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CCAl as a
Rosetta
Stone

Can Rao, who
knows Al, learn
Chinese by listening
to CCAIl talks?




What Al needs to do right away..

BABEL FISH

DIGESTIVE NERVE CHORD ENERGY ABSORPTION FILTEF

TELEPATHIC EXCRETOR SRAIN ey

EXTENDABLE

NERVE SIGNAL UNCONSCIOUS
SENSOR FREQUENCY
DIGESTION CONSCIOUS SENSORS
GILL RAKERS HEART FREQUENCY SENSORS

THE BABEL FISH IS SMALL, YELLOW, LEECHLIKE,
AND PROBABLY THE ODDEST THING IN THE UNIVERSE.
IT FEEDS ON BRAIN WAVE ENERGY, ABSORBING Al.

6
[Hitchhiker’s Guide To the Galaxy]



 Researchers from China are a
formidable force in Al and AAAI

* One of the top countries in terms of
number of submissions as well as
acceptances

« AAAI-17 dates shifted to avoid
conflict with the start of the Year
of Rooster!

* We want more prominent
representation of China in AAAI AAA| Conference in

* Prof. Qiang Yang is now on the February 4-9, 20'17
Executive Council in San Francisco!




Agenda

* Part I: The Path to General Al goes through
Human-Machine Collaboration
- ..and it is a good thing!
 Expands reach and scope of Al enterprise

 Reduces some of the off-the-top worries about Al
* Brings up novel research challenges

 Part II: Planning Challenges in Human-
Machine Collaboration

 Brief review of how the planning problem
“expands” in the face of interaction/teaming
with humans

« Specific challenges and some ongoing work in
my group
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I.INTRODUCTION :~

I__._I._‘OBJECTIVE.‘ 3=

The objective of this study is to investigate the
performance of existing ISOLATED WORD RECOGNITION SYSTEMS
for confusable vocabulary and to suggest methods for
improving the performance.

I,2 EXISTING SYSTEMS 3

Speech Recognition, as a very important problem of
pattern-Recognition has peen recognised long back and efforts
to make Speech Recognition a practical reality date as far
back as 1950's (1), One of the very first problems, to
be tackled in Speech Recognition is "pecognition of Isola~-
ted Words". Apart from being the simplest facet of Speech
Recognition, IWR has been found to have potential commer=
cial applications (2) and more importantly to be a first
step towards more complicated problems of Connected Word
Recognition and £inally Speech Understanding.

1.2.1 DESCRIPTION OF EXISTING SYSTEMS 3
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The Fundamental Questions

Facing Our Age

» Origin of the Universe
* Origin of Life
» Nature of Intelligence

- “To know your future you must know your past”
wy
George Santayana

Predictions are hard,
especially about the future

--Niels Bohr

You Can’t Do That, Dave!
Collateral Lessons from a
Computational Quest to

16th annual

Design HAL

Subbarao Kambhampati

Computer Science & Engineering

* Computational quest to design
HAL may not directly teach you
pat life lessons of the

* But, it gives you a deeper, more
nuanced, appreciation of some
of life’s fundamental tradeoffs...

* ..and | think you will be much
the richer for the understanding

Thank
Yov




In this thought experiment, a person in the "Chinese &)

room" is passed questions from outside the room, and
consults a library of books to formulate an answer

WHAT COMPUTERS STILL CAN'T DO |
A Contigue of Avtificial Reason The Power (‘)f
Human ntuition
and Expertisein
theLra of the

\} .
Mind over
Machine

Hubert L. Dreyfs
Stuart E Dreyfus

HUBERT L. DREYFUS

CONGERNING
COMPUIERS,
MINDS,AND
THE LAWS

OF PHYSICS

“Physicists and Philosophers
united against Al”?

I'd rather learn from one bird how to sing
than teach ten thousand stars how not to dance.

