checking to see if the remaining rules
can produce the same data as the removed rule, given an initial assignment of relations.
If the remaining rules cannot do so, then the removed rule is reinserted into the datalog
program. The initial assignment of relations is built by instantiating the variables in the
body of the removed rule. To instantiate the variables of the relation foo(X1 : : : Xn) means
to create an instance of the relation foowith constants “X1” . . . “Xn”.

Consider that we have the following datalog program:

r1: p(X) :- p(Y)^ j(X, Y)

r2: p(X) :- s(Y)^ j(X, Y)

r3: s(X) :- j(X)

We can check to see if r1 is redundant by removing it from the program, then instantiating
its body to see if the remaining rules can derive the instantiation of the head of this rule
through simple bottom-up evaluation. Our initial assignment of relations is:

p(“Y”)

j(“X”, “Y”)

If the remaining rules in the datalog program can derive p(“X”) from the assignment above,
then we can safely leave rule r1 out of the datalog program. This is indeed the case. Given
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j(“Y”) we can assert s(“Y”) via rule r3. Then, given s(“Y”) and j(“X”, “Y”) , we can assert
p(“Y”) from rule r2 . Thus the above program will produce the same results without rule
r1 in it.

3.3 Removing Overlapping Sources and Recursion

In this section we argue that provably removing all unnecessary recursion and information
sources from an information gathering plan is difficult. Then we present a greedy mini-
mization algorithm that makes use of LCW statements and Sagiv’s algorithm for reducing
a datalog program under uniform equivalence.

3.3.1 Argument for Greedy Minimization

Consider that an information gathering plan is a datalog plan, such that all information
source predicates are essentially EDB predicates. It has been shown that checking for
equivalence of two datalog program is undecideable [19]. Alternatively, consider if we
could find all the non-recursive subsets of the original information gathering plan. It has
been shown that checking for containment of a datalog program by a union of conjunctive
queries takes EXPTIME [4].

Because the complexity of merely checking to see if a sub-plan contains or is equivalent
to the original plan is so difficult (and impossible in some cases), our search for a plan
minimization algorithm focused on greedy search based methods that can remove portions
(individual rules) of a plan that are provably unnecessary.

3.3.2 Greedy Minimization

We can minimize an information gathering plan greedily using the algorithm for minimiz-
ing a datalog program under uniform equivalence and LCW statements. The general idea
is to iteratively try to remove rules from the information gathering plan and check if the
remaining rules subsume the removed rule, but make use of LCW and view statements for
the subsumption check. Before applying this algorithm, however, it is important to remove
useless IDB predicates to make it more effective. Also, the order in which we try to remove
rules affects the final plan, so we use heuristics to guide rule removal.

IDB Predicate Removal

One artifact of the process of removing function constants from an information gathering
plan is the large number of IDB predicates added to the plan. These extra predicates make it
difficult to perform pairwise rule subsumption checks on rules in our information gathering
plan. Recall that, in our example of function constant removal, we created a new predicate
edge<1;f(2;3)> by flattening out an edgepredicate with function constant arguments. This
new predicate is incomparable with the edge predicate, because they have different names
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and different arities, even though both refer to the same relation. Because of this mismatch,
we try to eliminate the newly introduced predicates before attempting to minimize the
information gathering plan. By reducing the number of IDB predicates in the plan to a
minimum, pairwise subsumption checks work more effectively.

To further illustrate the problem, consider that we have the following information gath-
ering program, where SOURCEA and SOURCEB are materialized view predicates:

query(X) :- j<1;f1(2;3)>(X, X, Y)

query(X) :- j<1;f2(2;3)>(X, X, Y)

j<1;f1(2;3)>(X, X, Y) :- SOURCEA(X, Y)

j<1;f2(2;3)>(X, X, Y) :- SOURCEB(X, Y)

There is no pair of rules for which we can build a containment mapping to prove subsump-
tion, because each rule differs from all others by at least one predicate. However, if we
remove the variants of the j predicate, we can obtain the equivalent program:

query(X) :- SOURCEA(X, Y)

query(X) :- SOURCEB(X, Y)

Since we know how to compare rules with materialized views using LCW and view state-
ments, we can compare these rules to determine if one subsumes the other.

The IDB predicate removal algorithm works in two parts: first a search is performed
to find predicates that can be safely removed without altering the meaning of the program,
then the rules with those predicates in their head are removed and unified with the remain-
ing rules. An IDB predicate can be safely removed if it does not appear as a subgoal of
one of its own rules. A simple recursive method for testing if a predicate can be removed
is shown in figure 3.1. Basically, we are trying to remove all non-recursive IDB predicates
that do not unify with the query.

