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CCAI as a  
Rosetta 

Stone 
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Can	Rao,	who	

knows	AI,		learn	

Chinese	by	listening	

to	CCAI	talks?		



What AI needs to do right away.. 
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[Hitchhiker’s	Guide	To	the	Galaxy]	



AAAI & China AI Community 
• Researchers from China are a 

formidable force in AI and AAAI 
•  One of the top countries in terms of 

number of submissions as well as 
acceptances  

• AAAI-17 dates shifted to avoid 
conflict with the start of the Year 
of Rooster! 

• We want more prominent 
representation of China in AAAI 

•  Prof. Qiang Yang is now on the 
Executive Council  

7 

AAAI	Conference	in		

February	4-9,	2017	

	in	San	Francisco!		



Agenda 
• Part I: The Path to General AI goes through 

Human-Machine Collaboration 
•  ..and it is a good thing! 

•  Expands reach and scope of AI enterprise 
•  Reduces some of the off-the-top worries about AI 
•  Brings up novel research challenges 

• Part II: Planning Challenges in Human-
Machine Collaboration 

•  Brief review of how the planning problem 
“expands” in the face of interaction/teaming 
with humans 

•  Specific challenges and some ongoing work in 
my group 8 



1983	Bachelors	thesis	J		
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“Physicists	and	Philosophers	

		united	against	AI”?		



AI	is	the	only	technology	that		is	going		
	from	disappointment	to	deadly	
	without	touching	beneficial..	(?)	



We can fight ‘em Robots, one by one J 



AI�s	Curious	Ambivalence	to	humans..	

You	want	to	help	humanity,	it	is	the	people	that	you	just	can�t	stand…	

•  Our	systems	seem	
happiest		
– either	far	away	from	
humans	

– or	in	an	adversarial	
stance	with	humans	

	



What happened to Co-existence? 

• Whither McCarthy�s advice taker? 
•  ..or Janet Kolodner�s house wife? 
• …or even Dave�s HAL?  

•  (with hopefully a less sinister voice) 

 



But isn’t this cheating?  

• Doesn’t putting human in the loop dilute the AI 
problem? 

• Won’t it be cheating? 
•  Like the original Mechanical Turk… 

• NO! 
•  Expands reach and scope of AI enterprise 
•  Reduces some of the off-the-top worries about AI 
•  Brings up novel research challenges 
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Many  
Intelligences..  

•  Perceptual & Manipulation 
intelligence that seem to come 
naturally to us 

•  Form the basis for the Captchas.. 
•  But rarely form the basis for our own 

judgements about each other’s 
intelligence 

•  Emotional Intelligence 
•  Social Intelligence 
• Cognitive/reasoning tasks 

•  That seem to be what we get tested 
in in SAT etc. 
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Spock or Kirk? 

•  By dubbing “acting rational” as the 
definition of AI, we carefully 
separated the AI enterprise from 
“psychology”, “cognitive science” etc. 

•  But pursuit of HAAI pushes us right 
back into these disciplines (and 
more) 

•  Making an interface that 
improves interaction with humans 
requires understanding of human 
psychology.. 

•  E.g. studies showing how 
programs that have even a 
rudimentary understanding of 
human emotions fare much 
better in interactions with 
humans 

20 



Architecture of an Intelligent Agent 
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22 HMM=	Human	Mental	Model	

Architecture of an Intelligent Agent 
teaming with a human 



Use Case Scenarios:  
One Robot & One Human 

Prediction: H is about to break a door open when R 
notices H's intention and predicts that breaking the 
door open will cause a board will fall on H.  R thus 
moves to catch the board preventively. 

Capability models: R notices that a heavy object blocks 
the entrance to a hallway that H wants to explore.  
Based on its capability model of H (i.e., what H can 
and cannot lift) and H's goal, R decides to interrupt 
its current activity and move the block out of the 
way. 