(E. E. Cummings)

izquotes.com



Musk, Wozniak and Hawking urge ban
on warfare Al and autonomous weapons

A RGBT

More than 1,000 experts and leading robotics researchers sign open letter
warning of military artificial intelligence arms race

».-,'

i/ 4 only country
g A% that went
v ____ from barbarism
Netflix's Hastings: Battle fo to decadence
machmes and genetlcally without civilization
e in between

j America is the

~ Oscar Wilde ~

Al is the only teq
from disappoin

e es the key to
without touching beneficialtef ?) izing othyer B‘ oo

www.StatusMind.com

»
; \ planets. But the renowned physicist, whose
kr/epSos .de .

o Before Reed Hastings cofounded a little company called Netflix, which is now rece nt Iect u re »VI | | be b road Cast next Week’

changing the way we watch TV, he was an artificial intelligence engineer. Press Releases

. .

v el o does not think that will happen soon.

conversation on stage today at xhe DLD Co in Muni (h Germany, D
@H stings said he was far ied abou Iomgm of an Al-triggered

apocalypse than are man yo he obse rvers, such as Tes\as Elo Musk. B B C N C[ WS

Smep ople worry about what happens when machine intelligence is too

strong,” Hastin, gs said. “That's like worryil gaboutou Ma s colon; ya cpeople




We can fight ‘em Robots, one by one ©




Al’ s Curious Ambivalence to humans..

* QOur systems seem
happiest

— either far away from
humans

— or in an adversarial
stance with humans

You want to help humanity, it is the people that you just can’t stand...



What happened to Co-existence?

« Whither McCarthy’ s advice taker?
« ..or Janet Kolodner’ s house wife?

. ...or even Dave’ s HAL?
 (with hopefully a less sinister voice)

A4,
fuman: ware Al




But isn’t this cheating?

* Doesn’t putting human in the loop dilute the AI
problem? ,

* Won't it be cheating?
* Like the original Mechanical Turk..

17



Many

Intelligences..

* Perceptual & Manipulation
intelligence that seem to come

naturally to us

« Form the basis for the Captchas..

« But rarely form the basis for our own
judgements about each other’s

Intelligence

 Emotional Intelligence
 Social Intelligence

« Cognitive/reasoning tasks
« That seem to be what we get tested

in in SAT etc.
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What is AI?

Systems that think like humans

Spock or Kirk?

Systems that think rationally

Systems that act like humans

Systems that act rationally

» By dubbing “acting rational” as the
definition of Al, we carefully
separated the Al enterprise from

” 1

“psychology”, “cognitive science” etc.

» But pursuit of HAAI pushes us right
back into these disciplines (and
more)

« Making an interface that
improves interaction with humans
requires understanding of human
psychology..

* E.g. studies showing how
programs that have even a
rudimentary understanding of
human emotions fare much
better in interactions with
humans




Architecture of an Intelligent Agent

Sensors ¢

___________________________

|||||||

ii Robot Actuators /




Architecture of an Intelligent Agent

teaming with a human

________________________

i | Robot Actuators

HMM= Human Mental Model

Environment




Use Case Scenarios:
One Robot & One Human

Prediction: H is about to break a door open when R

notices H's intention and predicts that breaking the
door open will cause a board will fall on H. R thus
moves to catch the board preventively.

Capability models: R notices that a heavy object blocks

the entrance to a hallway that H wants to explore.
Based on its capability model of H (i.e., what H can
and cannot lift) and H's goal, R decides to interrupt
its current activity and move the block out of the
way.

Mitigate Risk: H needs to search a building for

wounded people but is uncertain about the
structural integrity and worried that parts might
collapse. After communicating this to the robot,
the robot propose a plan that has the robot go in
first to assess the risk better and then to split the
search in ways that minimize human risk

Anticipation: R is tasked to wait outside a building and

watch out for enemies while H is performing a
search inside. After more time has elapsed than it
would take to perform the search, the R decides to
go inside and find H to help H in case H has
encountered any problems.

Normative behavior: R has an order to deliver medical

supplies to H, but notices on the way a wounded
victim that needs medical attention. R decides that
caring for the victim is most important that
delivering the supplies and notifies H of the delay.

Coordination based on Mental Model Inference: R

learns that H needs to get a medical kit to be able
to triage a recently discovered victim. R knows
that H is aware that a medical kit is located in a
particular room, but infers that H is unaware that R
has a medical kit that H could use. While R cannot
directly deliver its medical kit or wait for H due to
other commitments, it can place its medical kit
along the hallway where it expects H to go in order
to get the first medical kit, thus relying on H's
ability to notice the available medical kit and pick it
up instead of the other remotely located Kkit.