Once we have a list of all predicates that can be removed, we can replace references
to those predicates in the information gathering program with the bodies of the rules that
define the predicates. For some predicate p, an algorithm for such a task is offered in [20].
The algorithm is reproduced here in figure 3.2. After passing each predicate through this
algorithm, we have successfully reduced the number of IDB predicates in our information
gathering program to a minimum.

Greedy Minimization Algorithm

The basic procedure for reducing an information gathering plan runs as in the datalog mini-
mization under uniform equivalence algorithm. We iteratively try to remove each rule from
the information gathering plan. At each iteration, we use the method of replacing infor-
mation source relations with their views or LCW’s as in the rule subsumption algorithm
to transform the removed rule into a representation of what could possibly be gathered by
the information sources in it, and transform the remaining rules into a representation of
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function removeable(p, D) returns true if predicate p can be removed from datalog
program D

if p is an EDB predicate
then return false

else
return removeable-aux(p, f g, p, D)

function removeable-aux(c, visited, p, D)
if c is an EDB predicate

then return true
else if (c = p) and (c 2 visited)

then return false
else

for each rule, r, in D with head predicate matching c

for each subgoal, s, of r where r 62 visited
if removeable-aux(s, visited [ f c g, p, D) = false

then return false
return true

Figure 3.1 Procedure to verify if predicate p can be removed from datalog program D

for each occurrence of p in a subgoal G of some rule s do begin
for each rule r with head predicate p do begin

rename the variables of r so r shares no variable with s;
let � be the most general unifier of the head of r and the subgoal G;
create a new rule sr by taking � (s) and replacing the subgoal � (G) by
the body of � (r);

end;
delete rule s;

end;
delete the rules with p at the head

Figure 3.2 Algorithm (from section 13.4 of [20]) to remove instances of predicate, p, from
a datalog program.
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for each IDB predicate, pi that occurs in P

append -idb to pi’s name
repeat

let r be a rule of P that has not yet been considered
let P̂ be the program obtained by deleting rule r from P

let P̂ 0 be P̂ [s 7! s _ l]
let r0 be r[s 7! s ^ v]

if there is a rule, ri in r0, such that ri is uniformly subsumed by P̂ 0

then replace P with P̂
until each rule has been considered once

Figure 3.3 Information gathering plan reduction algorithm for some plan P

what is guaranteed to be gathered by the information sources in them. Then, we instantiate
the body of the transformed removed rule and see if the transformed remaining rules can
derive its head. If so, we can leave the extracted rule out of the information gathering plan,
because the information sources in the remaining rules guarantee to gather at least as much
information as the rule that was removed. The full algorithm is shown in figure 3.3.

The process of transforming the candidate rule and the rest of the plan can best be de-
scribed with an example. Consider the following problem. We have information sources
described by the following materialized views and LCW statements:

ADVISORDB(S, A) ! advisor(S, A)

ADVISORDB(S, A)  advisor(S, A)

CONSTRAINEDDB($S, A) ! advisor(S, A)

CONSTRAINEDDB($S, A)  advisor(S, A)

and our query is

query(X, Y) :- advisor(X, Y)

After rule inversion and addition of the query to the inverted rules, our information gather-
ing plan is computed to be:
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r1: query(X, Y) :- advisor(X, Y)

r2: advisor(S, A) :- ADVISORDB(S, A)

r3: advisor(S, A) :- dom(S)̂ CONSTRAINEDDB(S, A)

r4: dom(S) :- ADVISORDB(S, A)

r5: dom(A) :- ADVISORDB(S, A)

r6: dom(A) :- dom(S)̂ CONSTRAINEDDB(S, A)

Most of this plan is redundant. Only the rules r1 (the query) and r2 are needed to completely
answer the query. The remaining rules are in the plan due to the constrained information
source.

For our example, we’ll try to prove that rule r3 is unnecessary. First we remove r3
from our plan, then transform it and the remaining rules so they represent the information
gatherered by the information sources in them. For the removed rule, we want to replace
each information source in it with a representation of all the possible information that the
information source could return. If we call our rule r, then we want to transform it to
r[s 7! s ^ v]. This produces:

advisor(S, A) :- dom(S)̂ CONSTRAINEDDB(S, A)^ advisor(S, A)

There is a problem here that must be dealt with before this transformation. The advisor
relation in the head of the rule no longer represents the same thing as the advisorrelation in
the body of the rule. That is, the advisorpredicate in the head represents an IDB relation in
the information gathering plan, while the advisorpredicate in the body represents an EDB
predicate. Before we replace an information source in some rule with its view or LCW, we
need to rename the global schema predicates in the rule so they do not match the predicates
from the views. For every world predicate named predicatethat appears in the rule, we
rename it predicate-idb. The correct transformation of r, then, is

advisor-idb(S, A) :- dom(S)̂ CONSTRAINEDDB(S, A)^ advisor(S, A)