Mitigate Risk: H needs to search a building for 
wounded people but is uncertain about the 
structural integrity and worried that parts might 
collapse.  After communicating this to the robot, 
the robot propose a plan that has the robot go in 
first to assess the risk better and then to split the 
search in ways that minimize human risk 

 

Anticipation: R is tasked to wait outside a building and 
watch out for enemies while H is performing a 
search inside.  After more time has elapsed than it 
would take to perform the search, the R decides to 
go inside and find H to help H in case H has 
encountered any problems. 

Normative behavior: R has an order to deliver medical 
supplies to H, but notices on the way a wounded 
victim that needs medical attention.  R decides that 
caring for the victim is most important that 
delivering the supplies and notifies H of the delay. 

Coordination based on Mental Model Inference: R 
learns that H needs to get a medical kit to be able 
to triage a recently discovered victim.  R knows 
that H is aware that a medical kit is located in a 
particular room, but  infers that H is unaware that R 
has a medical kit that H could use.  While R cannot 
directly deliver its medical kit or wait for H due to 
other commitments, it can place its medical kit 
along the hallway where it expects H to go in order 
to get the first medical kit, thus relying on H's 
ability to notice the available medical kit and pick it 
up instead of the other remotely located kit. 

 
[With	Ma]hias	Scheutz]	



Use Case Scenarios:  
Multiple Robots & Humans 

Belief revision: H1 and H2 are working in two different 
areas each assuming that the other will take care 
of a third area.  R detects that discrepancies in its 
mental models of both humans in conjunction with 
its observations and decides to work on the third 
area (alternatively, R informs both H1 and H2 
about the discrepancy).   

Mental state inference: R notices that H1 cannot see 
H2 is approaching with equipment that H1 needs.  
R further observes that H1 is about to talk to 
another person and infers that this might be to 
order the urgently needed equipment from another 
person.  Hence, R contacts H1 directly and informs 
H1 of H2's arrival.   

Workload: R knows that H1 has currently high 
workload (e.g., from running simulations of H1's 
current activities based on R's model of H1's 
performance obtained from prior training) and thus 
does not interrupt H1 with a request from H2 that 
can wait, but communicates to H2 that it will take 
care of the request later.   

Social regulation: R notices an escalation in the 
interaction between H1 and H2 about how to best 
proceed, where H1 and H2 each propose different 
plans.  To mitigate, R proposes a compromise plan 
that contains elements of both H1's and H2's 
proposals (a "social" solution) 

Activity coordination through shared mental models: 
Two humans H1 and H2 each work with a robotic 
teammate R1 and R2 in a first responder scenario 
in the "hot zone" of a natural disaster.  H1 and R1 
work on the fair side of the designated area, while 
DHT2 and R2 begin working in an area closer to 
the boundary.  When R1 arrives with H1 at the 
designed area, R1 notices that not all the 
necessary equipment is available and 
communicates with R2 about the availability of the 
missing items.  R2 quickly predicts equipment 
needs and anticipates that those items are not 
needed for a while.  After quickly getting the OK 
from H2 to lend the equipment to R1, R2 drives off 
to meet R1 half-way, exchanges the equipment, 
and R1 returns to H1 in time to be able to continue 
triaging the victims with the missing equipment 
(which H1 did not even notice). Once the 
equipment is no longer needed, R1 meets up with 
R2 again, returning the equipment in time for H2 to 
have it available. [With	Ma]hias	Scheutz]	



Symbols or Neurons? 
•  "A physical symbol 

system has 
the necessary and 
sufficient means for 
general intelligent action. 

       --Allen Newell &  
          Herbert Simon 

 
 
 

• Symbols are 
Luminiferous Aether 
of AI 

—Geoff Hinton 
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Interpretable AI… 
It is not just for Safety!  
(Symbols/Neurons Redux) 
• We humans may be made of neurons, but we 

seem to care a “lot” about comprehensibility 
and “explanations” 

•  If we want AI systems to work with us, they 
better handle this 

•  This is an important challenge for the neural 
architectures 

•  What do those middle layers represent? 
•  DARPA Initiative on XAI..  