[With Matthias Scheutz]



Use Case Scenarios:
Multiple Robots & Humans

Belief revision: H1 and H2 are working in two different

areas each assuming that the other will take care
of a third area. R detects that discrepancies in its
mental models of both humans in conjunction with
its observations and decides to work on the third
area (alternatively, R informs both H1 and H2
about the discrepancy).

Mental state inference: R notices that H1 cannot see

H2 is approaching with equipment that H1 needs.
R further observes that H1 is about to talk to
another person and infers that this might be to
order the urgently needed equipment from another
person. Hence, R contacts H1 directly and informs
H1 of H2's arrival.

Workload: R knows that H1 has currently high

workload (e.g., from running simulations of H1's
current activities based on R's model of H1's
performance obtained from prior training) and thus
does not interrupt H1 with a request from H2 that
can wait, but communicates to H2 that it will take
care of the request later.

[With Matthias Scheutz]

Social regulation: R notices an escalation in the

interaction between H1 and H2 about how to best
proceed, where H1 and H2 each propose different
plans. To mitigate, R proposes a compromise plan
that contains elements of both H1's and H2's
proposals (a "social" solution)

Activity coordination through shared mental models:

Two humans H1 and H2 each work with a robotic
teammate R1 and R2 in a first responder scenario
in the "hot zone" of a natural disaster. H1 and R1
work on the fair side of the designated area, while
DHT2 and R2 begin working in an area closer to
the boundary. When R1 arrives with H1 at the
designed area, R1 notices that not all the
necessary equipment is available and
communicates with R2 about the availability of the
missing items. R2 quickly predicts equipment
needs and anticipates that those items are not
needed for a while. After quickly getting the OK
from H2 to lend the equipment to R1, R2 drives off
to meet R1 half-way, exchanges the equipment,
and R1 returns to H1 in time to be able to continue
triaging the victims with the missing equipment
(which H1 did not even notice). Once the
equipment is no longer needed, R1 meets up with
R2 again, returning the equipment in time for H2 to
have it available.



Symbols or Neurons?

* "A physical symbol * Symbols are
system has Luminiferous Aether
the necessary and of Al

sufficient means for

—Geoff Hinton

general intelligent action.
--Allen Newell &
Herbert Simon

26



 We humans may be made of neurons, but we
seem to care a “lot” about comprehensibility
and “explanations”

* If we want Al systems to work with us, they
better handle this
 This is an important challenge for the neural

architectures

* What do those middle layers represent?
« DARPA Initiative on XAl..

* Not just explanations, but explicable behavior!



AJILERT

25" International Joint Conference
on Artificial Intelligence

New York City, July 9-15, 2016
www.ijcai-16.0rg

&

Special Theme: Human Aware Al

Why intentionally design
a dystopian future and
spend time being
paranoid about it?

Brewia Kambhampeti  Devis e Sebakovic Frit Factoid: The country with the

Leipzig University, Arizona State New York University Albert-Ludwigs- Vienna University of

Cormy Unvrshy. Turge Ukt g Techuokogy A largest number of paper submissions: China!

LUCAI AAAI China was also a close second in number
The International joint Conferences on Artificial Intelligence  The Association for the Advancement of Artificial Intelligence Of p ap ers accep ted!




Agenda

* Part I: The Path to General Al goes through
Human-Machine Collaboration
- ..and it is a good thing!
 Expands reach and scope of Al enterprise

 Reduces some of the off-the-top worries about Al
* Brings up novel research challenges

 Part II: Planning Challenges in Human-
Machine Collaboration

 Brief review of how the planning problem
“expands” in the face of interaction/teaming
with humans

« Specific challenges and some ongoing work in
my group 31



Planning Involves Deciding a Course of
Action to achieve a desired state of affairs

tatic vs. Dynamic)

(Observable vs.
Rartially Observable)

(Instantaneous vs.

Partial satisfaction) Durative)

o
Q
v

(Deterministic vs.
Stochastic)

;I\(What action next?

