EFFICIENT PLANNING BY EFFECTIVE RESOURCE REASONING
by

Biplav Srivastava

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

ARIZONA STATE UNIVERSITY

May 2000

EFFICIENT PLANNING BY EFFECTIVE RESOURCE REASONING
by

Biplav Srivastava

has been approved

January 2000

APPROVED:

. Chair

Supervisory Committee

ACCEPTED:

Department Chair

Dean, Graduate College

ABSTRACT

Planning consists of an action selection phase where actions are selected and ordered
to reach the desired goals, and a resource allocation phase where enough resources
are assigned to ensure the successful execution of the chosen actions. In most real-
world problems, these two phases are loosely coupled. Most existing planners do not
exploit this loose-coupling and perform both action selection and resource assignment
employing the same algorithm. The current work shows that the above strategy
severely curtails the scale-up potential of existing planners, including such recent ones
as Graphplan and Blackbox. In response, a novel planning framework was developed
in which resource allocation is de-coupled from planning and is handled in a separate
“scheduling” phase.

Implementing this framework raises several interesting issues regarding the
role of resources in planning, the interactions between the planning and scheduling
phases and the choices in selecting the methods for the two phases. During planning,
resource constraints are ignored and an abstract plan is produced that can correctly
achieve the goals but for the resource constraints. Next, based on the actual resource
availability, the abstract plan is allocated resources to produce an executable plan.
This work introduces a procedural method for inexpensive (bactrack-free) scheduling
and a declarative method for posing the scheduling problem with all its complexity
as a Constraint Satisfaction Problem.

The new approach not only preserves both the correctness as well as the quality

(measured in length) of the plan but also improves efficiency. It is implemented on top

iii

of Graphplan and shows impressive empirical results. This work can be viewed beyond
the context of planner efficiency as how to integrate planning with real world problem
solving. Specifically, when a plan fails to achieve its intended purpose during plan
execution, it does not imply that the causal structure of the failed plan was incorrect
but that some allocated resources were found to be unavailable. The benefit of the
current approach is that it provides a framework to undertake only necessary resource

re-allocation and not complete re-planning.

v

To my parents:

Dr. A. K. Srivastava and Smt. Shanti Srivastava

ACKNOWLEDGMENTS

I would like to thank my advisor, Subbarao Kambhampati, for giving me com-
plete freedom in whatever I set out to do and for guiding me towards truly satisfying
research and the completion of this dissertation. A big thanks also goes to my Al
research team, Yochan, for very insightful discussions, support and pointers over the
past b years. In particular, Laurie Ihrig, Terry Zimmerman, Amol Mali and BinhMinh
Do have served as patient sounding boards.

On a personal level, I would like to thank my sister, Priyanka, and brother-in-
law, Praveen, and last but not the least, to my wife, Vandana, for support and trying

to understand planning from me.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES e X
LIST OF FIGURES e xii
Chapter 1 Introduction 1
1.1 An Empirical Motivation oL, 6

1.2 Scheduling as a Post-planning Phase 10

1.3 Proposed Approach L 13
Chapter 2 What are Resources 7. 15
Chapter 3 A New Planning Formalism 19
3.1 Implemented Approach 20
3.2 Planner-Scheduler Interaction and Post-processing 25
3.3 Comparing My Approach with Project Management 26
3.4 Discussion on Plan Abstraction 29
Chapter 4 Scheduling as a Procedural Method 30
4.1 Scheduling Resources: The Details 31
4.2 A Mixed Declarative-procedural Scheduling Method 39
4.3 Summary and Issues 41
Chapter 5 Scheduling as a declarative CSP 43

vii

5.1 Declarative Scheduling oL 0L 44

5.2 Policies for Planner-Scheduler Interaction 49
Chapter 6 Post-processing the Scheduled Plan 53
Chapter 7 Implementation and Evaluation o7

7.1 Implementation Choices 57

7.1.1 Improving CSP Performance 99

7.2 Solving Problems L oo 60

7.2.1 Planning and Procedural Scheduling 61
7.2.2 Planning and Declarative Scheduling 65
7.2.3 The Effect of Nature of Resources on Scheduling 69

7.3 Lessons Learned oL 72
Chapter 8 Discussion and related work 73
Chapter 9 Concluding Comments and Future Work 7
References 80
APPENDIX A ALL PLANS FOR THE SHUFFLE PROBLEM 83
APPENDIX B EXPLICIT RESOURCE SPECIFICATION 87
APPENDIX C DOMAINS AND PROBLEM SPECIFICATION 92

C.1 Blocks world domain 92

C.1.1 Domain operator file 92

viii

C.2

C.3

C4

C.5

C.1.2 shuffle problem with 3 robots 94

C.1.3 Hugefact problem with 3 robots 95
C.1.4 BW-large-a problem with 3 robots 96
Logisticsdomain oL Lo 97
C.2.1 Domain operator file 97
C.2.2 Logistics problemo 0oL 102
Shuttle domain oo o oo 104
C.3.1 Domain operator file 104
C.3.2 Shuttle problem with 4 cranes and 6 shuttles 107
Rocket domain Lo oL 108
C.4.1 Domain operator file (PRODIGY style) 108
C.4.2 Rocket problem with 3 rockets 110
Gripper domaino Lo L 111
C.5.1 Domain operator file 111
C.5.2 Gripper problem with 2 grips 112

X

Table

1.1.

5.1.

5.2.

5.3.

0.4.

7.1.

7.2.

LIST OF TABLES

Table showing the performance of UCPOP in Sussman Anomaly prob-
lem with varying number of robots.o
Constraints on action variables and their values while scheduling for
resource R. Number of resource of type R are N and the permitted
length of theplanis L.
Relationship among action variables.
INTERACT(a,b,c,d) = (a < d A c <b). When two sections of resource
spans interact, the interacting sections cannot share the same resource.
The superscript refers to the spans S; or S, for which the actions (and
variables) are applicable. oL

LMAX i5 some

Allocation policy and restrictions on values of variables.
maximum length (L™4X = L) upto which the steps of the plan can be
increased.
Runtime results from experiments in the logistics domain (in cpu sec).
GP refers to Graphplan while GP+Sched refers to my approach. . . .

Runtime results from experiments in the logistics domain (in cpu sec).

GP refers to Graphplan while GP+Sched refers to my approach. . . .

Page

10

44

45

47

64

68

7.3. Runtime results from experiments in the rocket domain (in cpu sec).
GP refers to Graphplan, GP+Sched refers to Graphplan for abstract
planning followed by declarative scheduling. In GP-CSP+Sched, the

planner is changed to GP-CSP.

xi

Figure

1.1.

1.2.

1.3.

1.4.

1.5.

3.1

3.2.

LIST OF FIGURES

Unified planning-scheduling framework
Performance of Graphplan and Blackbox(satz) on the 6-block Shuffle
problem with varying number of robots. Performance degrades with
increase in the number of resources.
Comparative performance of Graphplan in shuffle problem of 4, 6,
8 and 10 blocks. Performance degrades with increase in size of the
domain as well as resources. oL
The nature of plans produced by Graphplan on a blocks world problem
with varying number of robots. As more resources are added, the
plan length and number of steps in the plan reduce because there are
more possibilities of avoiding resource bottlenecks and so, more ways
of generating parallel plan.,
When there are enough resources to overcome any resource conflict, one
gets a maximally parallel plan. Otherwise, the scheduler has to serialize
the plan in line with the resource availability. For the most resource
constrained problems (normally 1 resource), one gets the maximally
serial plan.o
A generalized plan model for separate planning and scheduling.

Synopsis of approach oL oL

xii

3.3.

3.4.

4.1.

4.2.

4.3.

4.4.

4.5.

5.1.

An resource-abstracted solution for shuffle problem. Curved lines show
resource usage spans (see below). The number of resources needed at

each level (which equals the number of spans crossing that level) is also

View of the resource-abstracted plan in Figure 3.3 as a task network
to be scheduled. Curved lines show resource spans while dashed lines

represent partial ordering constraints between tasks (actions).

A Classification of resource allocation instances (with indication of

23

resource quantities that make shuffle problem fall into each of the classes). 32

Pseudo-code for allocating resources
Scheduling task network of shuffle problem by INFRES. Curved lines
show resource spans and numbers next to them are the resource allo-
cated. Dashed lines represent ordering constraints.
Scheduling task network of shuffle problem by FIX. Curved lines show
resource spans and numbers next to them are the resource allocated.
Dashed lines represent ordering constraints.
Scheduling task network of shuffle problem by SAMELEN. Curved
lines show resource spans and numbers next to them are the resource
allocated. Dashed lines represent ordering constraints. Arrows refer to
the movement of actions to a lower, less-constrained level.
Example of spans with freeing/unfreeing actions on the left and with-

out them on the right.

xiii

33

5.2.

6.1.

6.2.

6.3.

7.1.

7.2.

7.3.

7.4.

(Figure repeated for convenience) A Classification of resource alloca-
tion instances (with indication of resource quantities that make 6-
shuffle problem fall into each of the classes). INH-UNSOLV refers
to causally infeasible plan for which no scheduling is needed, while
UNSOLYV refers to an unschedulable plan.
The abstract plan (on left) is scheduled (on right) by inserting resource
manipulating actions.o L oL
Resource specification of gripper including 1-step subplan (DROP) to
free and 3-step subplan (MOVE, PICK, MOVE) to reallocate the grip-
PErin @ TOOML. o v i vttt et e e e e
The inserted actions in the scheduled plan are translated to domain-
specific actions/sub-plans (on left) and post-processed to remove non-
minimal (redundant) actions (on right).
Choices for causal and resource reasoning. Boxes with solid lines show
choices that have been investigated.
Comparative performance on shuffle problems of 4, 6, 8 and 10 blocks
with my approach and Graphplan (Total: 80 problems)..

Comparative performance on huge-fact (10 blocks) and bw-large-a (9

ol

o4

o4

95

o8

blocks) problems with my approach and Graphplan (Total: 40 problems). 62

Plot showing the performance of Graphplan alongwith Planning fol-
lowed by Scheduling method for 8-block inversion problem (Total: 20

problems).

xiv

7.5.

7.6.

7.7.

7.8.

8.1.

Comparative performance of my approach of decoupling causal and
resource reasoning v/s Graphplan in shuffle problem of 4, 6, 8 and 10
blocks (Total: 80 problems).
Comparative performance on huge-fact (10 blocks) and bw-large-a (9
blocks) problems with Graphplan.,
Comparative performance of Graphplan in shuttle problems of 2..8
cranes and 2..8 shuttles. (Total: 49 problems)
Comparative performance of my approach in shuttle problems of 2..8
cranes and 2..8 shuttles (Total: 49 problems).
(Figure repeated for convenience) A generalized plan model for sepa-

rate planning and scheduling.o

XV

67

67

71

71

Chapter 1

Introduction

Planning comprises of causal reasoning and resource reasoning. Given a do-
main, a set of actions to change states in the domain, an initial state and the desired
goal state, the planning problem is to find a sequence of actions (also known as a plan)
such that when it is executed from the initial state, a goal state can be reached. Causal
reasoning ensures that for every action in the plan, its preconditions can be satisfied
from the effect of another action preceding it within the plan. Causal relationships
force sufficient orderings among actions to achieve the goals and furthermore, deter-
mine the extent of concurrency' possible in a plan. Resource reasoning ensures that
all the resources needed for the execution of an action are available for allocation
without any resource conflicts. A resource conflict occurs when two actions cannot
be assigned the same resource, either due to resource characteristics (non-sharable

resources) or due to domain characteristics (actions interfere). If resources are scarce,

! Borrowing from operating system terminology, concurrency refers to the potential of executing
actions in parallel. The parallelism (or lack of it) exhibited in the final plan is dependent on the
actual number of resources available to exploit this concurrency.

Executable Pla

Post-process

SCHEDULER

Alloc needed

Set Alloc Policy

PLANNER

Planning Done

Abstraction Switch

o
z

270

Figure 1.1. Unified planning-scheduling framework

the resource allocation may involve freeing and reallocating the limited resource which
can add more ordering relationships among actions and effectively serialize the plan.

AT Planning can handle small plans compared to what humans can already
control in the real world. In real-world problems, planning and scheduling phases are
usually loosely coupled. Planning and monitoring of large-scale projects is done with
a project management tool like Microsoft Project[27] by using a activity network for
both planning and control. Humans come up with the Work Breakdown Structure
(WBS)[26] to identify the different tasks at some granularity and estimate time and

resources for each task. From this information, the critical bottleneck in the project is

identified and the sequence of non-critical tasks is re-alligned to optimize on resource
usage. In Critical Path Method (CPM), activity times are assumed to be known
or predictable (deterministic) while in Program Evaluation and Review Technique
(PERT), activity times are assumed to be random, with known probability distri-
bution (probabalistic). But the nature of WBS (i.e. causal plan) remains relevant
irrespective of how activities (actions) are modeled.

Most planners do not distinguish between causal and resource reasoning and
handle them within the same planning algorithm. Discrete resources (sharable or non-
sharable) like robots, trucks and planes have traditionally been straightforwardly han-
dled by logic-based planners like UCPOP[31] and Graphplan in the same way as other
objects in the domain. T will show (in Section 1.1) that this strategy severely curtails
the scale-up potential of existing planners, including such recent ones as Graphplan [2]
and Blackbox [15]. In particular, these planners exhibit the seemingly irrational be-
havior of worsening in performance with increased resources. For continous resources
like time and fuel, planning systems have additionally employed time/resource map
managers to ensure resource consistency (SIPE[35], IxTeT[21], IPP[20], LPSAT[36]).
But such an integration explodes the search space for the planner beyond action sets
that are minimal with respect to the logical goals. Actions may be added to achieve
the resource goals but may not be necessary for logical goals. To handle this, IPP re-
stricts expressivity by avoiding explicit temporal modeling while other planners take
a performance drop with slower flaw resolution.

In this dissertation [32],[33], I introduce a novel approach where causal-

reasoning (planning) is used to generate an abstract plan ignoring all resource con-
flicts. The abstract plan is then post-processed to allocate the required resources
without altering the causal structure of the plan. Separating planning and schedul-
ing is quite the normal practice in project planning scenarios in the industry, where
planning is done by the humans, and scheduling is done by a variety of software pack-
ages. | am proposing a similar flow to exploit the loose coupling — except that both
planning and scheduling phases will be automated.