• Not just explanations, but explicable behavior! 
28 



Special	Theme:	Human	Aware	AI	

Why intentionally design 
a dystopian future and 
spend time being 
paranoid about it?  

Factoid:	The	country	with	the		
largest	number	of	paper	submissions:	China!	
	
China	was	also	a	close	second	in	number	
of	papers	accepted!	



Agenda 
• Part I: The Path to General AI goes through 

Human-Machine Collaboration 
•  ..and it is a good thing! 

•  Expands reach and scope of AI enterprise 
•  Reduces some of the off-the-top worries about AI 
•  Brings up novel research challenges 

• Part II: Planning Challenges in Human-
Machine Collaboration 

•  Brief review of how the planning problem 
“expands” in the face of interaction/teaming 
with humans 

•  Specific challenges and some ongoing work in 
my group 31 



A: A  Unified Brand-name-Free Introduction to Planning Subbarao Kambhampati 

Planning Involves Deciding a Course of 
Action to achieve a desired state of affairs 

Environment 
pe

rc
ep

tio
n 

Goals 

(Static vs. Dynamic) 

(Observable vs. 
 Partially Observable) 

(perfect vs.  
Imperfect) 

(Deterministic vs.  
 Stochastic) 

What action next?   

(Instantaneous vs.  
 Durative) 

(Full vs.  
Partial satisfaction) 



Planning: The Canonical View 
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Plan (Handed off 
for Execution) 

Full 
Problem 

Specification 

PLANNER 

Fully Specified  
Action Model 

Fully Specified  
Goals 

Completely Known 
(Initial) World State Assump^on:		

		àComplete	Ac^on	Descrip^ons	

		àFully	Specified	Preferences	

		àAll	objects	in	the	world	known	up	front	

		àOne-shot	planning	

Allows	planning	to	be	a	pure	inference	problem	

L	But	humans	in	the	loop	can	ruin	a	really	a	perfect	day	L	



Human-in-the-Loop  
Planning 
•  In many scenarios, humans are part of the 

planning loop, because the planner: 
•  Needs to plan to avoid them  

•  Human-Aware Planning 
•  Needs to provide decision support to 

humans 
•  Because “planning” in some 

scenarios is too important to 
be left to automated planners 

•  “Mixed-initiative Planning”; 
“Human-Centered Planning”; 
“Crowd-Sourced Planning” 

•  (May need)  help from humans 
•  Mixed-initiative planning; 

“Symbiotic autonomy” 
•  Needs to team with them 

•  Human-robot teaming; 
Collaborative planning 
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Task	1	
Learnable	Human	Models	

Task	2	
Human-aware	Decision	Making	

Task	3	
Explainable	Decision	Making	

Task	4	
Human	Factors	Analysis	and	EvaluaDon	

Relevance 
Estimator

Data 
Reformulater

T*

SourceRank [8,9]
· Vertical integration
· Agreement based
· Handles unstructured 

data sources

SmartINT [10]

· Horizontal integration
· Handles fragmented 

data sources

Generative & 
Error Model

of Query

Generative & 
Error Model

of Data

Structured and semi-
structured Sources

Unstructured Sources
(Includes documents 
and short text)

ET-LDA
Results (& Explanations)

*)|*(*)|(*)(

*)|(*)({
**,

QTRQQPQP

TTPTP
QT

¦v

T

Query 
Reformulater

Q*

Q

Tweet Rank[16]

· Incorporates Trust
· 3 layers of signals: 

user, tweet and links

QueryBayesWipe [11,12,13,17]

Structured Unstructured

Alignment and Aggregation

Structured 
Source

Unstructured 
Source

Latent topic Latent topicInferring 
similarity

aligned

Based on 
ET-LDA [14,15]