O O

A: A Unified Brand-name-Free Introduction to Planning Subbarao Kambhampa




Planning: The Canonical View

Problem —=—————--- "
Specification I

Fully Specified
Action Model

Fully Specified
Goals

Completely Known
(Initial) World Statcy

Plan (Handed off |
@ But humans in the loop can ruin a really a perfect day ® for Execution) |



Recognition

Human-in-the-Loop RO

z! !!_‘,TJ, —‘ Actions ¢

. S N
BayesWipe [11,12,13,17] +
o - H—= Query
a n n I n : - —
i egation
[r—
P Source
nemeICIr o

enerativi ' L

Results (& Explanations)
(] | suseesica Struct

Actions

Ly *

In many scenarios, humans are part of the
planning loop, because the planner:

* Needs to plan to avoid them
* Human-Aware Planning

* Needs to provide decision support to
humans

« Because “planning” in some
scenarios is too important to
be left to automated planners

« “Mixed-initiative Planning”;
“Human-Centered Planning”;
“Crowd-Sourced Planning”

* (May need) help from humans L]
- Mixed-initiative planning; “
“Symbiotic autonomy”

L] N e e d S tO te a m W | t h th e m Human-aware\Decision Making l\_{g Expldigable Decision Making
* = . , Task 1 Task 4
H u m a n ro bOt tea m I n g ’ . AT Nodels Human Factors Analysis and Evaluation

. . Learnable i
Collaborative planning



cal Viewv

Problem ~~""777777 |
Specification \ 4

This old model . / PLANNE \
needs to be ) ]
replaced. g R
> { "0’.. ‘ \; * —" \/

Planning: The

Fully Specified
Action Model

Fully Specified
Goals

Completely Known
(Initial) World Statcy

Plan (Handed off |
@ But humans in the loop can ruin a really a perfect day ® for Execution) |
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Human-in-the-Loop Planning &
Decision Support

rakaposhi.eas.asu.edu/hilp-tutorial

Subbarao Kambhampati |
Arizona State University % i o
Kartik Talamadupula (-

IBM T.J. Watson Research Center
Funding from ONR, ARO and NSF
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Human In the LoopPla...

Human In the Loop Pla...

| 2

Sme—

Materials
Tutorial Slides (Final version, as given) [PDF]




Challenges in Human-in-the-loop
Planning

Interpret what humans are doing based on incomplete
human and domain models (Modeling)

— Plan/goal/intent recognition
Plan with incomplete domain models (Decision Making)

— Robust planning/execution support with “lite” models
— Proactive teaming support

Explicable Behavior, Explanations/Excuses (Interaction/
Communication)
— How should the human and robot coordinate

Understand effective interactions between humans and
machines (Evaluation)
— Human factor study



Overview of our ongoing work

* How to learn and plan with incomplete domain
models
« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

 How to make planned behavior explicable to
the human in the loop

 Humans will parse the behavior in terms of their
understanding of the Robot’s model
* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

 As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 40



Manipulative (proximal) vs.
Cognitive (remote) Teaming

* Much of the work in human-robot
teaming has been focused on
manipulation tasks where the human
and the robot are in close proximity

» Here the plans are mostly path
planning/manipulator planning.

* QOur focus has been on tasks that
require cognitive (in addition to
manipulative) decisions—as is typically
the case with remote human-robot
collaboration in urban search and
rescue scenarios.

B -
I ==



Overview of our ongoing work

* How to learn and plan with incomplete domain
models
» Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

 How to make planned behavior explicable to
the human in the loop

 Humans will parse the behavior in terms of their
understanding of the Robot’s model
 How to recognize and evaluate what are the
desiderata for fluent teaming with humans

 As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 42



Effective ways to handle the more expressive planning problems by
exploiting the deterministic planning technology
--Classical planners have become the de facto substrates for
P-Space Complete problems..

; Traditional Planning FF-HOP [2008]
Q’(o | /

v

. cf .o b\
\$\o o@ \\\0 O& bé’\ Q;o
Q RS J 1% &
N <& & O

Underlying System Dynamics
SAPA [2003] POND [2006]



Traditional Planning

.7 Spectrum of Domain Models

|

1
NG A
TS QP

& @@“ SN SR
& ¢ S Q‘be@ & &
° ~ N Best Student
Underlying System Dynamics Paper Nominee
~ [AAMAS 2016] [AAMAS 2015] [ICAPS 2014; 1JCAI 2009, 2007]
Increasing degree of incompleteness of planning models ‘
‘ Capability Model ‘
‘ Word Vector Model ‘ i ; ‘ Incomplete PDDL ‘
t ' Partial Models | t
\ No I\jﬂigi! | \Mow Models . ‘ Approximate Mode&\ Wodel ‘
T . *
PIanning‘ | ' No plan ' Plan critiquing or \E ' Planning Robust plan generation | | Traditional
| Support [ e ' . auto-completion | | Guidance | | and management | | planning
< Associative/uninterpretable Causal/interpretable =
Ease of learning/acquiring the models
(/"“‘\\ /“\ /‘“ Note the contrast to ML research
1 where the progress is going from
o /"\ /\/’ uninterpretable/non-causal
) models towards interpretable
/ /\ and causal models.
e So we might meet in the middle!