For the remaining rules, P , we transform them into P [s 7! s _ l] (after renaming the IDB
predicates), which represents the information guaranteed to be produced by the information
sources in the rules. For our example, we produce:
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query(X, Y) :- advisor-idb(X, Y)

advisor-idb(S, A) :- ADVISORDB(S, A)

advisor-idb(S, A) :- advisor(S, A)

dom(S) :- ADVISORDB(S, A)

dom(S) :- advisor(S, A)

dom(A) :- ADVISORDB(S, A)

dom(A) :- advisor(S, A)

dom(A) :- dom(S)̂ CONSTRAINEDDB(S, A)

dom(A) :- dom(S)̂ advisor(S, A)

When we instantiate the body of the transformed removed rule, we get the following con-
stants:

dom(“S”)

constrainedDB(“S”, “A”)

advisor(“S”, “A”)

After evaluating the remaining rules given with these constants, we find that we can derive
advisor-idb(“S”, “A”) , which means we can safely leave out the rule we have removed
from our information gathering program.

If we continue with the algorithm on our example problem, we will not remove any
more rules. The remaining domrules can be removed if we do a simple reachability test
from the user’s query. Since the domrules are not referenced by any rules reachable from
the query, they can be eliminated as well.

The final information gathering plan that we end up with after executing this algorithm
will depend on the order in which we remove the rules from the original plan. Consider if
we tried to remove the r2 from the original information gathering plan before r3. Since both
rules will lead to the generation of the same information, the removal would succeed, yet
the final information gathering plan would contain the domrecursion in it, which greatly
increases the execution cost of the plan.

Heuristics

Because of our assumption of large network delay, and our desire for minimal bandwith
plans, we try to remove rules with dompredicates in their bodies first. The dompredicates
cause recursion in the information gathering plan, so if we can remove any rules with
recursion first, we can remove a potentially large execution time cost from the plan.

Alternatively, if the query optimizer knows about source access costs, it might use that
information to try to select out rules with higher cost first. It might be possible to make use
of available %-annotations for this purpose.
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3.4 Summary and Related Work

We have presented an algorithm that effectively rewrites an information gathering plan to
remove unnecessary recursion and redundant information sources. The algorithm is greedy,
because we have found that merely testing sub-plans for equivalence or containment of the
original plan is unfeasible and impossible in some cases. In chapter 5, we will see that the
cost for the greedy algorithm turns out to be quite useful for information gathering plans
with recursion.

Friedman and Weld [11] offer an efficient algorithm for reducing the size of a non-
recursive rewritten query through the use of LCW statements. Their algorithm converts a
non-recursive information gathering plan into a directed acyclic graph whose nodes rep-
resent relational operators and information sources. It then searches the graph for nodes
that represent the relational operator union, and it attempts to minimize the union by per-
forming pairwise subsumption checks (making use of LCW statements) on each subgraph
leading from the union (which represent portions of the plan that are unioned together). It
is because this algorithm only performs pairwise subsumption checks that it cannot handle
recursion, since it does not make sense to compare a rule defined in terms of itself with
another rule. The minimization algorithm in this thesis, on the other hand, can check if
an information gathering plan subsumes a single rule. Thus while the algorithm presented
here is more costly to execute, it can minimize a much greater range of plans.

Recently [21] has looked into keeping track of source overlap during plan execution.
That is, they track the results of queries on information sources and attempt to record how
similar the contents of two or more sources are. They propose that the query planner, given
the choice of two or more sets of partially overlapping sources that can answer some portion
of the query, use the overlap statistics to chose the least costly set. If there are numerous
overlaps for different portions of the query, they propose building a query plan with the
global least costly set of minimal-overlapping information sources. We have been able to
modify our minimization algorithm to explore all the minimal plans discovered through the
uniform completeness algorithm. This might be used to discover the portions of the plan
that the overlap minimization algorithm can choose between.



CHAPTER 4

EXECUTION OPTIMIZATION

4.1 Introduction

In this chapter, we present a method for determining an execution order for an informa-
tion gathering plan in an attempt to make execution of our plan bandwidth-minimal. This
method is an adaptation of the database query processing “bound is easier” heuristic.

4.2 Using Knowledge of Query Capabilities to Reduce Net-
work Traffic

A crucial practical choice we have to make during evaluation of an information gathering
plan is the order in which predicates are evaluated. If we correctly order the queries to
multiple sources, we expect to be able to use the results of earlier queries to reduce the size
of results in future queries and facilitate their computation. In database literature, this is
referred to as the “bound-is-easier” assumption [20].