Goal / Intent Recognition, 
Model learningDecision 

Model

Proactive
Query

Pre-staged
Results

Model-lite plan recognition 
and model acquisition [1-7]RADAR

Actions

Suggested 
ActionsI

II

II

III

III

IV

R(T*|Q*)

Recogni(on	

Decision	Support	

Data	Support	



Planning: The Canonical View 
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Plan (Handed off 
for Execution) 

Full 
Problem 

Specification 
PLANNE

R 

Fully Specified  
Action Model 

Fully Specified  
Goals 

Completely Known 
(Initial) World State Assump^on:		

		àComplete	Ac^on	Descrip^ons	

		àFully	Specified	Preferences	

		àAll	objects	in	the	world	known	up	front	

		àOne-shot	planning	

Allows	planning	to	be	a	pure	inference	problem	

L	But	humans	in	the	loop	can	ruin	a	really	a	perfect	day	L	

Violated	Assump^ons:	

		àComplete	Ac^on	Descrip^ons	(Split	knowledge)	

		àFully	Specified	Preferences				(uncertain	users)	

		àPackaged	planning	problem	(Plan	Recogni^on)	

		àOne-shot	planning	(con^nual	revision)	

Planning	is	no	longer	a	pure	inference	problem	L	



rakaposhi.eas.asu.edu/hilp-tutorial	



rakaposhi.eas.asu.edu/hilp-tutorial	



Challenges	in	Human-in-the-loop	

Planning	

•  Interpret	what	humans	are	doing	based	on	incomplete	
human	and	domain	models	(Modeling)	

–  Plan/goal/intent	recogni^on	
•  Plan	with	incomplete	domain	models	(Decision	Making)	

–  Robust	planning/execu^on	support	with	“lite”	models	

–  Proac^ve	teaming	support	

•  Explicable	Behavior,	Explana^ons/Excuses		(Interac^on/
Communica^on)	

–  How	should	the	human	and	robot	coordinate	

•  Understand	effec^ve	interac^ons	between	humans	and	
machines	(Evalua^on)	

–  Human	factor	study	

	

	



Overview of our ongoing work 
• How to learn and plan with incomplete domain 

models 
•  Complete--Approximate--Shallow 

• How to plan to be useful to the human 
•  Avoiding conflicts and offering serendipitous help 

• How to make planned behavior explicable to 
the human in the loop 

•  Humans will parse the behavior in terms of their 
understanding of the Robot’s model 

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans 

•  As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like” L 40 



Manipulative (proximal) vs. 
Cognitive (remote) Teaming 
•  Much of the work in human-robot 

teaming has been focused on 
manipulation tasks where the human 
and the robot are in close proximity  

•  Here the plans are mostly path 
planning/manipulator planning.  

•  Our focus has been on tasks that 
require cognitive (in addition to 
manipulative) decisions—as is typically 
the case with remote human-robot 
collaboration in urban search and 
rescue scenarios.  
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Task	1	
Learnable	Human	Models	

Task	2	
Human-aware	Decision	Making	

Task	3	
Explainable	Decision	Making	

Task	4	
Human	Factors	Analysis	and	EvaluaDon	



Overview of our ongoing work 
• How to learn and plan with incomplete domain 

models 
•  Complete--Approximate--Shallow 

• How to plan to be useful to the human 
•  Avoiding conflicts and offering serendipitous help 

• How to make planned behavior explicable to 
the human in the loop 

•  Humans will parse the behavior in terms of their 
understanding of the Robot’s model 

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans 

•  As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like” L 42 



Underlying System Dynamics 

Traditional Planning 

[AAAI 2010; IJCAI 2009; IJCAI 2007,AAAI 2007] 

FF-HOP [2008] 

Effective ways to handle the more expressive planning problems by  
   exploiting the deterministic planning technology  
         --Classical planners have become the de facto substrates for  
            P-Space Complete problems..  