Partial PDDL Domain Models

Each action a is associated with possible precond and
effects (in addition to the normal precond/eff):

* PreP(a) [p]: set of propositions that a might depend on
during execution

« AddP(a) [p]: : set of propositions that a might add after
execution

* DelP(a) [p]: : set of propositions that a might delete after
execution

Example: An action a that is known ol
to depend on p1, add p4 and p2
delete p3. In addition, it might O

. . . 3 p3
have p3 as its precondition, might P
add p2 and might delete p1 after
execution.

ing degree of i of planning models

||||||||||||||

itiquing or . Planning Robust plan generation Traditional |
! Guidance and management planning !

Planning



There are known knowns;
there are things we know
that we know. There are
known unknowns; that is
to say, there are things
that we now know we
don’t know. But there are
also unknown unknowns;
there are things we do not
know we don’t know.




Solution Concept: Robust Plans

» Solution concept:
* Robust plan

» Plan is highly robust if executable in
large number of most-likely
candidate models

» Robustness measure

» Set of candidate domain models S
(consistent with the given

deterministic partial domain model
D)

* A complete but unknown domain
model D*

« Can be any model in S

R(m) = %

ITT| Number of candidate models with
which the plan succeeds

K = E PreP(a) + AddP(a) + DelP(a)

state s, (initial state)

O, 7
e 7
\./ a,
A
P @
state s, state s, ( goal state)

Candidate models of plan 1 2 3 4 5 6 7 8

a, relieson p; yes | yes | yes | yes [ no no no no

a, deletes p, yes [ yes [ no | no [ yes | yes | no no

a, adds p» yes | no [ yes | no | ves | no | ves no

Plan status fail | fail | fail | fail |succeed| fail |succeed|succeed
Legend

precondition E‘—’ additive effect ""’ gg?jﬁzefeﬁed
—@—» delete effect -@-o

possible
precondition

possible

Robustness value: 3/8

Easily generalized to consider model likelihood

@ pis true

:’-:". is false
delete effect  *eis’ P




Generating Robust Plans

D. Bryce et al. / Artificial Intelligence 172 (2008) 685-715

» Compilation approach: Compile into a | Jorich Soerton
(Probabilistic) Conformant Planning E——
problem . — -
« One “unobservable” variable per e s ——
each possible effect/precondition ooz
+ Significant initial state g—/
uncertainty
« Can adapt a probabilistic conformant pcie
planner such as POND [JAIR, 2006; Exurction
AlJ 2008] e
» Direct approach: Bias a planner’s
search towards more robust plans Initial Current { T =
 Heuristically assess the robustness Py N B 4 O -,
of partial plans O - O ——————

\O Ll

* Need to use the (approximate)
robustness assessment 5

uccessor Relaxed plans are

procedures states  used to evaluate

« A novel extension to relaxed successor states
planning heuristics to take
robustness into account
[Nguyen et al; NIPS 2013; Nguyen & Kambhampati, ICAPS 2014]



Synthesizing Robust Plans: A Compilation

Incomplete model Complete model

Complete world state Belief state

(Conformant Probabilistic
Planning)

xq/,@ xp (0.5) x4(0.7) x,(0.2)

» Resulting action a’ with eight
Xy @ conditional effects.

Cond: x, Ap Axg Ax, Effiq A—r

[NIPS 2013]



Synthesizing Robust Plans: A Heuristic Search
*»* Anytime approach

1. Initialize: 6 = 0 h(s,6) =100
2. Repeat

“Findplanmtst.R(m) > §
/"~ Better state found.
*If plan found: 6 = R(m) h(s',8) = 55
Until time bound reaches
3. Return  and R(m) if plan found

h(s,8): how faritis h(s",6) =0
approximately from s to a goal Goal reached
state so that the resulting plan § « R(m)

has approximate robustness > 6.