Consider we have the following query, where each predicate represents a remote infor-
mation source:

SOURCEA(“Lambrecht”, X) ^ SOURCEB(X, Y)

Which source should we query first? In the absence of any additional information, dis-
tributed database literature assumes both SOURCEA and SOURCEB are fully relational
databases of similar size [16]. In this case, we would then query SOURCEA first, because
we would expect the answer to this query to be smaller than retrieving the complete con-
tents of SOURCEB. The results of the query on SOURCEA can then be sent to SOURCEB to
complete the evaluation. Consider that if we were to query SOURCEB first, we would have
to transfer the entire contents of SOURCEB over the network, then the values bound to X
would have to be sent to SOURCEA to finally retrieve the answer at what would likely be a
higher cost

Given our adorned information source descriptions, we can order our access to informa-
tion sources in a rule according to the number of bound %-adorned arguments. Predicates
should be ordered within a rule so that all predicates with no %-adorned arguments appear
first in any order, followed by the remaining predicates ordered such that the number of
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V := all variables bound by the head;
mark all subgoals ”unchosen”;
mark all subgoals with no %-adornments as ”chosen”;
for i := 1 to m do begin

b := �1;
for each unchosen subgoal G do begin

find the bound and %-adorned arguments
of G, given that V is the set of bound variables;
if there are c > b bound %-adorned
arguments of G and with this binding
pattern G is permissible
then begin
b := c;
H := G;

end;
if b 6= �1 then begin

mark H ”chosen”;
add to V all variables appearing in H;

end
else fail

end
end

Figure 4.1 Modified version of heuristic ordering algorithm (from figure 12.23 of [20])

arguments both %-bound and adorned in subsequent predicates never decreases. This algo-
rithm is the same as the one presented in [20], except that we compare the number of bound
%-adorned arguments, rather than just the number of bound arguments in each predicate.
The algorithm appears in Figure 4.1. If the algorithm fails, then subgoals are not reordered.
If the algorithm succeeds, then the order in which to access subgoals is specified by H.

4.3 Related Work

While execution ordering is a well known problem in traditional database research [20],
there is no discussion of it in information gathering research. There is also no research
towards taking into account during query processing the costs of querying information
sources using different binding patterns. Potentially a lot may be borrowed from multime-
dia database query processing research, where the cost of different query patterns are taken
into account during query plan construction [3].
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Sensing[2] tackles the issue of trying to minimize data transfers over the network by
adding additional queries to the query plan that, when executed, derive data that can be
used to prune portions of the query plan that will be executed after it. This can be viewed
as an extreme example of execution ordering. Consider that the planner needs to retrieve
and union together the contents of sources A and B. Sensing is the process of adding access
to a third information source, C, that joins with and is executed before A and B, with the
expectation that what is returned by C reduces the amount of information to be retrieved
from A and B. Sensing has not been applied to datalog style query plans (in [2] they make
use of description logics), but it should carry over.



CHAPTER 5

THE EMERAC SYSTEM

In this section we describe Emerac, a prototype information gatherer that we implemented
using the ideas presented in this thesis. We give an overview of its architecture and its wrap-
per interface. We empirically evaluate the methods presented in this paper with Emerac.
The implementation brought up many interesting points about real world information gath-
ering, which are mentioned in the summary.

5.1 Architecture

Emerac is written in the Java programming language, and is intended to be a library used by
applications that need a uniform interface to multiple information sources. Emerac presents
a simple interface for posing queries and defining a global schema.

Emerac is internally split into two parts: the query planner and the plan executor. The
default planner uses the algorithms from this thesis, but it can be replaced with alternate
planners that, for instance, exhaust the plan search space to try to find an optimal plan. The
plan executor can likewise be replaced, and the current implementation attempts to execute
an information gathering plan in parallel after transforming it into a relational operator
graph.

The query planner accepts and parses datalog rules, materialized view definitions of
sources, and LCW statements about sources. Given a query, the query planner builds a
source complete information gathering plan (using the method from [8]) and attempts to
make it bandwidth minimal and source minimal using the rewriting algorithm presented in
this thesis.

The optimized plan is passed to the plan executor, which transforms the plan into a
relational operator graph. The plan executor makes use of %-adornments to determine the
order to access each information source in a join of multiple sources, as described in this
thesis. The plan is executed by traversing the relational operator graph. When a union
node is encountered during traversal, new threads of execution are created to traverse the
children of the node in parallel.
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5.2 Wrapper Interface

Emerac assumes that all information sources contain tuples of information with a fixed
set of attributes, and can only answer simple selectqueries. To interface an information
source with Emerac, a Java class needs to be developed that implements a simple standard
interface for accessing it. The information source is able to identify itself so as to provide
a mapping between references to it in materialized view and LCW definitions and its code.