Figure 1.1 provides a general overview of my approach. My unified framework
accepts a domain description along with optional annotations for resources, finds a
plan modulo the choice of resource abstraction, and then allocates resources to pro-
duce the correct final plan (if necessary). In this work, I focus on discrete reusable
as well as non-sharable resources. But I argue in Chapter 8 that the approach can
be extended for continous resources as well. Resources are either declared by the
domain expert, or deduced through automated methods discussed later. After plan-
ning is complete, a scheduler can decide which resources to actually allocate. I have
implemented this approach on top of Graphplan algorithm, and the resulting planner
is not only more rational in its treatment of resources (i.e., performance does not
worsen with increased resources), but also significantly outperforms Graphplan on
several benchmark problems.

There are a number of technical challenges that arise in making my approach
work. First, I have to identify resources in a given domain. Second, I have to decide

about optimization criteria during scheduling. Third, I need to allocate resources to

an abstract plan without transferring the full complexity of planning to the schedul-
ing phase. The planning phase produces an abstract plan of shortest length in terms
of number of steps (where each step may contain several concurrent actions)?. The
resource allocation problem is formulated as a Constraint Satisfaction Problem (CSP)
and considered for scheduling based on different allocation policies including main-
taining the concurrency of the plan, serializing the plan and inserting actions to free
and reallocate the resources. If freeing/ reallocating actions are allowed, the problem
is infact a Dynamic Constraint Satisfaction Problem (DCSP) because these actions
(variables) control the normal action variables.

I introduce an intuition driven procedural method for inexpensive (bactrack-
free) scheduling. My aim in procedural scheduling phase is to use the least number of
resources for producing a final plan of the same length as the abstract plan and with
minimum number of additional actions and causal relationships, without changing
the relative positions of actions. When resource allocation is not possible without in-
creasing the plan length, I consider it as a hard resource allocation problem and revert
to declarative scheduling or traditional planning. I also introduce a declarative ap-
proach for formally specifying the resource allocation constraints and transferring the
full complexity to a constraint solver. In my declarative approach, all the constraints
of the scheduling problem are formulated as a Dynamic Constraint Satisfaction Prob-
lem (DCSP) and passed to a CSP solver (specifically, backjumping solver in [34]). If

the declarative scheduling method fails to allocate resources in the context of given

2Such a plan may not be optimal if actions have differing costs, but this is how Graphplan works.

resources, time limit and nature of allocation policy, the responsibility transfers to the
planner to change any of the permissible parameters and try again. If the resource
allocation succeeds and new free/ reallocation actions were added by the scheduler,
the scheduled plan is post-processed for neccessary domain translation for executabil-
ity. If all the allocation policies lead to failure or inexecutable plans in a domain,
this implies that planning and scheduling were infact, not loosely coupled. In such a
case, the framework retains the ability to switch off resource abstraction and resort

to traditional planning.

1.1 An Empirical Motivation

Since the current investigation is primarily in the context of Graphplan, a state-of-
the-art planner, it will help to give a brief summary. Graphplan [2] performs forward
state-space refinement over disjunctive partial plans [13] that correspond to a unioned
representation of the forward state-space search space tree. To improve pruning power
in these disjunctive plans (planning graphs in Graphplan parlance), Graphplan infers
and propogates information about disjuncts which cannot hold together in a solution
(mutex relations). A solution is obtained by searching for a sequence of actions in the
planning graph that satisfies the planning problem and mutexes help considerably in
this effort. The terminology below is biased towards the Graphplan algorithm but
the idea is general enough to work with most classical planners.

To motivate the need for separating resource scheduling, I will see the behavior

Y A &

in the 6-block Shuffle Problem in Blocks World
robots

Performance of Graphplan and Blackbox (satz)

. . . A
) o S) ~
o o — o
o —
-

270 (soas ur awn)bo|

Figure 1.2. Performance of Graphplan and Blackbox(satz) on the 6-block Shuffle
problem with varying number of robots. Performance degrades with increase in the
number of resources.

of Graphplan, in a modified blocks world domain that contains multiple robot hands.
If T run Graphplan multiple times on the same problem, while increasing the number
of robot hands available, one would expect that the performance would improve with
increased resources. Figure 1.2 shows the performance of Graphplan on the “shuffle’?
problem, where a 6-block stack needs to be shuffled in a symmetric way to form a new
stack. Notice that the total planning time, GP-TOT, increases quite steeply with the
increase in the number of robots. In fact, by providing 8 robots instead of 1 robot,
the planning time is slowed down by an order of magnitude! Lest the reader suspect
that the increase is just due to the increased cost in constructing a planning-graph,
the figure also plots the time for building the planning graph (GP-G) and the time
for searching the planning graph (GP-S). I note that both of them increase with the
number of robots.

I wanted to further check if the results are consistent when the problem size is
scaled independent of number of resources. In Figure 1.3, I show the performance of
Graphplan on shuffle problems of 4, 6, 8 and 10 blocks as the number of robots are
varied from 1 to 10. I note that planning performance degrades with increase in size
of the domain as well as resources.

The rather counter-intuitive behavior of the planning algorithm (in Figure 1.3)
can be deciphered once we realize that every causal failure is being needlessly redis-
covered multiple times with different identities of the robot hands. The plan length

and the number of steps in the plan reduce with increased resources as more resource

3Shuffle problem is the multiple robots version of the 6-block blocks_facts_shuffle problem in the
Graphplan system. Later I consider k-block shuffle versions also.

4—& SHUF4-GP-TOT
*—% SHUF6-GP-TOT
®—@® SHUF8-GP-TOT
+—+ SHUF10-GP-TOT

Performance of Graphplan in Shuffle Problem
with varying number of blocks and robots
#robots

1.07
0.1

.
<
=]
=

270 (soas urawn) Hoj

1000.0
100.0 ¢

Figure 1.3. Comparative performance of Graphplan in shuffle problem of 4, 6, 8
and 10 blocks. Performance degrades with increase in size of the domain as well as
resources.

10

conflicts get resolved at a level* (see Figure 1.4 which plots the number of steps and
actions in the solution plan for shuffie) and stabilize after 1 and 4 robots respectively.
More resources lead to the increase in the planning graph size and consequently the
cost of plan search in its space. Specifically, the asymptotic cost of planning in Graph-
plan like planners is O(w'), where w is the width of the planning graph and [is the
length of the graph. As the resources (e.g. number of robots in blocks world) increase,
[tends to reduce while w increases. However, [does not reduce indefinitely, while w
does increase monotonically with resource increase. Thus, the net effect is that the
performance degrades with increased resources.

To ensure that this behavior is not peculiar to Graphplan, I also experimented
with Blackbox [15], which uses SAT techniques for searching the plan graph; and
UCPOP [31], a traditional partial-order planner[14, 23]. I found similar behavior in
both cases. The plot titled BB-TOT in the left graph in Figure 1.2 illustrates the
behavior of Blackbox. When the same shuffle blocks world problem was given to
UCPOP, even the smallest problem instance with 6 blocks and 1 robot could not be
solved in 10 minutes and search limit of 100000 nodes. With a smaller size problem
like Sussman Anomaly which has 3 blocks (refer to Table 1.1), I found that the
increase in robots does increase the planning time. The search space here gets large
with increase in robots as all possible clobberers of conditions have to be considered

for completeness.

“In Graphplan parlance, a plan step is also called an operator level. I will use the terms step and
level interchangeably.

11

#robots

»—» Number of steps in plan

A Look into Plans by Graphplan
in the Blocks World domain
4— Length of plan

1.0

18.0
16.0
40
12.0
10.0

anfeA [eduawnN

270

Figure 1.4. The nature of plans produced by Graphplan on a blocks world problem
with varying number of robots. As more resources are added, the plan length and
number of steps in the plan reduce because there are more possibilities of avoiding
resource bottlenecks and so, more ways of generating parallel plan.

| Robots 1 |2 |3 |4 |5 |
| Time (in sec) | 0.49 | 0.73 | 0.85 [1.46 | 2.42 |

Table 1.1. Table showing the performance of UCPOP in Sussman Anomaly problem
with varying number of robots.

12

1.2 Scheduling as a Post-planning Phase

As soon as Graphplan generates a plan graph upto the level that one solution can
be extracted, it has a structure that contains all minimal solutions to the problem.
Keeping disjunctive plans around leads to the explosion of the size of plan graph due
to the recording of interactions among domain objects. Since the user does not care
about the specifics of resources, recording interactions among multiple resources is
clearly wasteful. This also degrades the backward search. One can try to reduce
both graph expansion and search by abstracting (variablizing) resources needed by
actions during planning and avoiding checking all interactions between them. The
assumption is that they would be somehow allocated following search in a scheduling
phase.

For UCPOP, considering resources during planning corresponds to additional
clobbering possibilities which can degrade the planner if conflict resolution is enabled.
Abstraction of resources leads to postponment of commitments on them during con-
flict resolution. We will focus on Graphplan planner for the rest of the dissertation
but the techniques are still useful for other forms of Al planning.

When I abstract resources, I not only reduce the plan graph size but also
obtain a maximally concurrent plan. A successful plan ensures that all facts that do
not need resources are correctly achieved by that plan. A straightforward method for
resource allocation is to assign a new or freed resource to any step that is involved

in a resource conflict. Suppose that this method needs R resources. Now for all

13

g 8
5

g 8 =

S T

g 84 g

Sx z N

i85 £ =
SB%EEE = g
S:‘E B
Sk B
- 5T >
< ©
'§§ E
g 8
£ s

-

- o~ ™ X X

T T T gg

270 3T 83 g3

Figure 1.5. When there are enough resources to overcome any resource conflict, one
gets a maximally parallel plan. Otherwise, the scheduler has to serialize the plan
in line with the resource availability. For the most resource constrained problems
(normally 1 resource), one gets the maximally serial plan.

problems with resources N > R, the same resource scheduling technique can be
applied. As the number of resources decrease, the scheduler has to serialize the plan
in line with the resource limitation. This may involve moving the parallel steps to
less-constrained levels and introducing steps to release unnecessary allocations and
re-allocate them where needed. Figure 1.5 gives a broad look at the type of plans
obtained with different numbers of resources. Here, the same causal plan is being
adapted to satisfy the resource availability constraints. In the pathological cases of
the most resource constrained problems (normally 1 resource), one gets the maximally
serial (i.e. serialized) plan.

Another benefit of my approach of postponing scheduling is during plan execu-

tion, when the user can easily specify the changed resource environment and obtain

14

new plans. In a traditional planner which performs integrated planning and schedul-
ing, if some allocated resource becomes unavailable during plan execution, the whole
plan has to be re-done or all other plans have to be enumerated until the correct plan
for the new environment is found. In my case, only necessary resource re-allocation is
needed because all the different plans for the problem differ only in how they allocate
or de-allocate resources. To see an example, please refer to Appendix A where some
of the plans for the shuffle problem are listed. Note that the plans differ only in
how and when resources are allocated and de-allocated. If one schedule for resource
management fails during plan execution, I only need to consider other alternative

schedules.

1.3 Proposed Approach

In this dissertation, I focus on the role of resources in a planning domain and how
resource-based reasoning can expedite planning. A major motivation is to scale plan-
ning algorithms to large, realistic domains where addition of more resources can
provably reduce the planning time and not increase it. I first need to describe what
resources are. I assume that a resource is any object for which actions may contend
and which is secondary (name is unimportant to the user) in a domain. The user
would want the planner to satisfy certain conditions (goals) but which resource ob-
jects are utilized to complete the plan is of no concern. Resource are identified either

by the domain expert or through automated methods (see Chapter 2).

15

Next, the planner can be least committed about the identity of resource and
postpone interactions among equivalent resources. After planning is complete, a
scheduler can decide which resources to actually allocate. I have implemented this
approach on top of Graphplan algorithm, and the resulting planner is not only more
rational in its treatment of resources, but also achieves performance speedup. We
reiterate that if all the resource allocation policies proposed by the planner lead to
failure or inexecutable plans in a domain, this implies that planning and scheduling
phases in this problem are infact, not loosely coupled. In such a case, the framework
retains the ability to switch off resource abstraction and resort to traditional planning.

Here is an outline of the rest of this dissertation report. Istart with a discussion
about resources and their role in planning in Chapter 2. Next, I develop a planning
formalism to abstract resources during planning and schedule them in a separate phase
in Chapter 3. I proceed to discuss a procedural method for handling the various classes
of the resource scheduling problem in Chapter 4. I also describe a declarative method
for solving the resource scheduling problem as a Dynamic Constraint Satisfaction
Problem in Chapter 5 and relate planner-scheduler interaction to it. The scheduled
plan may need post-processing which is discussed in Chapter 6. Next I show through
empirical results that my method is effective in Chapter 7. In Chapter 8, I make some
observations on the overall nature of the problem and put my work in perspective
with related works. Finally, I conclude in Chapter 9 with my contributions and future

work.

Chapter 2

What are Resources ?

Before we discuss resources, we must formalize some terminology. All objects
in a domain are instantiations of types. Types describe the entities present in a
domain and their corresponding attributes. Attributes can be described by literals
(binary variables) or multi-valued variables.

Recall from above that a resource is any object for which actions may contend
and whose identity is unimportant to the user. For example, in the logistics domain,
where there are some packages, trucks and planes at a set of places and the problems
require the packages to be moved to their goal locations, the user does not care if
Plane?2 is selected instead of Planel but they will be concerned if the packet lands in
Boston instead of Philadelphia. So, plane is a resource. But if the plane’s identity
does matter, then the plane type is not a resource!. The proposed definition captures

the theme that scheduling should consider interactions among objects that do not

!Note that an object is a resource for all the actions in a domain and not per-action as has been
modeled in some sytems like SIPE [35].

17

matter (i.e. resources) for the acceptance of the plan. Within this broad framework,
resources may additionally provide domain control knowledge, suggestions for the
planner about which interactions to disregard or special monitoring and execution
capabilities, as is accomplished in some systems (Also see related works in Section 8).

A related issue that must be addressed is how the resources are identified in a
planning domain. The most obvious approach is to let the domain expert specify the
resources in the domain at the outset. I have implemented a resource specification
format for this purpose. Appendix B illustrates the specification of robot as a resource
in blocks world domain and truck and airplane in the logistics domain.