[ICAPS 2014]



Capability Model

‘Word Vector Model Incomplete PDDL

Partial Models f

No Iﬂiiil igillow Models § § Approximate Models E!!I Hlodel

A capability:

P(X¢ = SE |X¢ — SI) S 5=>5;

A conditional probability
(specified by a partial initial and eventual state)

T-gap capability model

Initial State | Eventual State
strong(AG) stron'g(AG)
S:[nchronic .
. has_money(AG) has_money(AG)
links
can_carry(AG,PKG can_carry(AG,PKG
_carry( ) | _carry )
has_trolley(AG) D iach ron iC has_tro’ley(AG)
deliverable(AG,PKG) links deliverabl&(AG,PKG)
delivered(PKG) deliver&j(PKG)

[AAMAS 2015]

(Generalization of 2-TBN model used in RDDL)
(Imperfect analogy to) HTN Models. A capability can be thought of as an abstract task -



Action Vector Models

* View observed action sequences as “sentences” in a
language whose “words” are the actions

* Apply skip-gram models to these sequences and
embed the action “words” in a higher dimensional
space

— The proximity of the action words in that space is seen as
their “affinity”

* Use the action affinities as a way to drive planning
and plan recognition

d f mpl s of pl model
Capability Model
Wor i
Partial Model i
N W Shallow Models Approximate Models w del
§§
Plannin g No pl Pl tiquing . Planning | Robust plan g t Traditional
Support |1 e to-complet ! Guidance ' d management pl g

8/27/16 UNCLASSIFIED 54



Learn vectors of actions

Plan 1 Plan 2 PlanT

I I
{ i { i I . 1

81,85y - @y, @y1@yy e By .. Apq Apy ... A7y e T=|L]
\ l /  cisthe window size
of action context

Learn vectors w; for a; in A by optimizing

T
%Z > logp(wej|we)

t=1 —c<j<c,j#0 The basic probability
defined by hierarchical
softmax, [cf. Mikolov et
al. NIPS-13]




Action Vector Models can be used to

Recognize Plans

With the learnt vectors w;,, we can predict the target
plan (as the most consistent with the affinities). We
use an EM procedure to speedup the prediction.

FR)=>, >,

k=1 —c<j<c,j#0

The target plan
to be recognized

accuracy
o
=

(a) blocks

| B—-B'—‘B'~—[3-——D

~

- B -DupP

—X: = ARMS+PRP

0.05 0.1 0.15 0.2 0.25

percentage of unobserved action

accuracy

(b) depots
I & =--B - - --&--0
& .
L \.
N ”\.
N
x
-8 -pup
—X- = ARMS+PRP

0.05 0.1 0.15 0.2 0.25

percentage of unobserved actions

accuracy

0.8

0.7

© o 9 o
ML

o
-

0

g --B--B--G--0

\ .

log p(wi+j|wk)

(c) driverlog

N

- B -Dpup

Learning shallow models
can avoid overfitting!!

—X: = ARMS+PRP

=y

p

* M = |the target plan|

Algorithm 1 Framework of our DUP algorithm

N —

Input: plan library £, observed actions O
Output: plan p

: learn vector representation of actions

: initialize ', with 1/M for all o € A, when k is an unob-
served action index

: while the maximal number of repetitions is not reached do

sample unobserved actions in O based on I'

update I" based on Equation (6)

project I to [0,1]

: end while

: select actions for unobserved actions with the largest weights
in

9: return p

005 01 015 02 025
percentage of unobserved actions *\‘

ominated for Best Student Paper

ward at [AAMAS16]



Overview of our ongoing work

* How to learn and plan with incomplete domain
models
« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

 How to make planned behavior explainable to
the human in the loop

 Humans will parse the behavior in terms of their
understanding of the Robot’s model
 How to recognize and evaluate what are the
desiderata for fluent teaming with humans

 As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 58




» resource profiles

Model and predict human’s intentions
» belief modeling and plan recognition

Obtainand represent relevantinformation efficiently

Inform the robot’s planning process with this information
» Interaction constraints in IP-based planner

A~ M

s

Observations

Belief
Models

Environment

Stigmergic
Collaboration

Planning with Resource Conflicts in Human-Robot Cohabitati
Tathagata Chakraborti, Yu Zhang, David Smith, Subbarao Kambhampati

4

(3
=

[ B

Goal/Intent Recognition
(GIR) Component
Set of (predicted)
plans
Information extraction
and representation
l l Interaction
Constraints

Planning
Robot )

Component




Planning for Human-Robot Teaming p,ﬁlm

Problem Updates Specific
[TIST10]

T e =-Assimilate.Sensok - -

Open World Goals

> When to start R | :
seneing? I Information
> Indicator to start 1
sensing I PLANNE
1 Sapa Replan

> What to look for? I

> Object type I

> Object properties I

¢ <FullySpoeified—

> When to stop sensing? g @ .