In order to facilitate construction of wrappers for web pages, a tool was created to con-
vert the finite state machine based wrappers created by SoftMealy [12] into Java source
code that can be compiled into information sources usable by Emerac. We have success-
fully adapted 28 computer science faculty listing web pages wrapped with SoftMealy into
information sources usable by Emerac.

Due to the difficulty in building wrappers (especially for cgi-scripts), we built artificial
information sources for testing. The simulated sources returned fixed sets of data, and
delayed answering each query for 2 seconds in order to simulate actual latency on the
Internet.

5.3 Evaluation

We have implemented the minimization algorithm in Emerac, and found that the cost in-
curred for small plans (up to 8 information sources in them) is negligible (under a second),
but quite useful in larger plans with recursion.

In our tests, we made use of our artificial information sources. We varied the number
of duplicate information sources available to answer the plan to see how the planner and
executor performed with and without minimizing the plan. The no-minimziationalgorithm
simply builds and executes source complete plans. The minimizationmethod builds source
complete plans, then applys the minimization algorithm described above before executing
the plans. Both methods executed their plans in parallel. In all cases the minimization
method was able to reason that accessing only one information source was sufficient to
answer the query as completely as possible.

Figure 5.1 shows the extra cost incurred while minimizing an information gathering
plan when there is no recursion in the original information gathering plan. Clearly the cost
to minimize the information gathering plan becomes expensive for larger plans. However,
in figure 5.2, where there is recursion in the original plan (due to query constraints), the
minimization algorithm ultimately saves a large amount of time during execution. Because
there are many information sources on the Internet, and many of them have query binding
constraints which lead to recursion in query plans, we believe this shows that the minimiza-
tion algorithm is very applicable to the Internet domain.
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5.4 Summary and Related Work

Emerac is a fully implemented information gatherer that makes use of the algorithms pre-
sented in this thesis, yet is modular enough that new algorithms can be inserted to replace
the existing ones.

During the construction of Emerac, we discovered numerous interesting details about
practical information gathering that should be taken into account in future information
gatherer implementations. First is source cacheing. Many sources contain information that
rarely changes, so they might be cached locally to achieve a large speed improvement at
the cost of a small chance of outdated information. Second is the difficulty of building
and maintaining wrappers. Information source wrappers are often brittle, and can easily
break when the contents of an information source change. When they do break, there must
be some protocol for the wrapper to inform the gatherer that what was extracted from the
source is no longer necessarily correct, so the gatherer can take that information into ac-
count. Related to this problem is that of dealing with failed information sources. The
planner might remove an information source from the world model, due to its failure, then
replan the original query (or keep track of alternate information sources during query plan-
ning, so a failure causes the planner to use a “backup plan” as in [11]). Finally, the infor-
mation extracted from multiple information sources is often in a multitude of inconsistent
formats that must be massaged to allow for proper joins between information sources.

Other information gatherers like Emerac have been implemented elsewhere. Infomaster
was developed at Stanford, and uses the algorithm for building source complete plans from
[8]. There is no discussion of how it optimizes the plans it produces. SIMSbuilds possibly
suboptimal information gathering plans (represented differently than in this thesis) and
iteratively rewrites them in order to improve the quality [1]. Occam[13] used AI planning
techniques to generate plans, and Razor[11] used LCW reasoning to remove redundant
plans. TSIMMIS[5] uses pattern matching to answer a query with a predefined query plan.
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minimization vs. no minimization, no recursion
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Figure 5.1 As more information sources are added, the cost of minimizing a plan with no
initial recursion gets very expensive.
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minimization vs. no minimization, recursion
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Figure 5.2 As more information sources are added, the minimizer successfully removes
recursion from a plan and saves a lot of execution time.
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APPENDIX A

EMERAC IMPLEMENTATION DETAILS

This discussion of Emerac is split into three parts: the high level interface for making use of
Emerac to do information gathering, the structure of the internals of Emerac for modifying
it, and other related tools.

A.1 Interface

The interface to Emerac centers around theInformationGatherer interface definition1.
After creating an instance of Emerac, the basic tasks that are performed with it are adding
information sources, adding datalog rules (including materialized view definitions and lcw
statements), executing queries, and receiving information that Emerac has gathered in re-
sponse to a query.