There are ways of automating resource identification process, however. We can
assume that a resource is a type such that no object of that type figures explicitly in
the goal specification. The motivation here is that if no objects of a type are neces-
sarily required in the goal, these objects are secondary and will be useful only in the
service of planning. The corresponding type is therefore secondary too. The definition
can be easily used in the blocks world domain to detect that robot is a resource type
or gripper is in gripper domain. But in more complex domains like logistics, there are
multiple resources which can interact. Researchers have addressed identification of
resources, for example, in TIM[9], by emulating the finite state machines implicit in
the domain structure (legal operators and initial/ goal states) to automatically infer
type structure of the domain, and extracting state invariants from them. Resources
are objects corresponding to attribute spaces where an object can acquire or loose

a property unconditionally, in contrast to a state space where corresponding objects

18

only exchange properties. I can easily incorporate their domain modeling techniques.

There are a number of definitions of resources in literature and corresponding
resource reasoning approaches. SIPE [35] defines a resource as anything for which
two actions contend when they have a harmful interaction in a nonlinear plan. The
resource declaration is being used as a mechanism to specify domain control knowledge
about ordering and there may be no physical mapping. For example, in the blocks
world domain, blocks can be specified as “resources” and so can the robot arm. This is
very unintuitive. Knoblock [18] uses similar ideas to specify a database as a resource in
some action if the domain modeler wants to prevent one operator to execute in parallel
with another operator when they require the same database. Though domain-specific
ordering information can improve planning, we envision a broader role of resources
during planning where some interactions can also be ignored.

An altogether different view of resources is taken in CIRCA[25]. Here, resources
have no direct bearing on the planning domain or problem that is being solved and
the goal is to come up with a plan that will also lead to optimal run-time resource
usage without missing any deadline. From our perspective, this definition of resources
does not help us in improving the performance of planning. But it does bring in real
world constraints into planning which is a natural extension of the problem. IxTeT
[21] defines a resource as any substance or set of objects whose cost or availability
induces constraints on the actions that use them. The space station domain of HSTS
[29] allows it to consider most of its physical components as resources and schedule

for their optimal usage. Planning and resource constraints are converted to set of

19

common data-structures and search applied to get a plan. In these systems, planning
has been extended to include specification about physical resource usage and this
increases expressivity but not necessarily efficiency of planning.

Though we have only partially handled the resource modeling isses, we are in
a position to tease scheduling apart from planning because modeling is an orthogonal
issue and our results will still be applicable. For the rest of the dissertation, we
will assume that resources have been identified either by the domain expert or by

automated means like those discussed above.

Chapter 3

A New Planning Formalism

I am exploring a planning model in which resource allocation is teased apart
from planning, and is handled in a separate “scheduling” phase (See Figure 3.1). I
observe that a necessary condition for a schedulable plan is that it should be causally
correct irrespective of the nature of resources. I can produce an abstract plan (P')
which is correct sans the resource allocation and use it as a starting point for all
planning problems that differ only in the number or amount of resources present.
Next, based on the actual resource availability, the abstract plan will be allocated
resources to produce an executable plan.

In most existing classical planning systems, sharable discrete resources are typ-
ically assumed to have infinite capacity (e.g. trucks can load any number of packages)
and continous resources are assumed unlimited (e.g. fuel is available or not). The
causal plan P’ is also created under the most optimistic resource assumption (unlim-

ited or infinite). While scheduling, the actual resources may be found insufficient to

21

SCHEDULER
Executable Plan

(Re-) Plan
(Re-) Schedule

Planning Problem
PLANNER

270

Figure 3.1. A generalized plan model for separate planning and scheduling.

assign to P’ and this will force replanning to take place to honor the resource limits.
The scheduler can aid the planner by informing it where re-planning is needed or

re-plan itself.

3.1 Implemented Approach

Figure 3.2 summarizes my algorithm for handling this problem. In Graphplan terms,
one can reduce both graph expansion and search overheads by abstracting the re-
sources needed by actions during planning and ignoring all interactions between them,
thereby obtaining a maximally concurrent plan. This plan will then be post-processed
to allocate resources to actions including re-planning. See Figure 1.1 for a schematic
overview of my approach.

Based on the ideas about resources from the previous chapter, I consider some

. Identify resources: The system can recognize resources using already dis-
cussed methods.

. If no resource information is available or resources are so low (usually one)
that postponing their reasoning is counter-productive, perform conventional
planning (i.e. if present, no postponement of interactions involving similar
resources takes place during planning).

. Suppose some of the objects are defined as resources. Planning proceeds as
follows:

(a) Assign dummy values to resources variables in the initial state and goal
state such that equivalent resources have same dummy value.

(b) Do not compute interference relationships (mutexes) between equiv-
alent operators. Operators may still interfere due to other precondi-
tions/ effects.

(c) Complete planning.
. Once a plan is obtained, we have to allocate resources to the actions in the

plan and resolve resource conflicts using any scheduling criteria.

. Return a valid final plan. As long as the algorithm ensures that all facts
achieved during the planning phase are not undone by resource scheduling,
the final plan is sound.

Figure 3.2. Synopsis of approach

22

23

12}
o
Q0
g‘—ummq 0 n < ™ N -
By
weee g
5 5 3 3 5, 9 L g g
TLYQLE LS 8553
>)y ETEEEE
@ 5 5 zl 5 cl 5 él x él ;I @ §|
SIBEER 38 J g 044
Bl BB B T B O O 98 O
gcccc“c&i_o%@%%f@
553535858 B BB B
s
© o
Tl 9 N MO E DWW © © ~ 0o o
270~

Figure 3.3. An resource-abstracted solution for shuffle problem. Curved lines show
resource usage spans (see below). The number of resources needed at each level (which
equals the number of spans crossing that level) is also shown.

object types to be identified as resources. Now, if resource abstraction switch is set,
planning proceeds in the normal fashion, but with two important differences (Step

3):

e Dummy values are assigned to resource variables in the initial state such that

equivalent! resources have the same dummy value.

e Interference relationships (mutexes in the case of Graphplan) between otherwise
resource equivalent operators are ignored. Operators may still interfere due to

other preconditions/ effects.

'In complex domains like logistics, all objects of a resource type are not equivalent (e.g. trucks
in Boston are not substitutable for trucks needed in Phoenix) and this can be handled either by
recognizing them as different equivalence classes within a resource type or as altogether different
resource types. For now, I choose the latter and consider all objects in a resource type as equivalent.

24

8\
<
‘;’\
<
© ®
e <
=)
= r‘\‘
5 <
© A
%) o
<
4 <
- :
8 9
@ <
o |
e <
o <
= :
5 <
>
&
<
-
270 <

Figure 3.4. View of the resource-abstracted plan in Figure 3.3 as a task network to
be scheduled. Curved lines show resource spans while dashed lines represent partial
ordering constraints between tasks (actions).

If the problem is unsolvable at this stage, we know that resource scheduling is
not going to make it solvable. Otherwise I give the resultant plan to the scheduler
for resource allocation. An example of the plan generated for the shuffle problem,
by disregarding inter-resource conflicts during planning, is shown in Figure 3.3. The
plan consists of 10 time steps (levels) with the number of resources left allocated at
each level shown in the right column (marked “#Robots”). The abstract plan is seen
as a task network in Figure 3.4.

The aim of resource scheduling (Step 4) is to assign actual resources to the
dummy resource variables, without undoing any causal relations established during

planning. I have implemented an intuition driven procedural scheduling method (see

25

Chapter 4) and a declarative method where the resource allocation problem is posed
as a DCSP and solved by a standard backjumping CSP solver (see Chapter 5). I
begin its discussion by noting the nature of scheduling.

A straightforward method for resource allocation is to assign a new or previ-
ously freed resource to any action that is involved in a resource conflict. Suppose that
this method uses a maximum of R resources. Now for all problems with resources
N > R, the infinite resource assumption holds, and thus resource allocation is quite
trivial. If this method fails, the allocation problem is solved through more elaborate
resource management that also modifes the abstract plan. Planning phase can sug-
gest similar intent to the scheduling phase in the form of following resource allocation

policies:

1. Maintain concurrency of the plan.

2. Serialize the concurrent plan by moving actions from one step (level) to another

less-constrained step.

3. Introduce actions to free unnecessary allocations and re-allocate the freed re-

sources when needed again.

During scheduling, the aim should be to keep the cost of scheduling small
enough so that the complexity of planning is not revisited in the resource scheduling
phase. Note that least commitment on resources makes sense if there are multiple
resources so that any resource conflict can be potentially overcome during scheduling

by assigning different resources to the conflicting actions. But if one can detect

26

at the start itself that there is a single resource, resource postponement is useless
in transferring planning complexity to scheduling and is infact counter-productive,
because the planner is banking on concurrency in the plan while resource availability
suggests a serial executable plan.

Even though we note that the pathological case of one resource can be easily
detected and avoided upfront, I will persue resource postponement to illustrate how
my scheduling method (specifically declarative method) also addresses this situation

naturally.

3.2 Planner-Scheduler Interaction and

Post-processing

The communication between planner and scheduler can be seen as suggestions (poli-
cies) by the planner about scheduling variables, their domains and constraints. The
scheduler responds by flagging success or failure with the suggested parameters. If
scheduling method fails to allocate resources in the context of given resources, time
limit and nature of allocation policy, the responsibility transfers to the planner to
change any of the permissible parameters and try again. The planner also has the op-
tion to take up non-abstracted planning at any stage. If resource allocation succeeds,
the schedule and the allocation policy are used to derive an executable plan.

In summary, the different resource allocation policies supported include main-

taining the concurrency of the plan, serializing the plan and inserting actions to free

27

and reallocate the resources. In Section 5.2, I explain the meaning of these policies
in terms of scheduling variables and their values.

If resource allocation succeeds and no additional actions were inserted, the
scheduled plan is executable and hence outputed. However, if new free/ reallocation
actions were added by the scheduler, the scheduled plan has to be post-processed for
necessary domain translation to make the final plan executable. This is discussed in

detail in Chapter 6.

3.3 Comparing My Approach with Project Man-

agement

As mentioned in Chapter 1, Al Planning can handle small plans compared to what
humans can already control in the real world. It would be interesting to compare plan-
ning and scheduling activities performed in project management with my approach.
Recall that humans come up with the Work Breakdown Structure (WBS)[26] to iden-
tify the different tasks at some granularity and input this information to a project
management tool along with estimates on time and resources for each task. Microsoft
Project[27] is a standard tool used in industry for scheduling activities. Its guideline
is that once the user has a task network defined, they should find the critical path
in their project and compute slack time for individual tasks. Moreover, the task as-
signments be evaluated to identify over-allocated resources. To resolve the resource

over-allocation, either the resources must be allocated differently or tasks must be

28

re-scheduled (euphemism for delayed) until the resource is available. A resource in a
commercial project usually refers to people available but it can also be equipment,
etc. Microsoft Project refers to ”levelling” as the technique to resolve resource allo-
cation by simply delaying certain tasks in a schedule until resource assigned to them
are no longer overallocated.

Following are some of the allowed strategies for shortening a schedule in Mi-

crosoft Project and how they relate to planning:

1. Add lead (task starts before finish of predecessor) or lag time (task starts after
the finish of predecessor). This refers to my scheduling policy of serializing the

plan.

2. Decrease work of a resource on a task. My scheduling policy of introducing
actions to free unnecessary allocations and re-allocate the freed resources when

needed again, addresses this.

3. Avoid sequential order by changing the task relationships to allow more tasks
to overlap or occur at the same time. In essence, the user re-plans to find a

more concurrent plan of shorter length as can be done in planning.

4. Change the critical path. The user is directed to re-plan by changing the type
of tasks, adding more tasks, or re-ordering the steps of the plan as can be done

in planning.

5. Increase working condition i.e. capacity of each resource to accomplish more.

29

This is not an option in Al planning because the initial state (including the

resources) are considered unchangeable.

6. Reduce the scope of a task by reducing the amount of work assigned to the
task. This is not an option in Al planning because the domain operators are

considered unchangeable.

7. For allocated tasks,

(a) Increase the number of resources allocated to a task. In AI planning,
actions usually need a single resource. However, it is possible to model

this behavior too.

(b) Increase resource availability by over time. Resources cannot be changed

in Al planning.

One can also reduce the cost of the project schedule. Total cost of a schedule is
the sum of cost of resources allocated to that project alongwith any fixed costs. One
can reduce the cost of a project by re-planning or re-scheduling. Project management
also allows the cost of a schedule to be decreased on an executable plan as the costs of
resources (e.g. compensation of personnel) are generally different which is not usually
the case in Al planning. On the other hand, scheduling by increasing the length of the
plan is a viable option in AI planning but not usually allowed in commercial projects

due to increased costs or loss of business opportunities.

30

3.4 Discussion on Plan Abstraction

Abstraction and least commitment has been widely studied in the context of planning,
and therefore, my implementation has focussed on a sufficient sub-set to accentuate
the resource allocation problem. Specifically, only the identity of resources is ab-
stracted into variables and the constraints (bindings) among variables are deduced
after an abstract plan is obtained, on the basis of causality and nature of resources.
An actual example is shown in the next chapter in Section 4.1.

Information about variable bindings could also have been supplied during
the planning process from causal dependencies as in partial-order planners like
UCPOP|31]. Doing so is, however, more complex in Graphplan because the planner
maintains sets of world states which leads to very few codesignation constraints (i.e.
v; = v; constraints for two variables) during the graph expansion phase. Many more
bindings are found once the actual plan is known during the search phase because
the supporting actions of predicates are discovered in this phase.

I have started looking in this general direction and have also enhanced graph
construction with general resource variables that records forced bindings. Once codes-
ignation constraints deduced during search are incorporated, we can have an equiva-
lent set of resource constraints for resource allocation process. This is an incremental
improvement in the representation and bookkeeping of binding constraints during

planning.

Chapter 4

Scheduling as a Procedural Method

We are now ready to delve deeper into the resource scheduling phase. In this
chapter, I provide an intuitive and computationally inexpensive treatment of resource
allocation.

Let me state the resource allocation problem for resource R. The abstract plan
has a set of action pairs (A;, A;,) | j > ¢ where action A; appears at time step 4 of the
plan (actually written as A" if it is the mth action at level i using resource R but we
omit the superscript for clarity) and they constitute resource spans (S;;:(A;, 4;,C)
s) that we have to allocate resources to. The effect C' of action A; is produced at
level ¢ and consumed at level j for the precondition of action A;. I may also refer to
spans by Si, So, etc. if there is no need to identify its constituent actions in a given

context.