> When does the planner know the world is closed? *‘:‘_ ACt|0n MOdel
> Why should the robot sense? =

» Does the object fulfill a goal? | Goal

> What is the reward? Is it a bonus?

Talamadupula, Benton et al., ACM TIST 2010] M a n a g e r m
I \ 7 1 “ -
I Goals
! Planning for
1 Replanning for Changing Worlds I Model Updates
I | (via natural language)
[ — "
: > New Information 1 » “To go into a room when you
I » Sensors ] 1 g:‘ee an'(1 gtglr9§ed door, push it
1 .
: » Human teammate 1 > gregt,)ndition: “you are at a closed
00|
: N New Goals : > chtigp‘ definition: “push it one
I » Orders: Humans 1 » Effect: “go into a room”
I » Requests 1
" : Re , NLP Module
. i. Ref Iuti

: » Requirement e i Parcimg esoten
I > New plan that works in new world (state) :U izgsgfg:ggl i';r;z)“r:l?g)gpe.vlanner)
1. » Achieves the changed goals — e e o '

Talamadupula et al. AAAI10] [Cantrell, Talamadupula et al., HRI 2012] [In collaboration with hrilab, Tufts University]
=

Iy |
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Overview of our ongoing work

* How to learn and plan with incomplete domain
models
« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

 How to make planned behavior explicable to
the human in the loop

 Humans will parse the behavior in terms of their
understanding of the Robot’s model

 How to recognize and evaluate what are the
desiderata for fluent teaming with humans

 As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 64
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Explicability

Explicable behavior increases team fluency by reducing the need
for post-facto explanations

Explicability — s—) Human’s expectation| ) Hidden in human’s
of agent behavior mind

L,
1 Move to the table

Ne‘ep books on shelf

Push the items \ Keep the

Move to the table |

off the table coffee mug

Aﬂeep pen in
M pen holder
\ Table is clear

Explicable Plan Generation for Human-Robot Interaction
Anagha Kulkarni, Sarath Sreedharan, Tathagata Chakraborti, Yu Zhang and Subbarao
Kambhampati




When is a plan “Explainable” to the human in the

loop!?

The robot generates its plan of
action using its model My

The human “interprets” this plan in
light of her understanding of the
Robot’s model M*;

M and M7; can be quite different..

Differences can be a result of:

& Different capabilities (e.g., possible
actions)

& Different knowledge (e.g., level of
modeling)

& Different interpretation of behaviors
(e.g., plans) interacting with the
world -- more than just trajectory
planning!

The more
explainable
plan
requires
picking up
the heavy
block

argmin cost(mar, ) + o - dist(Tary, 7TM’1"_.£)
7TMR

But, alas, M is not known!



Learning Human Expectation via Explicability Labeling

Problem: M™; is not known o

argmin cost(may) + @ -Idist(wMR, T, )

Solution: Learn it, but indirectly g
as a labeling scheme.. dist(Tatn, Ta) =Fo|§f(7r;MR>

argmin cost () + - F o Copp (g | {Si|S: = £* (wh,)})

TI'MR

0 1 2 Analogy: Think of learning how to write address

labels so the postal carrier can understand..

7
{S;, y
(G)
)
Ve
|10

Task labels (to associate with actions).

More than one label is allowed for actions

AN 'y

g obs ({0}, {S}) =

3 ¢ 4 ({START}, {C}) For example:
o

E( & Collect
3 .3 &

s \z nav ({C}, S} & Store

6 7 8

- A — & Observe
)

i

o

(S

argmin cost(mary) + - F o



Learning the Labeling Scheme using CRF

» Model: » Features:
& Conditional Random Fields (CRF & Plan features: e.g., at rover L5
1 & Action/trajectory Features: e.g.,
p(X,y) = ZHA(I)(XA Ya) action type

& Interaction features: e.g., distance
to the human

p
13‘}, y
(G)
)
ol

Task labels (to associate with actions).