SAPA [2003] POND  [2006] 



Spectrum	of	Domain	Models	

8/27/16	 UNCLASSIFIED	 44	

Ease	of	learning/acquiring	the	models		

Underlying	System	Dynamics	
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Tradi<onal	Planning	

[AAMAS	2015]	 [ICAPS	2014;	IJCAI	2009,	2007]	[AAMAS	2016]	

Best	Student		

Paper	Nominee	

Note	the	contrast		to	ML	research	

where	the	progress	is	going	from	

uninterpretable/non-causal	

models	towards	interpretable	
and	causal	models.	

So	we	might	meet	in	the	middle!	

Causal/interpretable	à		ß	Associa^ve/uninterpretable		



Partial PDDL Domain Models 
Each action a is associated with possible precond and 
effects (in addition to the normal precond/eff): 

•  PreP(a) [p]: set of propositions that a might depend on 
during execution 

•  AddP(a) [p]: : set of propositions that a might add after 
execution 

•  DelP(a) [p]: : set of propositions that a might delete after 
execution 

a 
p1	

p3	

p1	

p3	

– 

p4	

p2	

– 

Example:	An	ac^on	a	that	is	known	
to	depend	on	p1,	add	p4	and	
delete	p3.	In	addi^on,	it	might	

have	p3	as	its	precondi^on,	might	

add	p2	and	might	delete	p1	aoer	
execu^on.	



There	are	known	knowns;	

there	are	things	we	know	

that	we	know.	There	are	

known	unknowns;	that	is	

to	say,	there	are	things	

that	we	now	know	we	

don’t	know.	But	there	are	

also	unknown	unknowns;	

there	are	things	we	do	not	

know	we	don’t	know.	



Solution Concept: Robust Plans 
•  Solution concept: 

•  Robust plan 
•  Plan is highly robust if executable in 

large number of most-likely 
candidate models 

•  Robustness measure 
•  Set of candidate domain models S 

(consistent with the given 
deterministic partial domain model 
D) 

•  A complete but unknown domain 
model D* 

•  Can be any model in S 

∑ ++=
a

aaaK )(DelP)(AddP)(PreP

|Π|	Number	of	candidate	models	with	

which	the	plan	succeeds	

Robustness	value:	3/8	

Easily	generalized	to	consider	model	likelihood	



Generating Robust Plans 
•  Compilation approach: Compile into a 

(Probabilistic) Conformant Planning 
problem 

•  One “unobservable” variable per 
each possible effect/precondition 

•  Significant initial state 
uncertainty 

•  Can adapt a probabilistic conformant 
planner such as  POND [JAIR, 2006; 
AIJ 2008] 

•  Direct approach: Bias a planner’s 
search towards more robust plans 

•  Heuristically assess the robustness 
of partial plans 

•  Need to use the (approximate) 
robustness assessment 
procedures 

•  A novel extension to relaxed 
planning heuristics to take 
robustness into account 

•    

[Nguyen	et	al;	NIPS	2013;	Nguyen	&	Kambhampa^,	ICAPS	2014]	



[NIPS	2013]	



[ICAPS	2014]	



Capability	Model	

53	

T-gap	capability	model	

Synchronic		
links	

Diachronic		
links	

(Generaliza^on	of	2-TBN	model	used	in	RDDL)	
(Imperfect	analogy	to)	HTN	Models.	A	capability	can	be	thought	of	as	an	abstract	task	

[AAMAS	2015]	



Ac;on	Vector	Models	
•  View	observed	ac^on	sequences	as	“sentences”	in	a	
language	whose	“words”	are	the	ac^ons	

•  Apply	skip-gram	models	to	these	sequences	and	
embed	the	ac^on	“words”	in	a	higher	dimensional	
space	

–  The	proximity	of	the	ac^on	words	in	that	space	is	seen	as	
their	“affinity”	