32

4.1 Scheduling Resources: The Details

Based on the amount of resources available to the scheduler, and the way resource
allocation phase interacts with the planning phase, the resource allocation problem
can be classified into a variety of classes, as shown in Figure 4.1. I will start by

describing the main classes briefly:

e Class INH-UNSOLV: If the problem is inherently unsolvable (for example, goals
are on_blockA_blockB and on_blockB_blockA in blocks world), considering or
ignoring resources during planning will not affect the solution but will help to
create the planning graph faster. Hence, the problem can be handled by the

planner more efficiently.

e Class INFRES: If indeed the resources are sufficient to overcome all resource
conflicts, the scheduling view of the problem is the same as if there are infinite
resources. For the shuffle problem, 5 robots are enough to overcome all resource
conflicts in a plan and there is no reason why problems with 5 or more robots

should take more time.

e Class FINRES: The remaining case is when the number of resources are small
enough to cause resource conflicts but the problem is inherently solvable. This
case can be decomposed, based on the difficulty of the resource scheduling prob-
lem, into a number of more specific sub-classes as shown in Figure 4.1. Tt turns
out that I can handle many of these sub-classes through efficient (backtrackfree)

methods.

33

EASY
HARD

[2] SAMELEN
[1] INCRLEN
UNSOLV

Classes of Resource Allocation Scheduling
[3..4] FIX

INH-UNSOLV [5..10] INFRES FINRES

270

Figure 4.1. A Classification of resource allocation instances (with indication of re-
source quantities that make shuffle problem fall into each of the classes).

The complexity of resource scheduling instance, as well as the amount of mod-
ification needed to the original plan to allocate resources, increases from left to right
and from top to bottom in Figure 4.1. Rather than use one general scheduling method
for all classes, I cycle through scheduling methods tailored to each of the specific
classes (from the easiest to the hardest). By using this approach, I am able to allo-
cate resources with the least amount of modification to the given plan. This in turn
ensures that the plans developed in our method are comparable in quality to those
developed by the normal planner.

Posing the resource allocation problem: I formalize the resource allocation
problem as a constraint satisfaction problem (CSP) for its simplicity even though only

Class INFRES is solved here by a CSP solver. For other classes, I solve the allocation

34

problems by guided backtrack-free routines. In the next chapter, I augment the CSP
formulation as a Dynamic CSP and solve all the classes declaratively.

I setup the resource allocation problem as a constraint satisfaction problem
(CSP) by treating actions needing resources as variables and posting codesignation
and non-codesignation constraints according to whether the actions can have the same
resource allocated or not (resource conflicts). For this, I only have to consider facts
(effects and preconditions of actions) that refer to the resource type under considera-
tion (e.g. arm-empty_R or holding-R_blockA for ROBOT type in blocks world). This is
because interactions involving facts with only non-resource objects (e.g. clear_blockA)
would have been handled during planning itself.

I setup the CSP constraints as follows. The algorithm visits the plan level
by level and determines the span (similar to a causal link in partial-order planners
[23]) of allocation of resources. A span S;; is a tuple (A4;, A;,C) where the effect C
of an action A; is produced at level 1 and consumed at level j for the precondition
of another action A;. Actions A; and A; must have the same resource allocated®.
The resource conflicts are that two actions A; and A at the same level cannot have
the same resources if resources are non-sharable. Moreover, any action Aj that falls
within a span S;; (i.e. levels 7 and j) and which either deletes or produces fact C must
be allocated differently from actions A; and A;. Examples of spans in Figure 3.3 are

Sy16: (A1, Ag, holding _R_blockF) and Sag: (As, Ag, holding_R_blockE).

!Information about variable bindings could also have been supplied by the planner from causal
dependencies as elaborated in Section 3.4.

35

Function: Allocate_Resources
Parameters: Problem, AbstractPlan, ResourceType]]
Returns: Plan

- LocalPlan=AbstractPlan
- For each R;=ResourceType,
* LocalPool=NumberResources(ResourceType[R;])
* Span=GetResourceSpan(LocalPlan, R;)
* If Span is NIL, then continue with next ResourceType
* Conflict=GetResourceConflict(LocalPlan, R;)
* For each Level L; in LocalPlan
o Need,RelevantSpan=Number,Cutsets of Span at L;
o If Need; is positive, then for each RelevantSpany,
1. If RelevantSpany, has been allocated, then continue with next RelevantSpan.
2. Solve for the scheduling classes at Level L; until an allocated plan (not NILPLAN) is obtained.
(a) LocalPlan=Solve_IN F RES(LocalPlan, RelevantSpany, Conflict,R;, LocalPool,L;).
(b) LocalPlan=_Solve_FI X (LocalPlan, RelevantSpany, Conflict,R;, LocalPool,L;).
(c) LocalPlan=Solve.SAM ELEN (LocalPlan, RelevantSpany, Conflict, R;, LocalPool,L;).
(d) Return OriginalPlanner(Problem).
3. Increase LocalPool by 1 if RelevantSpani.E = Level L;.
* Continue with the next ResourceType
- Return LocalPlan

Figure 4.2. Pseudo-code for allocating resources

36

Solving the resource allocation problem: INFRES case: The resource alloca-
tion problem posed as a CSP is now ready for solving. Pseudo-code of my resource
allocation algorithm is shown in Figure 4.2. See Figure 4.3 for an example. This
method traverses the levels of the abstract plan and computes the spans that are
relevant to a level L; by finding spans that pass through L;. In the shuffle example,
the spans Si¢ and Syg are relevant at L,. For each unallocated relevant span, it
checks to see if there is a way to assign a resource. The check is made from the
easiest to the hardest allocation instance in terms of the change to the abstract plan.
Class INFRES is compatible with the conventional CSP formulation because no new
actions (variables) are introduced. Hence, any standard CSP solver can be used in
place of Solve INFRES. If the CSP problem was solved for all the levels in the
abstract plan by Solve INFRES, this means that the bet made during planning
(causal reasoning) that sufficient resources are available to handle all resource related
interactions paid off and I have a solution. Otherwise, I have to free and reallocate
resources as necessary. The scenario is similar to a Dynamic Constraint Satisfaction
Problem (DCSP)[28] where activity variables (corresponding to free/ reallocating ac-
tions above) control when the normal variables be considered for value assignment.
This gives me the insight to cast the complete scheduling problem declaratively as a
DCSP and solve it by a standard solver, as is done in Chapter 5.

Solving the resource allocation problem: FINRES case: Based on the amount
of resources, I can divide Class FINRES into a number of sub-classes as summarized

in Figure 4.1. These sub-classes are currently detected during scheduling itself. The

37

~A_9-—A_10

A8

A7

~AN_5—AM_ 6

h

A4

Viewing actions as tasks of unit time (5 or more robots)

1
e A2

“

270 <

Figure 4.3. Scheduling task network of shuffle problem by INFRES. Curved lines
show resource spans and numbers next to them are the resource allocated. Dashed
lines represent ordering constraints.

general idea is that the algorithm traverses the plan level-by-level and goes on allo-
cating the resources from the resource pool until there is a resource scarcity at some
level 7. A scarcity suggests a greater demand for a resource than its availability. It
can be resolved, provided the number of resources are not too low, by re-arranging the
resource usage pattern. Conflict resolution starts by going to a previous level (level
i-1) of the plan and introducing a freeing? action to de-allocate a resource assigned to
an action whose effect is not immediately needed. In the process, Solve_F'IX shrinks

the resource demand by one for all the levels from level i to level j — 2 where the

2In general, adding actions to a plan can change its causal structure but I assume that there are
actions or known sub-plans in the domain (e.g.pickup, putdown in blocks world) that can free and
re-allocate resources without doing so. While there are pathological cases where the assumption
may not hold, it seems to hold in most normal domains.

38

A_9--A_10
/
UNFREE

A3--A_4 :
FREE

" UNFREE

AR 6
2

A2 5

[,

FREE . T

Viewing actions as tasks of unit time (3-4 robots)
. UNFREE
AN 5--A"L_6

1.
/FREE
L A

270 <

Figure 4.4. Scheduling task network of shuffle problem by FIX. Curved lines show
resource spans and numbers next to them are the resource allocated. Dashed lines
represent ordering constraints.

effect is needed at level j again (an action to reallocate the resource will be added at
level j-1). See Figure 4.4 for an example. Shuffle problems with 3 and 4 robots can
be handled by this method. In particular, with respect to Figure 3.3, the robot corre-
sponding to span (A, A§, holding R_blockF) can be freed at level 2 and re-allocated
at level 5. The number of robots needed at levels 3 and 4 will then reduce by 1.
Problem instances solvable by this method are in the class FIX.

If resource scarcity persists, an unallocated action is moved to a subsequent
level where it can be potentially allocated. But the move may force the consumers
of its effects and any other actions whose effects can be clobbered by the potential

move, to be moved too. Since unrestricted movement of actions can be as complex

39

A A_8-—A_9-A_10
1
2
,x/ UNFREE
i/ -
UNFREE

A2 A A
1 :
FREE
FREE o

2
AN 5--A"L_6
»;/

A G

Viewing actions as tasks of unit time (2 robots)
UNFREE

1.
/FREE
A

—

270 <

Figure 4.5. Scheduling task network of shuffle problem by SAMELEN. Curved lines
show resource spans and numbers next to them are the resource allocated. Dashed
lines represent ordering constraints. Arrows refer to the movement of actions to a
lower, less-constrained level.

as planning itself, Solve SAMELEN is not allowed to increase the plan length and
is required to maintain the relative action positions. See Figure 4.5 for an example.
Shuffle problem with 2 robots can be handled by this method. In the shuffle problem
in Figure 3.3, the action A2 can move down to level 6 to ease the scarcity. Since A2
needs the clear() effect of A2, it then needs to move to level 8. Note that the length
of the plan still remains the same. Problem instances solvable by this method are in
the class SAMELEN in Figure 4.1.

If the two above approaches fail, the allocation problem is in Class INCRLEN
where the length of the abstract plan must be increased during scheduling (i.e. plan

serialization affects plan length). Shuffle problem with 1 robot belongs to this class. I

40

give problems in this class either to the declarative scheduler discussed in next chapter
or back to the original planner for solving it without any resource reasoning in the
normal way. Class UNSOLV occurs when the number of resources are too small for
any resource allocation to be feasible at all. If there are no resources, I can identify
this class at the start of scheduling; otherwise it cannot be determined until after
Class INCRLEN.

I can handle Classes INFRES, FIX and SAMELEN without backtracking in
time polynomial in the length of the abstract plan (since the plan is traversed only
once). For Class INCRLEN, resource abstraction is a penalty because the method
goes back to the original planner and solves the problem without abstraction. How-
ever, as empirically shown later, this penalty is small and easily offset by the savings
in other classes. As mentioned earlier, the reason I use a series of methods in this or-
der is to keep the number of additional actions as small as possible while maintaining

the optimal plan length.

4.2 A Mixed Declarative-procedural Scheduling

Method

A different idea that I have also implemented involves a divide-and-conquer CSP
phase that comes after planning is over. In this scheme, I verify that all actions that
need resources can be allocated by solving a CSP problem for levels 1..N. If this is

not the case, I consider levels 1..K and K..N and consider the CSP problem on each

41

portion of the plan, and so on. Once there is a solution for levels 1..K, the scheduler
can add actions to make the allocated resources available, either parallel to existing
actions at levels beyond K or by inserting a new level after K. Moreover, for the
K..N plan portion, the scheduler has to separate it into K..M and M..N such that
the resources need to be re-allocated after level M when they are needed.

In summary, here is an outline:
1. Suppose the plan has 1..N levels.
2. If CSP fails on 1..N

(a) Divide it into 1..K and K..N (K < N).
(b) If CSP succeeds on 1..K,

1. Add actions after level K to free allocated resources but record current

status of objects.

ii. Divide K..N into K..M and M..N such that objects are needed after

M (K < M < N).
iii. Insert steps to reinstate the status of objects after M.

iv. Recursively call self with levels of the plan as K..M < insertedlevels >

M..N.

(c) Else recursively call self with levels 1..K.

3. Else return success.

42

In the context of the plan shown in Figure 3.3, I first consider a CSP on
the complete plan (levels 1 to 10) and see if there is a consistent resource (robot)
allocation. If such an allocation is found, scheduling is done. For robots 5..10, a
solution is available straightaway. If the CSP fails, the algorithm looks for a solution
in 1..5 and 5..10 levels with a premise that each robot used up after level 5 will be
freed before it is needed again in the 5..10 levels. The algorithm continues the binary
divide and conquer approach until it succeeds in every sub-region. In the extreme
case of 1 robot, the (sub-) CSP is eventually set for each level.

Though I have chosen to split in the middle of a range for convenience, I could
have selected any other point as well. A more informed approach would be to produce
a resource profile based on resource demands over the whole plan, and decide about
the split points at every level with conflict. Either way, the overall algorithm is
unaffected.

The recursive algorithm outlined above can enable the extended GRAPHPLAN
to solve the shuf fle problem with 1 to 4 robots as expected in the blocks world
domain. Currently, I can solve the individual sub-allocation tasks for all the classes
of the scheduling problem (if task divison is necessary) and assume successful plan
merging. Plan merging needs to be procedurally implemented.

I recognized the DCSP formulation of the resource allocation problem as more
interesting and present a completely declarative scheduling approach in the next

chapter.

43

4.3 Summary and Issues

In the procedural approach, an algorithm tries to capture the desirable scheduling
decisions. The steps may be intuitive but they need not guarantee optimality of
solution. Here is a summary of some of the procedural methods for resource allocation

discussed:

1. Assign a free resource to the action under consideration, A;.

2. Free an immediately unnecessary resource from a span at the previous level and
use its resource for allocation to A;. The resource is reallocated before the end
of the span. Note that all immediately unnecessary resources of spans must be

considered for completeness.

3. The freeing of resource can occur at the current level (level 7) but all unallocated
A; s will then have to be moved to lower levels. Related A; s (e.g. the end of

the span) may need to be marked move_ready.

4. A; can be moved to a lower level. Related A; s (e.g. the end of the span or

actions whose effects get threatened) may need to be marked move_ready.