A.1.1 Instantiating Emerac

The simplest way to create an instance of Emerac is to perform the following:

InformationGatherer emerac = new edu.asu.emerac.Emerac();

This creates an instance of emerac with a default planning and execution engine.
Emerac can be created with different planning and execution engines, which allow for

testing of alternate planning techniques, by using the constructor that accepts the planner
and executor that it should use:

QueryPlanner qp = new DuschkaPlanner();
PlanExecutor pe = new SagivExecutor();
InformationGatherer emerac =

new edu.asu.emerac.Emerac(qp, pe);

1The author initially created an interactive interface to Emerac, but this proved to be unwieldy for testing
and experimental purposes and was removed. This can easily be re-inserted if the desire should arise.
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A.1.2 Adding Information Sources

All information sources that Emerac makes use of must conform to the
InformationSource interface. Basically, this interface forces the information source
to appear as a source of relational data and accept arbitrary selection queries.

To make an information source known to Emerac, merely use the
registerInformationSource method like so:

InformationSource msu = new edu.asu.gathertest.msu();
emerac.registerInformationSource(msu);

Once the information source has been registered to Emerac, it will never be used unless
it is defined through a view. When referring to the information source in a rule, use the
same string value returned by the information source’s name() method. Defining a view
to Emerac is discussed in the next section.

A.1.3 Adding and Removing Rules

Emerac has a simple rule interface that allows you to treat it almost exactly like a datalog
evaluator. There are three types of rules that you can present to Emerac: materialized view
definitions, lcw statements, and simple datalog rules.

All rules are given to Emerac as strings through the addRule() method. Each call
to this method should have a single rule as an argument. Emerac uses the javaccparser
to interpret rules, so it is quite robust. A ParseException (which contains useful de-
bugging information) will be thrown if Emerac cannot parse the rule passed in. Emerac
differentiates the types of rules through the string that separates the head of the rule from
the body. Views use “->”, lcw statements use “<-”, and normal datalog rules use “:-”.

A view defines the contents of an information source in terms of the global schema.
Considering that we have the msu information source from the previous example, we can
define its contents with the following:

emerac.addRule("msu(name, position) -> " +
"faculty-position(name, position)," +

"faculty-school(name, \"msu\"")");

Arguments to relations are considered variables, unless they are surrounded by quotes
(“msu” in the example is a constant, while “name” and “position” are not)2.

An lcw defines the portion of an information source that is complete with respect to the
global schema. We can define an LCW statement for the “msu” information source:

emerac.addRule("msu(name, position) <- " +
"faculty-school(name, \"msu\")");

2One word of caution: Emerac does not check to ensure that rules passed to it are safe. That is, it will not
complain if there are variables in the head of the rule that do not appear in the body.
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Likewise, we can pass arbitrary datalog rules to Emerac as well:

emerac.addRule("professors(name) :- " +
"faculty-school(name, school)");

Rules cannot be invidividually deleted or modified, and can only be deleted com-
pletely. To remove all rules that have been given to Emerac, use the removeAllRules()
method.

A.1.4 Querying Emerac

Emerac will answer queries that ask for instances of some global schema predicate. The
answer to the queries are returned incrementally through an asynchronus interface. To pose
a query to Emerac you call query method and give it the query (as a string) and a reference
to an object that implements the InformationAcceptor interface. For example, we
might query the global schema we have built up in the previous examples:

InformationAcceptor ia = new SimpleInformationAcceptor();
emerac.query("professors(name)", ia);

The call to query returns immediately, and processing of the query proceeds in a seperate
thread. As information satisfying the query is retrieved, it is sent to the
InformationAcceptor object.

The InformationAcceptor interface merely requires the presence of a method
called moreResults, that accepts a table with some results from the query and a status
code. The status code indicates if the plan to answer the query is still being executed and
more results should appear, or the execution has been aborted, or the plan has completed
execution.

The simplest implementation of an InformationAcceptor would be the follow-
ing, which just prints out all the data returned by Emerac after it has completed execution:

public class GatherTest implements InformationAcceptor {
public void moreResults(int status, Table results) {
if (status == InformationAcceptor.FINAL_RESULTS)
System.out.println("Answer: " + results);

else if (status ==
InformationAcceptor.EXECUTION_ABORTED)

System.out.println("Execution Aborted! " +
"Partial Results: " + results);

}
}
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A.2 Internals

The internals to Emerac are fairly well documented, so this section only describes the
common classes and major components of the system. First we describe the common
classes that are used for storing and querying relational data, then we describe the classes
used for logical reasoning. Second, we describe the architecture of Emerac and the jobs
and interfaces of some of the major components.

A.2.1 Relational Classes

Because Emerac is largely a database system, there are classes for storing and dealing with
relational data. The Table interface encapsulates dealing with the elements of a single
relation (which is called a tablein commercial literature). The Query class allows you to
specify arbitrary selection queries on a table. The JoinQuery class allows you to specify
joins and cross products between two Tables.