•  Use	the	ac^on	affini^es	as	a	way	to	drive	planning	
and	plan	recogni^on		

8/27/16	 UNCLASSIFIED	 54	



Learn	vectors	of	ac^ons	

Learn	vectors	wi	for	ai	in	A	by	op^mizing		

	a11	a12	…	a1n						a21	a22	…	a2n					...						aT1	aT2	...	aTn	

Plan	1	 Plan	2	 Plan	T	

•  T	=|L|		
•  c	is	the	window	size	
of	ac^on	context	

The	basic	probability	

defined	by	hierarchical	

soomax,	[cf.	Mikolov	et	

al.	NIPS-13]	



Ac^on	Vector	Models	can	be	used	to	

Recognize	Plans	
With	the	learnt	vectors	wi,	we	can	predict	the	target	

plan	(as	the	most	consistent	with	the	affini^es).	We	

use	an	EM	procedure	to	speedup	the	predic^on.		

The	target	plan	

to	be	recognized	

•  M	=	|the	target	plan|	
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Nominated	for	Best	Student	Paper		

Award	at	[AAMAS16]	

Learning	shallow	models		

	can	avoid	overfiung!!	



Overview of our ongoing work 
• How to learn and plan with incomplete domain 

models 
•  Complete--Approximate--Shallow 

• How to plan to be useful to the human 
•  Avoiding conflicts and offering serendipitous help 

• How to make planned behavior explainable to 
the human in the loop 

•  Humans will parse the behavior in terms of their 
understanding of the Robot’s model 

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans 

•  As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like” L 58 



Planning	with	Resource	Conflicts	in	Human-Robot	Cohabita;on	
Tathagata	Chakrabor9,	Yu	Zhang,	David	Smith,	Subbarao	Kambhampa9	AAMAS	2016	
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Planning for Human-Robot Teaming 

61 Coordinate with Humans 
[IROS14] 

Replan for the Robot 
[AAAI10, DMAP13] 

Communicate with 
Human(s) in the Loop 

 

Open World Goals 
[IROS09, AAAI10, TIST10] 

Action Model Information 
[HRI12] 

Handle Human Instructions 
[ACS13, IROS14] 

Assimilate Sensor 
Information 

Full 
Problem 

Specification 

PLANNE
R 

Fully Specified  
Action Model 

Fully Specified  
Goals 

Completely Known 
(Initial) World State 

Sapa Replan 

Problem Updates 
[TIST10] 

Planning for  
Human-Robot Teaming 

 

Goal 
Manager 



Overview of our ongoing work 
• How to learn and plan with incomplete domain 

models 
•  Complete--Approximate--Shallow 

• How to plan to be useful to the human 
•  Avoiding conflicts and offering serendipitous help 

• How to make planned behavior explicable to 
the human in the loop 

•  Humans will parse the behavior in terms of their 
understanding of the Robot’s model 

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans 

•  As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like” L 64 



Explicable Plan Generation for Human-Robot Interaction 
Anagha Kulkarni, Sarath Sreedharan, Tathagata Chakraborti, Yu Zhang and Subbarao 

Kambhampati  

Explicability 65 

Human’s	expecta;on	
of	agent	behavior	

Explicability	 Hidden	in	human’s	
mind	

Explicable	behavior	increases	team	fluency	by	reducing	the	need	

for	post-facto	explana^ons	

Goal:	Clear	a	clu]ered	table	

Keep	books	on	shelf	

Keep	the		

coffee	mug	

Keep	pen	in		

pen	holder	

Push	the	items	

off	the	table	

Move	to	the	table	

 
 
 
 Move	to	the	table	

Table	is	clear	
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When is a plan “Explainable” to the human in the 
loop? 

But,	alas,	M*
R	is	not	known!		
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Learning Human Expectation via Explicability Labeling 

93 

Analogy:	Think	of	learning	how	to	write	address	

	labels	so	the	postal	carrier	can	understand..	