5. If an action is move_ready at a level, it can be moved to all lower (and perhaps

upper) levels. These are backtrackable points.

As a result of too many backtrackable allocation choices, the procedural

method becomes complicated, harder to verify and clearly unattractive. However,

44

on the pros side, failure in scheduling at any of the above stages conveniently tells the
planner about the nature of the allocation problem and how the latter may change the
plan (insert freeing-reallocating actions, moving actions) to make the plan schedula-
ble. Moreover, resource allocation is backtrack-free and efficient as the abstract plan

is surveyed only once.

Chapter 5

Scheduling as a declarative CSP

Let me restate the resource allocation problem for resource R. The abstract
plan has a set of action pairs (A4;, A;) | j > ¢ where action A; appears at time step ¢ of
the plan (actually written as A" if it is the mth action at level 7 using resource R but
I omit the superscript for clarity) and they constitute resource spans (S;; : (4;, 4;,C)
s) that I have to allocate resources to. The effect C of action A; is produced at level
¢ and consumed at level j for the precondition of action A;. I may also refer to spans
by Sy, S, etc. if there is no need to identify its constituent actions in a given context.

I note that the nature of problem is such that every resource allocation choice
is a backtrackable point. Moreover, actions can move to lower or upper levels if causal
dependencies allow them. The problem is strictly more difficult than backward search

of graphplan because actions can move across levels.

46

Action | Vars Possible Values Comments

A; (RA;,PA;) | {1.N}{i..L-1} N is number of resources
A; (RA;,PA;) | {1.N}{j..L} L is max length of plan
F;; (RF;;, PF;;) | {L,1,.N}{Ll,i+1..L-2} | L = Fj; is not needed
Uij <RUZ']', PUZ]> {J_,l,N},{J_,Z+2L—1} 1= Uij is not needed
N; (PN;) {i..L} N; is R insensitive

Table 5.1. Constraints on action variables and their values while scheduling for re-
source R. Number of resource of type R are N and the permitted length of the plan
is L.

5.1 Declarative Scheduling

As an alternative to procedural scheduling, I can specify the resource allocation con-
straints declaratively and let a constraint solver find a satisfying assignment for re-
sources for each action. The problem is an instance of a Dynamic Constraint Satisfac-
tion Problem (DCSP)[28] where activity variables (corresponding to free/ reallocating
actions above) control when the normal variables be considered for value assignment.
I now discuss the necessary preparations.

Each action using resource R has two variables associated with it, RA; for
resource allocated and P A; for position or level where action A; will appear. Position
of an action is also a variable because one way to allocate resources, given a resource
limit, is by serializing the parallel plan. Actions that do not participate in manipu-
lation of resources are noted as N; and their corresponding position variable is PN;.
Given a span (S;;:(4;, 4;,C)), I associate two actions, Fj; for freeing the resource

and U;; to reallocate the resource. The constraints on variables and their values are

47

9270 e

Figure 5.1. Example of spans with freeing/unfreeing actions on the left and without
them on the right.

listed respectively in Tables 5.1, 5.2 and are discussed below.

The domain of a resource variable is the range of available resources R, {1..N}
and is augmented for the resource variables of freeing/ reallocating actions to includes
a dummy value | (NULL) signifying that the corresponding action is not needed. The
domain of a position variable includes its current position in the plan and all the re-
maining valid positions (levels). For the position variables of freeing/ reallocating
actions, the valid positions also includes a dummy value L signifying that the cor-
responding action is not needed. The domain of all the variables are summarized in
Table 5.1.

The constraints on resource values enforce that the resource used by A; is the

same as A; unless there are freeing and reallocating actions present. If they are

48

Identifier | Relationship among variables Comments

a) RA; = RF;; v If freeing action is needed, it uses the same
(RF;j = L N RA; = RA)) resource as span starting the action

b) RA; = RU;; V If reallocating action is needed, it uses the same

(RUij =1 ARA; = RAj)

resource as span ending the action

RFij #1 & RUij # 1

Pﬂj < PUij \% Pﬂj = PUij =1

If freeing action occurs, reallocating

action also occurs and vice-versa

Position of freeing action is before position of
reallocating action or both are NULL

PA; < PFij \Y PF'Z']' =1

Position of freeing action is after start of
span or is NULL

f) PA; - PU;; V PU;; = L Position of reallocating action is before end of
span or is NULL

g) RF;j = 1 & PF;; = L If freeing action is not needed, its position
is NULL and vice-versa

h) RU;j =1L & PU;; = L If reallocating action is not needed, its

PA; < PAj

position is NULL and vice-versa
Position of action starting a span is before
the action ending it

PN; < PN;, PN; < P4;,
PA; < PN]'

Relative ordering of actions in the plan is
maintained irrespective of resource usage

Non-sharable resource constraints
(see Table 5.3)

If segments of two spans overlap, they cannot
share resources over that segment

Table 5.2. Relationship among action variables.

49

Condition Constraint on values

PF}. = PU} = PF} = PU% =1 | INTERACT(PA}, PAL, PA?, PA?)
= RA} # RA?

PUZ #L | INTERACT(PA], PAL, PAZ, PF?)
= RA} # RA?
INTERACT(PA}, PA}, PUZ,
= RA} # RA?

PUL #1; PF} = PU% =1 | INTERACT(PA?, PA?, PA!, PF})
= RA? # RA}
INTERACT(PA?, PA%, PUL,
= RA? # RA}

PUZ #1 INTERACT(PA], PF},
= RA; # RA?

INTERACT(PA}, PF}, PU3, PA?)
= RA; # RA]

INTERACT(PUL, PAL, PA?, PF2)
= RA; # RA;

INTERACT(PU};, PA}, PU}, PA?)

ij ij>

= RA; # RA}

PF} = PU}, =1, PF},

K

PA2)

PF}

YR

pAY

PFL PUL, PF?

K 57 157

2 2
PAMPF’@])

Table 5.3. INTERACT(a,b,c,d) = (a < d A ¢ <b). When two sections of resource
spans interact, the interacting sections cannot share the same resource. The super-
script refers to the spans S; or Sy for which the actions (and variables) are applicable.

present, A; and F;; have the same resource as also do U;; and A;. The constraints
on position variables enforce the relative order between the actions. The position of
A; has to be before A; while the freeing action, if present, has to be after A; and the
reallocating action, which follows a freeing action, has to be before A;. The partial
ordering of the actions in the abstract plan is also maintained irrespective of resource
usage. The exact constraints on the values of variables is summarized in Table 5.2.
Moreover, if a resource is non-sharable, additional constraints have to be spec-

ified as summarized in Table 5.3. The gist of the constraints is that if any segment

a0

of a span interacts with that of another, the two spans cannot share a resource. For
example, spans S; ¢ and Sy g interact between levels 2 and 6. Therefore, they cannot
share a robot (resource) in this interval unless their allocated robots are freed. Free-
ing (and reallocating) actions will result in sub-intervals over which a robot cannot
be shared.

We are ready to state the CSP problem. In addition to constraints in Ta-

bles 5.2, 5.3, we have top-level constraints:

e The number of resource allocations at a level must not exceed the available

resources. This constraint is implicitly stated.

Sum (A™) < N, i=1..L, m = 1..| 4; | (i.e. number of actions at

level i)

e To optimize the plan, we can set the objective function as minimize the total
number of actions in the plan. This may seem strange at first glance because
scheduling is usually related with minimizing resource usage. But recall that
the number of resources in a problem is part of the initial specification and there
is no incentive to minimize resources in classical planning. However, since the
resource allocation problem is formulated as a CSP, such a requirement can be
easily handled. The constraint to minimize actions is currently enforced implic-
itly by the CSP solver in conjunction with the scheduling policies (discussed

later). It can also be stated explicitly as an optimizing CSP problem.

Objective: Min Sum(| A |) (i.e. number of actions in the plan)

o1

The CSP encodings are solved with GAC-CBJ, a CSP solver that performs
generalized arc-consistency and conflict directed backjumping used by CPLANI[34].
However, if the resource allocation problem is solvable, any systematic and complete

method will find it.

5.2 Policies for Planner-Scheduler Interaction

As mentioned, the communication between planner and scheduler can be seen as
suggestions (policies) by the planner about scheduling variables, their domains and
constraints. The scheduler responds by flagging success or failure with the suggested
parameters. If scheduling method fails to allocate resources in the context of given
resources, time limit and nature of allocation policy, the responsibility transfers to the
planner to change any of the permissible parameters and try again. The planner also
has the option to take up non-abstracted planning at any stage. If resource allocation
succeeds, the schedule and the allocation policy are used to derive an executable plan.

In the previous chapter (and also [32]), the resource allocation problem was
classified into a variety of classes (see Figure 5.2) on the basis of how resource alloca-
tion phase interacts with the planning phase depending on the amount of resources.
The complexity of resource scheduling instance, as well as the amount of modification
needed to the original plan to allocate resources, increases from left to right and from
top to bottom. It was proposed that rather than using one general scheduling method

for all classes, one could cycle through the scheduling methods tailored to each of the

52

Allocation Policy Constraint on values
Maintain concurrency | PA; =i, PA; = j,
(Class INFRES) RA; = RA; = {1,..N}
PFZ'J' = PUZJ =
RF;; = RU;; = L
Serialize plan PA; = {i,.LMAX_1},

PA; = {j,..LMAXY,
RA; = RA; = {1,.N}
RF,'J' = RU,'J' =1

Introduce Free/
Reallocate action (Class FINRES)

Class FIX PA; =i, PA; = j,

RA; = RA; = {1,.N}
PF;; = {L1,i+1},

PU;; = {1,j-1},

RF;; = RU;; = {1, 1,.N}

Class SAMELEN PA; = {i,..L-1},

Pa, = {j,.L},

RA; = RA, = {1,.N}
PF;; = {l1,i+1,..L-2},
PU;; = {1,j-1,..L-1},
RF;; = RU;; = {1, 1,.N}

Class INCRLEN PA; = {i,.LMAX_1},

PA; = {j,.LMAX},

RA; = RA; = {1,.N}
PF;; = {L,i+1,.LMAX 2}
PU;; = {L,j-1,.LMAX 1},
RF;; = RU;; = {1, 1,.N}

Table 5.4. Allocation policy and restrictions on values of variables. L™4X is some

maximum length (LMAX » L) upto which the steps of the plan can be increased.

93

specific classes (from the easiest to the hardest).

I can support the different classes in the form of resource allocation policies.
The different policies supported include maintaining the concurrency of the plan,
serializing the plan and inserting actions to free and reallocate the resources. The
DCSP formulation allows the scheduler to interpret the resource allocation policy
prescribed by the planner (see Figure 1.1) in terms of constraints on the values
of variables.

Table 5.4 summarizes the different policies and what they imply in terms of
legal values of variables. Maintaining concurrency of the plan corresponds to all
actions A; in the plan being immovable while no freeing/ reallocating actions are
permitted. The domain of RA; is the range of available resources. Serializing the
plan implies that the action of the plan can move subject to an upper plan length,

LMAX provided by the planner. Again, no freeing/ reallocating actions are permitted

LMAX is the number of actions in the plan, which allows

to be inserted. An example of
the plan to be completely serialized.

In introducing resource freeing/reallocating actions, I identify three sub-cases.
If actions are considered immovable, this corresponds to Class FIX. Here, the freeing
action (Fj;) can be introduced immediately after A; while the reallocating action (U;;)
can come immediately before A;.

The second sub-case is when the actions are allowed to move upto the length

of the abstract plan, and this corresponds to Class SAMELEN. Finally, the actions

are allowed to move till any upper limit LMAX (LMAX o 1)

o4

EA
HARD

[2] SAMELEN
[1] INCRLEN
UNSOLV

Classes of Resource Allocation Scheduling
[3..4] FIX

INH-UNSOLV[5..10] INFRES FINRES

270

Figure 5.2. (Figure repeated for convenience) A Classification of resource allocation
instances (with indication of resource quantities that make 6-shuffie problem fall into
each of the classes). INH-UNSOLV refers to causally infeasible plan for which no
scheduling is needed, while UNSOLV refers to an unschedulable plan.

The advantage of multiple allocation policies is that it helps the planner in
communicating the plan preferences of the user to the scheduler. For example, the
end user may prefer plans with lower number of actions in the plan at the cost of
increased plan length. Policies also make sense computationally. The complexity
of the CSP problem increases with the domain size of its variables since it is O (k™)
where there are n variables with average domain size of k. The idea of having multiple
allocation policies is useful in guiding the scheduler towards easier resource allocation

problems first.

Chapter 6

Post-processing the Scheduled Plan

If resource allocation succeeds and no additional actions were inserted, the
scheduled plan is executable and hence output. However, if new free/ reallocation
actions were added by the scheduler, the scheduled plan has to be post-processed for
necessary domain translation to make the final plan executable.

Domain translation corresponds to replacing freeing/ reallocation actions with
the corresponding actions (in general, sub-plans) in the domain that achieve similar
resource-relevant effects. This information can be specified either by the user as in
my implementation or derived automatically from a domain modeling tool like TIM
[9]. In the blocks world domain, freeing can correspond to PUT-DOWN action which
places a block on the table while reallocation (unfreeing) can correspond to PICK-UP
action which holds a block again (See also Appendix B). Since there may be multiple
sub-plans in general, a cost measure can be used to select which sub-plan to use.

Domain translation may increase the length of the scheduled plan and introduce

o6

&
8
g
<
g 3 3
3 2 A o~ ' Qf‘-hcg
flggrgsd E&:5:EE
F| = S £ £ = = = e
E| £ ¢ ¢ ¢ £ 2 2 ¢t 8 B B E
=} s 8 8 8 8 8
3|88 & g8 EE 5B EE
R R o R R | + o @ ®o® 4 o o
L| o o4 o « & o @ == = = = = =
g%ﬁg%gggggﬁ‘ag‘gl
=09 2 5 9 5 5 o o oo o oo
S FEpP pEE cEEEREE
ElEE K B 28 ¢ £ &
g/ 222 22 8 5§ 7 gz ¥ ¥ B =
S| 58 8 &5 &% &% 5 6 ¢ o o o O
VANV N e N
ﬁoououooggrxmrxm
i & & & & &€ = 6 6 4 o & a
T
] 4 4 & o« ® ® & 1 1. © ~ o~
-
0 O o o
T £ £ 2 E E E E
58 8 8 EEEE
o s J e 3 g 24
3535 85 g 5 8 B §
§| r @ o o T
flpge gl R RE
| ¥F ¥ ¥ x o o o
%5%%%’_‘%0\%%
g1 00 3 W oa o o oa
¥ X X X >
2/ 85 5 6§ 8 8 2 2 8
T & a a = 6 &6 o6 o
T

Figure 6.1. The abstract plan (on left) is scheduled (on right) by inserting resource
manipulating actions.

non-minimality as illustrated below.