3
5 ((START}, {C) For example:
5
@C‘" & Collect
2 %3
E & & Store
=)
6 7 8
- & Observe
= ~ A
= '@Q More than one label is allowed for actions
Q0
o

argmin cost () + - Fo



Using Learned Model of Explicability

Preliminary results indicate that such

a scheme is effective in
picking explainable plans..

Plan selection

= Robot can generate a set of
plans and select the most
explainable/predictable plan

Plan heuristic

= Robots can use it to directly
synthesize more explainable/
predictable plans

Comparison between EXPD-SELECT and RAND-SELECT

1.0 o o EXPD-SELECT-EX
4 -4 RAND-SELECT-EX
wia EXPD-SELECT-PD |
N +—+ RAND-SELECT-PD

Maximum Number of Hidden Locations to Visit

Figure 5: Comparison of EXPD-SELECT and RAND-

SELECT
Comparison between FF-EXPD and FF
1.0 o o FF-EXPD-EX
0.9 ~ - FF-EX
0.8 = m FF-EXPD-PD
o +— FF-PD
a 0.7
©
506
=<
“o.s
0.4}
0.3
02 1 2 3 4 5 6 7 8 9
Trial ID

Figure 6: Comparison of FF-EXPD and FF considering uexp
in Alg. 1.



Bi-LSTM as Task Predictor for Plan Explicability

Motivation:

1. Consider future
inputs.

2. Break Markov
Property.

7/@@0010100001001 ]
Action(0~N) + Exécutor ml-Robot/

2-Neither) + State{0010..
Testing Accuracy:

90.76% noop near-rl at-b6-rl1 | at-bl-rl

N i o s s s )




Overview of our ongoing work

* How to learn and plan with incomplete domain
models
« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

 How to make planned behavior explicable to
the human in the loop

 Humans will parse the behavior in terms of their
understanding of the Robot’s model

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

» As the “paper clip” assistant shows, we Al’ers are
not great at guessing what humans “like” ® :




Proactive Help Can

Do we really know what _ ‘
be Disconcerting!

(sort of assistance)
humans want?

b \.. SPORENERRREEE
b= v I

I

; £ . ACTION
*,\‘0(-3(“ INVESTIGATION FOCUSED ON TESLA AUTOPILOT | abce pine

We dance round in a ning and suppoce,
But the Seeret sits in the middle and lunoue.




Human Factor Studies

e To understand whether human-robot teams
perform better with more intelligent/proactive
robot teammates or not

e Two studies

* Wizard-of-Oz Human-Human studies
* With Cade Bartlett and Nancy Cooke
* Cade Bartlett’s M.S. thesis (in preparation for Journal submission)
* Human-Planner studies

* To see if proactive robots that use plan recognition to
anticipate human actions help or hinder team performance

* [IROS 2015][HRI 2015]

8/27/16 UNCLASSIFIED 77



Human-human Teaming Analysis in
Urban Search and Rescue

Simulated search task (Minecraft) with human playing
role of USAR robot
20 internal/external dyads tested

« Conditions of autonomous/intelligent or remotely controlled
robot

« Differences in SA, performance, and communications




Analysis of Proactive Support in

Human-robot teaming

Simulated search task (Webots) with human remotely
controlling a robot while collaborating with an intelligent
robot ‘Mary’:

Findings
Robot with a proactive support capability (vs. without):
Higher dyad performance
Lower communication
Slightly (non-significant) increased mental workload
*Mary with a proactive support capability in our USAR task scenario is generally preferred




Summary of our ongoing work

* How to learn and plan with incomplete domain
models
« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

 How to make planned behavior explicable to
the human in the loop

 Humans will parse the behavior in terms of their
understanding of the Robot’s model
* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

 As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 80



Summary of the talk

* Part I: The Path to General Al goes'through
Human-Machine Collaboration
- ..and it is a good thing!
 Expands reach and scope of Al enterprise

 Reduces some of the off-the-top worries about Al
* Brings up novel research challenges

 Part II: Planning Challenges in Human-
Machine Collaboration

 Brief review of how the planning problem
“expands” in the face of interaction/teaming
with humans

« Specific challenges and some ongoing work in
my group 81
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DETAIL SLIDES

(No red in the presentation)