Problem:	M*
R	is	not	known	

Solu^on:	Learn	it,	but	indirectly	

							as	a	labeling	scheme..			
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Learning the Labeling Scheme using CRF 



§  Robot can generate a set of 
plans and select the most 
explainable/predictable plan 

Plan selection 

Plan heuristic 

§  Robots can use it to directly 
synthesize more explainable/
predictable plans 

Using Learned Model of Explicability 

Preliminary	results	indicate	that	such		

a	scheme	is		effec^ve	in	

picking	explainable	plans..	



Bi-LSTM	as	Task	Predictor	for	Plan	Explicability	

…	

…	

…	

…	

Tes;ng	Accuracy:	
90.76%		

Ac;on	(0~N)	+	Executor	(0-Human/1-Robot/	
2-Neither)	+	State	(0010…)	

610010010100001001	

Mo;va;on:	
1.   Consider	future	

inputs.		
2.   Break	Markov	

Property.	
Feature:	

noop	 near-r1	 at-b6-r1	 at-b1-r1	 …	

0	 0	 1	 0	 …	



Overview of our ongoing work 
• How to learn and plan with incomplete domain 

models 
•  Complete--Approximate--Shallow 

• How to plan to be useful to the human 
•  Avoiding conflicts and offering serendipitous help 

• How to make planned behavior explicable to 
the human in the loop 

•  Humans will parse the behavior in terms of their 
understanding of the Robot’s model 

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans 

•  As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like” L 74 



Proactive Help Can 
be Disconcerting! 

75 

We dance round in a ring and suppose, !
But the Secret sits in the middle and knows. !

Do we really know what 
(sort of assistance) 

humans want? 

The	Sentence	Finisher	



Human Factor Studies 
•  To	understand	whether	human-robot	teams	
perform	be]er	with	more	intelligent/proac^ve	
robot	teammates	or	not	

•  Two	studies	
• Wizard-of-Oz		Human-Human	studies	

•  With	Cade	Bartle]	and	Nancy	Cooke		
•  Cade	Bartle]’s	M.S.	thesis	(in	prepara^on	for	Journal	submission)	

•  Human-Planner	studies	
•  To	see	if	proac^ve	robots	that	use	plan	recogni^on	to	
an^cipate	human	ac^ons	help	or	hinder	team	performance	

•  [IROS	2015][HRI	2015]	
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Human-human Teaming Analysis in 
Urban Search and Rescue 

Simulated search task (Minecraft) with human playing 
role of USAR robot 

•  20 internal/external dyads tested 
•  Conditions of autonomous/intelligent or remotely controlled 

robot 
•  Differences in SA, performance, and communications 

 



Analysis of Proactive Support in 
Human-robot teaming 

Simulated search task (Webots) with human remotely 
controlling a robot while collaborating with an intelligent 
robot ‘Mary’: 
 

Robot with a proactive support capability (vs. without): 
Higher dyad performance 
Lower communication 
Slightly (non-significant) increased mental workload 

• Mary with a proactive support capability in our USAR task scenario is generally preferred 
	

Findings	



Agenda for Today 
• How to learn and plan with incomplete domain 

models 
•  Complete--Approximate--Shallow 

• How to plan to be useful to the human 
•  Avoiding conflicts and offering serendipitous help 

• How to make planned behavior explicable to 
the human in the loop 

•  Humans will parse the behavior in terms of their 
understanding of the Robot’s model 

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans 

•  As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like” L 80 

Summary of our ongoing work 



Summary of the talk 
• Part I: The Path to General AI goes through 

Human-Machine Collaboration 
•  ..and it is a good thing! 

•  Expands reach and scope of AI enterprise 
•  Reduces some of the off-the-top worries about AI 
•  Brings up novel research challenges 

• Part II: Planning Challenges in Human-
Machine Collaboration 

•  Brief review of how the planning problem 
“expands” in the face of interaction/teaming 
with humans 

•  Specific challenges and some ongoing work in 
my group 81 
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DETAIL SLIDES 
(Not covered in the presentation) 
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