Consider the case of gripper domain [24] where balls have to be moved between
rooms. The abstract plan in Figure 6.1 was scheduled by inserting actions that assume
that gripper could be freed and reallocated at different levels where needed. The
resultant plan is translated based on the resource specification in Figure 6.2 to produce
the left plan in Figure 6.3. This plan is non-minimal and can be post-processed
to remove redundant actions. Post-processing can also check that the translated
plan is executable. This check is needed because though the planner suggested to
the scheduler that resource freeing/ reallocating actions are available in the domain,

inserting those actions may interfere with actions already present in the plan.

o7

(resource GRIPPER
(free
(means
(effects (free (grip)))

(
({room) ROOM))
(plans

(p11

(unfree
(means
(effects (carry (grip) (ob)))

(
(
({from-room) ROOM))
(plans

(p12

params ({grip) GRIPPER) ({(ob) OBJECT)

(s1 (DROP (grip) (ob) (room)))))))

params ({grip) GRIPPER) ({ob) OBJECT)
(room) ROOM) ({to-room) ROOM)

(s1 (MOVE (to-room) (from-room)))
(s2 (PICK (grip) (ob) (room)))
(s3 (MOVE (from-room) (to-room))))))))

Figure 6.2. Resource specification of gripper including 1-step subplan (DROP) to free
and 3-step subplan (MOVE, PICK, MOVE) to reallocate the gripper in a room.

(eft)

(right)
(left)
(right)

Post-processed (minimal) plan
PICK_GRIPPER_ball4_roomA
PICK_GRIPPER_ball2_roomA

(Ieft)

PICK_GRIPPER_ball3_roomA

DROP_GRIPPER_ball4_roomB
DROP_GRIPPER_ball2_roomB

MOVE_roomA_roomB
MOVE_roomB_roomA

(right)
(left)
(right)

DROP_GRIPPER_ball1_roomB (ri

PICK_GRIPPER_ball1_roomA
DROP_GRIPPER_ball3_roomB

MOVE_roomA_roomB

evel
1
1
2
3
3
4
5

5
6
7

(Ieft)
(right)
(Ieft)
(right)
(Ieft)
(right)
(Ieft)
(right)
(left)

Domain translated plan

PICK_GRIPPER_ball3_roomA

PICK_GRIPPER_ball3_roomA
PICK_GRIPPER_ball1_roomA
DROP_GRIPPER _ball3_roomA
DROP_GRIPPER _ball1_roomA
PICK_GRIPPER_ball4_roomA
PICK_GRIPPER_ball2_roomA
MOVE._roomA_roomB

DROP_GRIPPER _ball4_roomB
DROP_GRIPPER _ball2_room8
MOVE._roomB_roomA

(right)
(left)
(right} 7

DROP_GRIPPER_ball1_roomB (ri

PICK_GRIPPER_ball1_roomA
MOVE_roomA_roomB
DROP_GRIPPER_ball3_roomB

evel
1
1
2
2
3
3
4
5
5
6
7

2702

7
8
9
9

Figure 6.3. The inserted actions in the scheduled

plan are

translated to domain-

specific actions/sub-plans (on left) and post-processed to remove non-minimal (re-

dundant) actions (on right).

o8

In general, adding actions to a plan is risky because this can change its causal
structure and lead to interactions. But by using domain translation in a principled
manner, planning can truly tap the benefits of decoupling resource reasoning from its
causal reasoning phase. If all the allocation policies lead to inexecutable plans in a
domain, this implies that planning and scheduling were infact, not loosely coupled. 1t
may also be the case that the users’ preference prevents the planner from suggesting
a successful policy (like inserting new actions) to the scheduler. In such a situation,
the framework retains the ability to switch off resource abstraction and resort to

traditional planning.

Chapter 7

Implementation and Evaluation

The idea of decoupling causal and resource reasoning provides multiple imple-
mentation choices in both solving the abstract planning problem and in scheduling
resources which I highlight in detail here. I consider planning followed by different
forms of resource scheduling (procedural or declarative) and show that my approach

gains in performance while being less susceptible to the quantity of resources.

7.1 Implementation Choices

By separating causal and resource reasoning, we have multiple choices in the selection
of methods for abstract planning and resource scheduling which are summarized in
Figure 7.1. I have developed a prototype implementation of my approach on top of
Graphplan where the causal plan is obtained by Graphplan and scheduling is handled

by either procedural or declarative methods. I have also used GP-CSPI[5], a planner

60

GP-CSP
DECLARAT-

MANY CHOICE OF TECHNIQUES FOR SOLVING ABSTRACT PLANNING PROBLEM
IVE
MANY CHOICE OF TECHNIQUES FOR SOLVING RESOURCE SCHEDULING PROBLEM

—
g
=}
[a)
|
Q
o]
4
o

GRAPHPLAN

'
¢

PROBLEM

O 022 W

PLAN

0o z> Pz —_ 0z«
270 w ~ -

Figure 7.1. Choices for causal and resource reasoning. Boxes with solid lines show
choices that have been investigated.

which converts the plan graph of Graphplan into a CSP problem and extracts plans
from it with a standard CSP solver, for causal reasoning alongwith the declarative
scheduler.

Since there are multiple choices in either of the two phases, the quality of the
causal plan obtained after abstract planning and the quality of the schedule become
important in making the selection. A plan whose actions are perfectly justified[8]
cannot have an unnecessary action and is more desirable plan than another plan with
redundant actions. Similarly, a schedule which uses lesser resources is more desirable
than another schedule which uses more.

We can also try to improve the selected methods for each phase. I discuss some

ideas to make the declarative solver efficient.

61
7.1.1 Improving CSP Performance

A simple idea to improve CSP is to narrow the domains of positional variables based
on a necessarily before analysis of the abstract plan. I topologically sort the partial
order of the actions in the plan to know their positional upper limit given a LMAX.
This seems to help the CSP but not in a major way in my experiments. One reason
for it may be that higher payoffs will occur when the abstract plan is quite serial and
the time limit is very high. But in such cases, the need to increase the length of the
plan may not be usually there.

Another interesting performance issue is related to how the the length of the
plan is increased during scheduling. One can either increase the length linearly or
exponentially (e.g. doubling it) to arrive at a schedulable LM4X. But this can lead
to wasted search time if the length is too low in the first case and too high in the
second case. I select a mixed approach where a growth factor controls how much (say
10%) of the length is increased linearly from the current plan length before doubling
it. The idea is to increase length exponentially for smaller plan lengths and linearly
for higher plan lengths to converge at the sufficient plan length fast with reduced
wastage.

I have also investigated how to improve the encoding of CSP constraints. To
this effect, I have tried a number of alternative formulations of constraints with lower
arity but. One of the challenges we face is that since the GAC-CBJ solver only calls a
constraint checker if a variable in that constraint is assigned, there can be a situation

where the solution is obtained but it violates some constraint as the corresponding

62

checker was not called! The art is in ensuring that all the constraints are of lower

arity while ensuring all sufficient checkers are called at each stage.

7.2 Solving Problems

I now compare the performance of my prototype to standard Graphplan, as I vary the
amount of resources. First, I consider the blocks world (where the number of robot
hands is varied) and the logistics domain (where the number of trucks at different cities
are varied). I consider planning followed by different forms of resource scheduling
(procedural or declarative) and show that my approach gains in performance while
being less susceptible to the quantity of resources. I prefer declarative methods in
further experimentation, thereafter.

Next, I investigate the relationship between the nature of resources (sharable
v/s non-sharable) and scheduling time. I consider the rocket domain where the
sharable rocket can be used to transport items between location. I also consider
the inter-play between these type of resources in a domain I created called the shuttle
domain. In this domain, there are sharable shuttles and non-sharable cranes to move
boxes between inter-stellar bodies (e.g. Earth and Moon). I consider problems where
the number of both of these resources are varied independently. Sharable resources
pose lesser scheduling conflicts compared with non-sharable resources because they
allow overlap in resource spans and it is not obvious if problems with them will also

benefit from my approach. I show that my approach is still quite useful.

63
7.2.1 Planning and Procedural Scheduling

Figure 7.2 shows the results for the shuffle problems with 4, 6, 8 and 10 blocks as
the number of robots are varied from 1 to 10. The plots clearly show that planning
followed by scheduling (PS-TOT) is significantly better than original planning in
the presence of resources (GP-TOT). Let us consider the 6-block shuffle problem in
detail.

In my method, the planning time is constant and the scheduling time is de-
pendent on the specific class (in Figure 4.1) that the problem falls into. In the shuffle
case, problems with 5 to 10 robots are in class INFRES, problems with 3 and 4 robots
are in class FIX, and problems with 2 robots are in class SAMELEN. The first class
needs no modifications to the plan, the second class requires insertion of new actions,
while the third also requires movement of actions across levels (steps). Shuffle prob-
lems with 1 robot are in class INCRLEN, and are sent back to the planner. This is
reflected by the dip in the plot (SHUF6-PS-TOT) after 1 robot case.

Although not shown in the plots, the length of the plan with our approach is
the same as with original Graphplan in terms of the number of levels and actions. As
the number of resources (here robots) increase, my approach takes almost constant
time whereas the performance of Graphplan is adversely impacted to a significant
extent.

In Figure 7.4, we see the performance of my method on a different blocks world
problem, namely, the 8-block inversion problem. Problems with robots 2 to 10 are

in Class INFRES and the one with robot 1 is in Class INCRLEN. The plot clearly

64

$10q0J #
S

*

€

101-Sd-0TdNHS + - -+
101-Sd-8dNHS @ --@®
101-Sd-94NHS * - - %
1OL1-Sd-vdNHS & -- &
101-d9-0T4dNHS +——+
101-d9-84NHS —@
101-dO-94NHS *—*
._.O._.,yn_o.vn_DIw 0|,0

1rrr:ﬁ0vvvv¢AAAvavrr‘/

$)0Q0J pue S320|q 40 Jaquinu Buikrea yum wajqoid aynys ayy ui

0'00T

0°000T

Buinpayos+huluue|d s/A uejdydels jo aduewlojlod

(soas ur awn) bo|

270

Figure 7.2. Comparative performance on shuffle problems of 4, 6, 8 and 10 blocks

with my approach and Graphplan (Total: 80 problems).

65

s10q04 #
6 L S €

J:J+\\l+,ll+,§‘Tltn

Frommm kxR \

\ \

101-Sd-VIDdVvIME +- -+
101-dO9-vV3aodvimg e—e
101-Sd-1OV43ONH % - - %
101-d9-10V43ONH —

»

swia|gold e-abe|-mq 320|g-6 pue 1oe) abny S300|q-0T Y} Ul

TO

0T

0°00T

0°000T

Buinpayos+huluue|d s/A uejdydels jo aduewlojlod

(soas ur awn) bo|

270

Figure 7.3. Comparative performance on huge-fact (10 blocks) and bw-large-a (9

blocks) problems with my approach and Graphplan (Total: 40 problems).

66

in 8-Block Inversion Problem in Blocks World
#robots

Performance of Graphplan v/s Planning+Scheduling

‘ |
o o o S
© < N o

10.0
8.0

(soas u1) awn

270

Figure 7.4. Plot showing the performance of Graphplan alongwith Planning followed
by Scheduling method for 8-block inversion problem (Total: 20 problems).

67

| # Trucks/city | Normal GP | GP+Sched ||

1 1.0 2.7
2 24 1.0
3 4.6 1.6
4 10.0 1.5
10 500.0 1.0

Table 7.1. Runtime results from experiments in the logistics domain (in cpu sec). GP
refers to Graphplan while GP+Sched refers to my approach.

riterates the above result.

In Figure 7.3, we see the performance of my method on the 10-block huge-fact
problem and the 9-block bw-large-a problem. For huge-fact, problems with robots 1 to
5 are in Class INCRLEN and the remaining problems are in Class INFRES. Within
Class INCRLEN, the search time of the original planner first increases with resources
and then falls as the resource scarcity is eased. But across classes, the performance of
the original planner degrades with resources. My method relies on the original planner
for Class INCRLEN and thus suffers a minor penalty in those instances, but it shows
remarkable improvement later on. For bw-large-a, problems with robots 1 to 4 are in
Class INCRLEN and the remaining problems are in Class INFRES. I obtain results
similar to those in the huge-fact case. Notice that the amount of resources at which
the algorithm transitions from one class to another depends on the problem. This is
why the algorithm in Figure 4.2 cycles through all the methods for each problem.
Multiple resources & the Logistics domain: Note that the procedural algorithm

in Figure 4.2 and declarative method of Chapter 5 can handle domains with multi-

68

ple resources. Since a valid plan must be allocated resources with respect to all the
resource types in the domain, the abstract plan can either be iteratively scheduled
with respect to the resources of each type, as is done is procedural scheduling, or all
the constraints for the different resource types can be declared together and solved
simultaneously by the CSP solver. The order in which the resources should be sched-
uled in may be important for procedural scheduling efficiency but not correctness or
optimality of the final plan, and this is reflected in the declarative scheduling method-
ology. To illustrate the multi-resource case, consider the results of my experiments
in the logistics domain, shown in Table 7.1. The problem here involves 3 Packages
at 3 cities which need to be delivered to cities other than the originating city using
3 airplanes. The number of trucks (¢) at each city is varied as shown. The resource
declaration makes a truck at each city equivalent to other trucks at the same city.
This ensures that trucks in different cities are not considered inter-changeable. The
total number of trucks (n)) in the domain is 3¢ (thus the total number of trucks in the
domain in the largest problem, ¢t = 10, is 30). The algorithm plans by abstracting all
the trucks first. The procedural resource allocation algorithm will then solve the CSP
for the three resource types one after another, each corresponding to the allocation
of trucks at a specific city. In declarative scheduling, the CSP for the three resource
types will be solved together. We note that separating planning from scheduling is
again a very good idea in this domain too — leading to significant speedups as the

number of resources (trucks/city) increases.