The Table interface encapsulates all the methods needed to deal with a table of data.
The InMemoryTable class implements Table, and represents a table of information
in memory. The InformationSourceTable class presents an information source to
Emerac as a table. Emerac treats the information source just as another table, because the
InformationSourceTable class translates all the operations on the “table” to calls
on an InformationSource that it holds. For the following examples, we’ll make use
of the InMemoryTable class, but all the methods we use are applicable to all Table
objects.

A table has a set of attributes (that should probably be called “columns” to stay consis-
tent with the “table” metaphor) that each have a name (also referred to as their “type”
in the source code). You can specify the attribute names at once when you create an
InMemoryTable, or you can add the attributes one by one and give them your own
names:

// create a table with three columns (attributes), given
// default names (types)
Table tableA = new InMemoryTable(3);

// create a table with two columns, called "one" and "two"
Table tableB = new InMemoryTable();
tableB.addAttribute("one");
tableB.addAttribute("two");

At any time you can remove all data and all attributes from a table and start over as if
you had just created a new Table by using the reset() method:

// remove all attributes and data from tableA, then give it
// two cloumns, named "one" and "two"
tableA.reset();



36

tableA.addAttribute("one");
tableA.addAttribute("two");

tableA is now equivalent to tableB from the previous example.
A table holds tuples of data. To add a tuple, you create an Object[] array where each

element of the array corresponds to an attribute in the table. Adding a tuple to the table is
as follows:

Object[] tuple = new Object[2];
tuple[0] = "first attribute value";
tuple[1] = "second attribute value";
tableA.addTuple(tuple);

All tuples are inserted into the table sorted in order of their first attributes’ hashCode()
values, then by second attributes’ hashCode(), and so on. The Table class has only
been tested out with String objects as attribute values, but it should work for any object
types.

Once a table has been populated with data, the number of tuples is returned bysize(),
an aribtrary tuple can be plucked out with tupleAt(), and a check to see if a specific
tuple is in the table can be done withtupleAt(). In addition relational algebra operations
are supported: project, union, subtract, select, and join. The interface to each operation is
obvious, except for the selectand join operations.

A select operation on a Table is specified using an instance of the Query class. After
creating the Query object, select constraints have to be added to it, using the
addConstraint() method. This method requires the index of the attribute that the
select is being done on, along with a relational operator for the select (currently only “=” is
supported), and a constant value as the argument for the relational operator. For example:

Query query = new Query();
query.addConstraint(1, "=", "value");

Table results = new InMemoryTable();
tableA.select(query, results);

In this example we’re selecting out from tableA all the tuples whose first attribute is
equal to the string "value". Additional constraints can be added to make the selection
more specific.

A join between two tables is specified via a JoinQuery object. After creating this
object, the user just has to use the addJoin() call to specify the indexes of the attributes
on each table that are to be joined. In the following example, we join the first attribute of
tableA with the second of tableB:

JoinQuery jq = new JoinQuery();
jq.addJoin(1, 2);
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Table results = new InMemoryTable();
tableA.join(jq, tableB, results);

If a joinQuery has no joins added to it, then a call to Table.join() results in a cross
product between the two tables.

A.2.2 Logical Classes

In addition to classes for dealing with relational data, there are classes for encapsulating
datalog style rules. These are the Rule, Relation, and Argument classes, which
represent datalog rules, relations, and arguments to relations, respectively. The RuleSet
class maintains unions of Rule objects. There is also a BottomUpEvaluator class
which answers a query over some RuleSet using semi-naive bottom up evalution.

A Rule object contains Relation’s and has a type associated with it. The rule is
either an lcw statement, materialized view, datalog rule, or rewrite rule (represented by
LCWSTATEMENT, SOURCEVIEW, WORLDVIEW, and REWRITE, respectively). Likewise,
a Relation holds one or more Argument objects, and is classified as a relation in
the global schema, a domain relation, or an information source relation (WORLDMODEL,
DOMAIN, or INFORMATIONSOURCE, respectively). The classification for each object is
determined from its context when parsed in from a string.

A RuleSet object contains a set of Rule objects. As new rules are added to the
RuleSet (via the addRule() method), a check is made to ensure the rule does not
already exist in the RuleSet. Rules can be individually deleted, and the content of two
RuleSet’s can be unioned together or subtracted.