69
7.2.2 Planning and Declarative Scheduling

I have also fully implemented my declarative scheduling approach on top of Graphplan
and the early results are promising. I now compare the performance of my approach
to standard Graphplan, as one varies the amount of resources. Recall that the CSP
encodings are solved with GAC-CBJ, a CSP solver that performs generalized arc-
consistency and conflict directed backjumping used by CPLANI[34]. I consider the
blocks world (where the number of robot hands is varied) and the logistics domain
(where the number of trucks at different cities are varied).

Figure 7.5 shows the results for the shuffle problems with 4, 6, 8 and 10 blocks
as the number of robots are varied from 1 to 10. The plots clearly show that planning
followed by scheduling (SHUF--PS) is significantly better than original planning in
the presence of resources (SHUF--TOT). The time-axis is on log scale. The plot
shows that total time is relatively flat as the number of resources increase in contrast
to the performance of Graphplan. Let us consider the 6-block shuffle problem in
detail.

In my method, the causal reasoning time is constant and the resource reasoning
time is dependent on the specific allocation policy (in Table 5.4) that successfully
allocated the resources. For fair comparison, since Graphplan only looks for shorter
length of the plan while the serializing allocation policy prefers both shorter length
as well as fewer number of actions in the plan, this policy is disabled. The allocation
policies are iterated in the following order: class INFRES, class FIX, class SAMELEN

and finally class INCRLEN. In the 6-shuffle case, problems with 5 to 10 robots

70

- -4 SHUF
- - % SHUF-

+——F SHUF
.

*

o -

T

in the Shuffle Problems in Blocks World
robots

Performance of Graphplan v/s Planning+Scheduling

800.0

270 (soas urawp) boj

Figure 7.5. Comparative performance of my approach of decoupling causal and re-
source reasoning v/s Graphplan in shuffle problem of 4, 6, 8 and 10 blocks (Total: 80
problems).

are solved in class INFRES, problems with 3 and 4 robots are solved in class FIX,
and problem with 2 robots is solved in class SAMELEN. The first class needs no
modifications to the plan, the second class requires insertion of new actions, while
the third also requires movement of actions across levels (steps).

In Figure 7.6, we see the performance of my method on the 10-block huge-
fact problem and the 9-block bw-large-a problem. The time-axis is on log scale. For
huge-fact, problems with robots 1 to 5 are in Class INCRLEN while for bw-large-
a, problems with robots 1 to 4 are in Class INCRLEN. The performance of the
scheduler, as noted before, is dependent on how the length of the plan is increased

following resource allocation failure. In the experiments, I allow 10% of the length to

71

#robots

4—@ HUGEFACT-GP-TOT
®—® BWLARGEA-GP-TOT
+—+ BWLARGEA-PS-TOT

in the 10-block huge fact and 9-block bw-large-a problems
#—* HUGEFACT-PS-TOT

Performance of Graphplan v/s Planning+Scheduling

»> L *— -
= e =
=1 =i o
=

100000.0

10000.0 ¢
1000.0
100.0 ¢

270

(s2as urawn) Bo|

Figure 7.6. Comparative performance on huge-fact (10 blocks) and bw-large-a (9
blocks) problems with Graphplan.

be increased linearly from the current plan length before it is doubled. Across classes,
we see that decoupling planning and scheduling leads to better results.

Utility of scheduling classes: The idea of progressively increasing the domain
sizes of variables is very useful in practice. For example, the 10-shuffle problem with
4 robots was solved in 4 sec in class FIX while following the above order, but it took
81 minutes when class INCRLEN was specified upfront.

All k-shuffle problems with 1 robot can only be solved in class INCRLEN, and
are handled straightforwardly, albeit with higher effort (it is reflected by the dip in
the plot SHUF--PS after 1 robot case). As noted before, this is a pathological case
because least commitment on resources during causal reasoning makes sense only if
there are multiple resources so that any resource conflict can be potentially overcome
during scheduling by assigning different resources to the conflicting actions. It could

have been easily detected and avoided upfront.

72

| # Trucks/city | Normal GP | GP+Sched ||

1 1.0 0.66
2 24 0.88
3 4.6 1.11
4 10.0 1.14
10 500.0 1.26

Table 7.2. Runtime results from experiments in the logistics domain (in cpu sec). GP
refers to Graphplan while GP+Sched refers to my approach.

My method can also handle domains with multiple resources and sharable
resources. Since a valid plan must be allocated resources with respect to all the
resource types in the domain, all the constraints for the different resource types can
be declared together and solved simultaneously by the CSP solver. To illustrate the
multi-resource case, consider the results of my experiments in the logistics domain,
shown in Table 7.2. The problem here involves 3 Packages at 3 cities which need to
be delivered to cities other than the originating city using 3 airplanes. The number
of trucks () at each city is varied as shown. The resource declaration makes a truck
at each city equivalent to other trucks at the same city. This ensures that trucks in
different cities are not considered inter-changeable. The total number of trucks (n))
in the domain is 3¢ (thus the total number of trucks in the domain in the largest
problem, ¢ = 10, is 30). We note that separating planning from scheduling is again a
very good idea in this domain too — leading to significant speedups as the number of

resources (trucks/city) increases.

73

| # Rockets | Normal GP | GP+Sched | GP-CSP+Sched |

2 0.13 3.05 0.48
3 0.31 2.97 0.28
4 0.15 2.99 0.31
3 0.23 2.99 0.28
6 0.40 2.96 0.30
7 0.40 2.99 0.29
8 0.55 2.98 0.31

Table 7.3. Runtime results from experiments in the rocket domain (in cpu sec). GP
refers to Graphplan, GP+Sched refers to Graphplan for abstract planning followed
by declarative scheduling. In GP-CSP+Sched, the planner is changed to GP-CSP.

7.2.3 The Effect of Nature of Resources on Scheduling

I now investigate the relationship between the nature of resources (sharable v/s non-
sharable) and (declarative) scheduling time. I consider the rocket domain where the
sharable rocket can be used to transport items between location. Table 7.3 shows the
result of my experiments in the rocket_facts_obj10 problem in Graphplan distribution
where 10 objects have to be moved from one location to another. The number of
rockets are varied in each of the runs. We see that planning with Graphplan is
completed in a fraction of second and it does not change much with the number of
sharable resources. On the other hand, the planning time with my approach is much
higher. It turns out that the causal reasoning in the space of abstracted plans takes
an average of 2.38 sec (note that causal reasoning is constant for my approach) while
average scheduling time is mere 0.03 sec. This suggests that either the specific planner

(i.e. Graphplan) is not handling the abstracted planning problem efficiently or that

74

0

Figure 7.7. Comparative performance of Graphplan in shuttle problems of 2..8 cranes
and 2..8 shuttles. (Total: 49 problems)

decoupling causal and resource reasoning is not beneficial for sharable resources for
overall planning efficiency even though the scheduling time is still very small.

I focussed on GP-CSP[5], a planner which converts the plan graph of Graphplan
into a CSP problem and solves it with a standard solver. The third column in Table 7.3
shows the result of using GP-CSP for solving the abstracted planning problem and
performing scheduling thereafter. We see that the overall performance is in line with
Graphplan confirming that the specific abstracted planning problem was not being
solved by Graphplan efficiently while decoupling causal and resource reasoning itself
does not degrade performance for sharable resources.

The scenario is highlighted if there are non-sharable resources in addition to
sharable resources. To study the inter-play between these types of resources, I created
a domain called the shuttle domain. In this domain, there are sharable shuttles

and non-sharable cranes to move boxes between inter-stellar bodies (e.g. Earth and

75

0

Figure 7.8. Comparative performance of my approach in shuttle problems of 2..8
cranes and 2..8 shuttles (Total: 49 problems).

Moon). I consider problems where the number of both of these resources are varied
independently. In Figure 7.7, we see the performance of Graphplan which degrades
sharply with the number of non-sharable cranes and lesser so with the number of
sharable shuttles. In Figure 7.8, I plot the performance of my approach. We note
that run-time is fairly constant and much lesser than Graphplan with varying number

of non-sharable cranes and sharable shuttles.

7.3 Lessons Learned

As we see from above discussion, decoupling causal and resource reasoning in planning
is a promising idea for overall planning efficiency. The performance improvement is

more marked for non-sharable resources and when planning and scheduling are loosely

76

coupled. This approach also provides us choices for selecting different reasoners for
causal and resource parts. We suggested that plan and schedule quality can be used

in deciding the specific reasoners for assembling an efficient planner.

Chapter 8

Discussion and related work

My work is an example of a planning model in which resource allocation is
teased apart from planning, and is handled in a separate “scheduling” phase (See
Figure 8.1). One may observe that a necessary condition for a schedulable plan is
that it should be causally correct irrespective of the allocation of resources. Once an
abstract plan (P') is produced which is correct sans the resource allocation, we can
use it as a starting point for all planning problems that differ only in the number
or amount of resources present. Most planners do not distinguish between these two
forms of reasoning and handle them within the same planning algorithm. Indeed,
the work on O-Plan [4, pp. 73], has identified the inefficiency of combining resource
scheduling with planning (although, to my knowledge, no specific steps were taken to
address that inefficiency in the O-Plan work).

In my approach, the planner and scheduler communicate in terms of policies

that the scheduler interprets in terms of its variables, their domains and constraints.

78

SCHEDULER
Executable Plan

(Re-) Plan
(Re-) Schedule

Planning Problem
PLANNER

270

Figure 8.1. (Figure repeated for convenience) A generalized plan model for separate
planning and scheduling.

The failure of the scheduler to allocate resources while following an allocation policy,
informs the planner to try another policy. The partial schedule in a failed iteration
is not pursued further and destroyed. This makes intuitive sense also since I am
interested in loosely coupled scheduling instances.

Another way of looking at the planner-scheduler interaction is by having the
scheduler “explain” the reason for its failure to allocate sufficient resource. This
explanation, which is in terms of resource limitations as well as the plan structure, is
then regressed to just the restrictions on the plan structure. The regressed explanation
can then be passed on to the planner, to be used in re-starting its search. This type
of “multi-module dependency directed backtracking” approach is a variation on the
hybrid planning methodology developed in [12], and is also akin to the approach used

to link satisfiability and linear programming solvers in [36].

79

My work can be seen as abstraction of resources from planning phase. From
this angle, my idea of keeping the structure of the causal plan intact during re-
source allocation phase is akin to the enforcement of ordered monotonicity property
in ALPINE[17]. An important difference however is that our work is not dependent
on the availability of strong abstractions, but is rather motivated by the desire to ex-
ploit the loose-coupling between planning and scheduling in most real world domains.
If the abstract plan cannot be scheduled, I support interaction between the scheduler
and planner to arrive at a schedulable plan.

Among planners that have considered resources, in SIPE[35], domain-specific
operator ordering can be provided by defining what are resource objects in the domain.
Work more closer to mine is by El-Kholy and Richards[6] and Cesta and Cristiano[3]
who perform temporal and resource reasoning after a plan is obtained. They however
do not consider the interactions between resource allocation and planning phases.
The recent LPSAT planner by Wolfman and Weld[36] distinguishes between discrete
and continous state variables, pushing the assignment of continous ones to an LP
solver. Note that discrete/continous distinction is really orthogonal to resource/non-
resource distinction. Abstraction of resources can be applied to both continous and
discrete parts of LPSAT. A natural extension of resource scheduling will be handling of
metric constraints which is useful for real-world tasks like resource planning, temporal
planning and optimization[19],[36].

Fox and Long[10] have described a way of utilizing symmetry in domains to

speedup planning. Symmetric domain objects are by definition functionally similar

80

and cannot be usefully distinguished. The insight here is that any one of the symmet-
ric objects is sufficient during solution verification to avoid equivalent failures. They
keep track of symmetric objects during planning while I abstract out resources.
There exist methods for improving the performance of Graphplan by removing
irrelevant literals from the problem specification (c.f. [30]). Such methods however
are not applicable for my problem as resources — however many of them there may
be — are never irrelevant and infact facilitate the state transition of desired objects.
Explanation-based learning (EBL) and dependency directed backtracking
(DDB) techniques have been used by Kambhampati[ll] to expedite Graphplan.
Though these methods capture some of the regularities of the domain/problem, I
found that they are still not competitive with my approach. Finally, the complexity
of changing plans for scheduling and parallelization has also been studied by Back-
strom [1]. While he focuses on parallelizing a complete and correct plan, I start with
a maximally parallel resource-abstracted plan and add or shift actions across levels

to handle resource constraints.

Chapter 9

Concluding Comments and Future

Work

My work is motivated by the desire to exploit the loose-coupling between plan-
ning and scheduling in real world domains. I have introduced a novel planning frame-
work in which resource allocation is teased apart from planning, and is handled in
a separate “scheduling” phase. The aim is to make planning efficient and scale it
to large domains containing multiple resources. I described resources and using in-
finite resource assumption, showed that disregarding resources during planning and
subsequently scheduling resources can lead to increased performance. I provided a
procedural method and a declarative method to schedule resources. In the procedu-
ral method, I discussed how resources can be allocated to an abstract plan, which
is obtained after causal reasoning, on the notion of plan length optimality. In the

declarative method, all the constraints of the resource allocation problem are expli-

82

cated and given to a CSP solver. By doing so, I can handle the resource scheduling
problem in its full complexity and can provide a computational characterization of
the different scheduling classes. The runtime of my approach is much less sensitive to
the resource quantity. It thus admits the paradigm of plan once and schedule anytime.
If some allocated resource becomes unavailable during plan execution, the approach
can handle the exception through resource re-allocation.

In future, work on a tighter integration of planner and scheduler can be done
by allowing the scheduler to suggest modifications in the abstracted plan structure. I
have already used GP-CSP[5], a planner which converts the plan graph of Graphplan
into a CSP problem. Using such a planner, the scheduler can inform the former about
the source of infeasibility in terms of the variables and constraints in the planner’s
CSP. This will allow true multi-module dependency directed backtracking to handle
even tightly coupled problems.

One can also incorporate a domain modeling tool (e.g. TIM[9]) to automati-
cally identify freeing and unfreeing sub-plans in a domain. The user may, however,
still be needed if different sub-plans have varying costs. Finally, as identified in [32],
decoupling planning and scheduling can benefit not only Graphplan-style state-space
planning but also goal-directed planning as in UCPOP[31], and also form the frame-
work for planning with metric and continuous resources. We can investigate these
directions in future.