The BottomUpEvaluator class is a fully functioning datalog evaluator. Given a
RuleSet, a Relation that represents the query, constant values for the EDB rela-
tions,and a Table for results, the BottomUpEvaluator will fill the Table with all
instances that match the query. Here is an example usage:

// construct a rule from a string
Parser parser = new Parser(new StringBufferInputStream(

"query(X, Y) :- edb(X, Y)"));
Rule rule = parser.rule();

// stick the rule in a ruleSet
RuleSet program = new RuleSet();
program.addRule(rule);

// build the evaluator
BottomUpEvaluator bev = new BottomUpEvaluator();
bev.setRules(program);

// add some constant values for the "edb" relation
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Object values[] = new Object[2];
values[0] = "first attribute";
values[1] = "second attribute";
bev.addConstant("edb", values);

// build the query
Relation query = new Relation("query",

Relation.WORLDMODEL, 2);

// execute the query
Table results = new InMemoryTable();
bev.evaluate(query, results);

// results should now hold { {"first attribute",
// "second attribute"} }
System.out.println("answer: " + results);

Note that when adding constant values for some relation, the relation is specified using only
the name of the relation (as opposed to the name plus the arity). The evaluator assumes that
each relation has a unique name.

A.2.3 Information Gatherer

The InformationGatherer interface is just a front end for the two subsystems that
perform the gathering: the QueryPlanner and the PlanExecutor. Basically, con-
struction of the original plan and logical rewriting of it is all performed in the
QueryPlanner, and run-time optimization and execution of the plan is performed in the
PlanExecutor.

A.2.4 Query Planner

The input to the query planner are the set of rules the user has constructed, mappings
from relation names to InformationSource objects, and the user’s query. The basic
protocol with a QueryPlanner object is like the following:

Hashtable sourceMappings = new Hashtable();
RuleSet rules = new RuleSet();

// ...
// Assume we put (source name, InformationSource object)
// pairs in ’sourceMappings’ and all the rules the user
// has defined into ’rules’
// ...
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QueryPlanner qp = new BasicPlanner();
qp.setRules(rules);
qp.setSourceHash(sourceMappings);

// assume ’queryRelation’ is the user’s query (as a
// Relation object)
RuleSet plan = qp.plan(queryRelation);

The query planner may have the plan() method repeatedly called on to answer queries
without having to call the setRules() and setSourceHash() calls again, provided
that no rules have been added or removed, and no information sources have been added or
removed.

Note that no inversion or processing of the user’s rules has occurred before passing
them to the query planner. It is the job of the query planner to interpret the rules passed in
to the gatherer.

The example above used the BasicPlanner. This planner implements the ideas in
this thesis. Other planners are: NaivePlanner which does basic rule inversion and no
LCW reasoning, and SystematicPlanner which enumerates all minimal plans after
doing inversion and selects the smallest one. The internals of each of these planners are
well documented, and each uses the supporting logical and relational classes described
above.

A.2.5 Plan Executor

The input to the plan executor is the plan (as a RuleSet) produced by the query planner,
mappings from relation names to InformationSource objects, the user’s query, and an
InformationAcceptor object. The protocol with the PlanExecutor is as follows
(assume this is occurring directly after the example interaction with the query planner,
above):

pe.setSourceHash(sourceMappings);

// ’callback’ is an object that implements the
// InformationAcceptor interface
pe.execute(queryRelation, plan, callback);

The plan executor is expected to begin execution in a seperate thread, and return from
the execute() method immediately. Just as with the QueryPlanner object, if no
information sources are added or removed the setSourceHash() method does not need
to be called before every execution.

There are two classes that implement the PlanExecutor interface:
AnnotatedExecutor and BasicExecutor. BasicExecutor merely executes
the plan passed in to it, and each datalog rule is evaluated from left to right.
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AnnotatedExecutor runs the same, but it makes use of the % annotations provided by
information sources to reorder access to information sources.

The two implemented plan executors convert the information gathering plan passed
in into a relational operator graph. Each node in the graph represents a relational op-
erator, and contains links to other nodes that it requires data from. Once the graph is
built, the plan is executed by traversing the graph, starting at the DisplayNode. When
UnionNode’s are encountered, new threads of execution are spawned and run in paral-
lel. A special extension of the InMemoryTable that enables thread locking, called the
InMemorySynchTable, is used to pass data between nodes and prevent multiple threads
from overwriting each other.

A.3 Tools

Arguably the most difficult part of building an information gatherer is wrapper construction.
The ease the pain of performing this, I have created a tool to adapt wrappers generated by
the SoftMealyalgorithm [12] for use with Emerac.

The output of the SoftMealy learner is a set of files (with different extensions) that
specify extraction rules, information about the page being learned, and test data. These can
be converted into a “.java” file that can be compiled into an InformationSource
object. To convert a group of files with a common prefix of, say, “wired” into a java class
called “WiredWrapper” that belongs to the package “edu.asu.gathertest”, do
the following from the command line:

$ java edu.asu.emerac.wrapper.eml.WrapperBuilder wired
edu.asu.gathertest WiredWrapper

A file called “WiredWrapper.java” will be created that can be compiled. For testing
purposes, the compiled class can be run on its own (it has a main function) and it will list
all the data it can extract from the information source it wraps.