My resource scheduling phase currently only aims to generate the shortest

length plan — equating, in effect, the plan cost with plan length. While this is con-

83

sistent with the current practice in systems like Graphplan and Blackbox, real world
domains would need more general cost metrics that are a function of both the plan
length and resource costs. I have handled discrete sharable and non-sharable resources
until now. One can incorporate continous resources by modeling linear constraints.

We can concentrate on these more general issues in future.

References

1]

2]

3]

8]

9]

[10]

[11]

Backstrom, C. Computational Aspects of Reordering Plans. JAIR Vol.9,
99-137. 1998.

Blum, A., and Furst, M. Fast Planning through Planning Graph Analy-
sts. Proc. IJCAI-95, 1636-1642. 1995.

Cesta, A. and Cristiano, S. A Time and Resource Problem in Planning
Architectures. Proc. ECP-96. 1996.

Currie, K. and Tate, A. O-Plan: the Open Planning Architecture. Al,
Vol 52, 49-86. 1991.

Do, B., and Kambhampati, S. Solving Planning Graph by Compiling it
into CSP. Technical Report, Arizona State University. 1999.

El-Kholy, A. and Richards, B. Temporal and Resource Reasoning in
Planning: the parcPlan Approach. Proc. ECAI-96. 1996.

Fikes, R., and Nilsson, N. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Readings in Planning. Morgan
Kaufmann Publ., San Mateo, CA. 1990.

Fink, E., and Yang, Q. Formalizing Plan Justifications. Proc. CSCSI-92,
9-14. 1992.

Fox, M. and Long, D. The Automatic Inference of State Invariants in
TIM. Journal of Al Research, Volume 9, pages 367-421. 1999.

Fox, M., and Long, D. The Detection and Exploitation of Symmetry in
Planning Domains. Proc. IJCAI-99. 1999.

Kambhampati, S. EBL and DDB for Graphplan. Proc. IJCAI-99. 1999.

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

85

S. Kambhampati, M.R. Cutkoksy, J.M. Tenenbaum and S. Lee. Integrat-
ing General Purpose Planners and Specialized Reasoners: Case Study of
a Hybrid Planning Architecture. IEEE Trans. on Systems, Man and Cy-
bernetics, Special issue on Planning, Scheduling and Control, Vol. 23,

No. 6, November/December, 1993). (An earlier version appears in Proc.
AAAL91). 1993,

Kambhampati, S.; Parker, E.; and Lambrecht, E. Understanding and
Ezxtending Graphplan. Proc. ECP. 1997.

Kambhampati, S., and Srivastava, B. Universal Classical Planning:
An Algorithm for Unifying State Space and Plan Space Planning Ap-
proaches. New Directions in Al Planning: EWSP 95, IOS Press. 1995.

Kautz, H., and Selman, B. BLACKBOX: A New Approach to the Ap-
plication of Theorem Proving to Problem Solving. Workshop Planning
as Combinatorial Search, AIPS-98, Pittsburgh, PA, 1998. 1998.

Kautz, H. and Selman, B. Pushing the Envelope: Planning, Proposi-
tional Logic and Stochastic Search. Proc. AAAI 96. 1996.

Knoblock, C. A. Automatically Generating Abstractions for Planning.
AT Journal, 68(2). 1994.

Knoblock, C. A. Generating Parallel Ezecution Plans with o Partial-
order Planner. Proc. AIPS, Morgan Kaufmann Pub., San Mateo, CA.
1994.

Koehler, J. Planning under Resource Constraints. Proc. ECAI-98. 1998.

Koehler, J; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y. FExtending
Planning Graphs to an ADL Subset. Proc. ECP-97. 1997.

Laborie, P., and Ghallab, M. Planning with Sharable Resource Con-
straints. Proc. IJCAI-95. 1995.

Li, C.M., and Anbulagan. Heuristics Based on Unit Propagation for
Satisfiability Problems. Proc IJCAI-97. 1997.

McAllester, D., and Rosenblitt, D. Systematic Nonlinear Planning. Proc.
9th NCAI-91, 634-639. 1991.

McDermott, D. AIPS-98 Planning Competition Results. At
ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html. 1998.

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

86
McVey, C. B.; Atkins, E. M.; Durfee, E. H.; and Shin, K. G. Development
of Iterative Real-time Scheduler to Planner Feedback. Proc. IJCAI 1997.

Moder, J. J., and Phillips, C. R. Project Management with CPM and
PERT. Reinhold Publ., Chapman & Hall Ltd., London. 1964.

Microsoft. Microsoft Project Version 4.0 User Guide. Microsoft Press.
1998. 1998.

Mittal, S., and Falkenhainer, B. Dynamic Constraint Satisfaction Prob-
lems. Proc. AAAI-90. 1990.

Muscettola, N. Toward Real-world Science Mission Planning. Proc.
AAAT Fall Symposium. 1994.

Nebel, B.; Dimopoulos, Y.; and Koehler, J. Ignoring Irrelevant Facts
and Operators in Plan Generation. Proc. ECP-97. 1997.

Penberthy, J., and Weld, D. UCPOP: A Sound, Complete, Partial
Order Planner for ADL. Proc. AAAI-94, 103-114. 1994.

Srivastava, B., and Kambhampati, S. Scaling up Planning by Teasing
out Resource Scheduling. Proc. ECP-99. 1999.

Srivastava, B. Decoupling Causal and Resource Reasoning in Planning.
ASU TR 99-007. 1999.

van Beek, P., and Chen, X. CPlan: A Constraint Programming Approach
to Planning. Proc. AAAI-99. 1999.

[35] Wilkins, D. E. Practical planning: Extending the Classical A1 Planning

Paradigm. Morgan Kaufmann Pub., San Mateo, CA. 1988.

[36] Wolfman, S., and Weld, D. The LPSAT Engine and its Application to

Resource Planning. Proc. IJCAI-99. 1999.

APPENDIX A

ALL PLANS FOR THE

SHUFFLE PROBLEM

38

These 4 plans are among the 98,657 plans returned from graphplan for 3 robot

run on shuf fle problem. Note that they only differ in how robots are freed and

unfreed.

Plan 1 :
1 UNSTACK_robl_blockF_blockE
2 UNSTACK_rob2_blockE_blockD
3 PUT-DOWN_rob2_blockE
3 UNSTACK_rob3_blockD_blockC
4 UNSTACK_rob2_blockC_blockB
5 PUT-DOWN_rob2_blockC
6 STACK_robl_blockF_blockC
6 UNSTACK_rob2_blockB_blockA
7 STACK_rob2_blockB_blockF
7 PICK-UP_robl_blockE
8 STACK_robl_blockE_blockB
8 PICK-UP_rob2_blockA
9 STACK_rob2_blockA_blockE

10 STACK_rob3_blockD_blockA

Plan 2 :
1 UNSTACK_rob3_blockF_blockE
2 UNSTACK_rob2_blockE_blockD
2 PUT-DOWN_rob3_blockF
3 PUT-DOWN_rob2_blockE
3 UNSTACK_rob3_blockD_blockC

4 PUT-DOWN_rob3_blockD

free blockE

unfree blockE

free blockF

free blockE

free blockD

4 UNSTACK_rob2_blockC_blockB

5 PUT-DOWN_rob2_blockC

5 PICK-UP_rob3_blockF

6 STACK_rob3_blockF_blockC

6 UNSTACK_rob2_blockB_blockA

7 STACK_rob2_blockB_blockF

7 PICK-UP_rob3_blockE

8 STACK_rob3_blockE_blockB

8 PICK-UP_rob2_blockA

9 STACK_rob2_blockA_blockE

9 PICK-UP_rob3_blockD

10 STACK_rob3_blockD_blockA

Plan 3 :

1 UNSTACK_rob3_blockF_blockE

2 PUT-DOWN_rob3_blockF

2 UNSTACK_robl_blockE_blockD

3 PUT-DOWN_robl_blockE

3 UNSTACK_rob3_blockD_blockC

4 PUT-DOWN_rob3_blockD

4 UNSTACK_robl_blockC_blockB

5 PICK-UP_rob3_blockF

5 PUT-DOWN_robl_blockC

6 UNSTACK_robl_blockB_blockA

6 STACK_rob3_blockF_blockC

7 PICK-UP_rob3_blockE

unfree blockF

unfree blockE

unfree blockD

free blockF

free blockE

free blockD

unfree blockF

unfree blockE

89

7 STACK_robl_blockB_blockF

8 PICK-UP_robl_blockA

8 STACK_rob3_blockE_blockB

9 STACK_robl_blockA_blockE

9 PICK-UP_rob3_blockD

10 STACK_rob3_blockD_blockA

Plan 4 :

1 UNSTACK_rob2_blockF_blockE

2 PUT-DOWN_rob2_blockF

2 UNSTACK_robl_blockE_blockD

3 UNSTACK_rob2_blockD_blockC

3 PUT-DOWN_robl_blockE

4 UNSTACK_robl_blockC_blockB

4 PUT-DOWN_rob2_blockD

5 PICK-UP_rob2_blockF

5 PUT-DOWN_robl_blockC

6 UNSTACK_robl_blockB_blockA

6 STACK_rob2_blockF_blockC

7 PICK-UP_rob2_blockE

7 STACK_robl_blockB_blockF

8 PICK-UP_robl_blockA

8 STACK_rob2_blockE_blockB

9 STACK_robl_blockA_blockE

9 PICK-UP_rob2_blockD

10 STACK_rob2_blockD_blockA

90

unfree blockD

free blockF

free blockE

free blockD

unfree blockF

unfree blockE

unfree blockD

APPENDIX B

EXPLICIT RESOURCE

SPECIFICATION

The format to specify resources in the blocks world domain.

robot
(resource ROBOT
(free
(means
(effects (arm-empty <rob>))
(params (<rob> ROBOT)
(<ob> OBJECT)
(<underob> 0OBJECT))
(plans
(p1 1
(s1 (PUT-DOWN <rob> <ob>)))
(p2 4
(s1 (STACK <rob> <ob>
<underob>))))))
(unfree
(means
(effects (holding <rob> <ob>))
(params (<rob> ROBOT)
(<ob> DBJECT)
(<underob> 0BJECT))
(plans
(p1 1
(s1 (PICK-UP <rob> <ob>)))
(p2 4

(s1 (UNSTACK <rob> <ob>

92

<underob>)))))))

The similar format in logistics domain will be:

truck
(resource TRUCK
(free
(means
(effects (at <truck> <loc-to>))
(params (<truck> TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(plans
(p1 1
(s1 (DRIVE-TRUCK <truck>
<loc-from>
<loc-to>
<CITY>))))))
(unfree
(means
(effects (at <truck> <loc-from>))
(params (<truck> TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(plans

(p1 1

93

(s1 (DRIVE-TRUCK <truck>
<loc-from>
<loc-to>

<CITY>)))))))

#airplane
(resource AIRPLANE
(free
(means
(effects (at <airplane> <loc-to>))
(params (<airplane> ATIRPLANE)
(<loc-from> AIRPORT)
(<loc-to> AIRPORT))
(plans
(p1 1
(s1 (FLY-AIRPLANE <airplane>
<loc-from>
<loc-to0>))))))
(unfree
(means
(effects (at <airplane> <loc-from>))
(params (<airplane> AIRPLANE)
(<loc-from> AIRPORT)
(<loc-to> AIRPORT))
(plans

(p1 1

94

(s1

(FLY-AIRPLANE <airplane>
<loc-from>

<loc-t0>)))))))

95

APPENDIX C

DOMAINS AND PROBLEM

SPECIFICATION

The domains and problem instances mentioned in the dissertation are listed
here. Problem sets are obtained by varying the number of resources in a problem

instance.

C.1 Blocks world domain

C.1.1 Domain operator file

#old-style
(resource ROBOT
(free
(means
(effects (arm-empty <rob>))
(params (<rob> ROBOT)
(<ob> OBJECT)
(<underob> O0BJECT))

(plans

(p1 1
(s1 (PUT-DOWN <rob> <ob>)))
(p2 4
(s1 (STACK <rob> <ob>
<underob>))))))
(unfree
(means
(effects (holding <rob> <ob>))
(params (<rob> ROBOT)
(<ob> 0BJECT)
(<underob> 0BJECT))
(plans
(p1 1
(s1 (PICK-UP <rob> <ob>)))
(p2 4
(s1 (UNSTACK <rob> <ob>

<underob>)))))))

(operator
PICK-UP
(params (<rob> ROBOT) (<ob> OBJECT))
(preconds
(clear <ob>) (on-table <ob>)
(arm-empty <rob>))
(effects

(holding <rob> <ob>)))

(operator
PUT-DOWN
(params (<rob> ROBOT) (<ob> OBJECT))
(preconds
(holding <rob> <ob>))
(effects
(clear <ob>) (arm-empty <rob>)

(on-table <ob>)))

(operator
STACK
(params (<rob> ROBOT) (<ob> OBJECT)
(<underob> OBJECT))

(preconds

(clear <underob>)

(holding <rob> <ob>))
(effects

(arm-empty <rob>) (clear <ob>)

(on <ob> <undercb>)))

(operator

UNSTACK

(params (<rob> ROBOT) (<ob> OBJECT)

(<underob> O0BJECT))

(preconds
(on <ob> <underob>) (clear <ob>)
(arm-empty <rob>))

(effects
(holding <rob> <ob>)

(clear <underob>)))

C.1.2 shuffie problem with 3 robots

(blockA OBJECT)
(blockB OBJECT)
(blockC OBJECT)
(blockD OBJECT)
(blockE OBJECT)
(blockF OBJECT)
(robl ROBOT)

(rob2 ROBOT)

(rob3 ROBOT)

(preconds
(on-table blockA)
(on blockB blockA)
(on blockC blockB)
(on blockD blockC)
(on blockE blockD)
(on blockF blockE)
(clear blockF)
(arm-empty robl)
(arm-empty rob2)

(arm-empty rob3))

(effects

(on blockD blockA)
(on blockA blockE)
(on blockE blockB)
(on blockB blockF)

(on blockF blockC))

C.1.3

(blockA OBJECT)
(blockB OBJECT)
(blockC OBJECT)
(blockD OBJECT)
(blockE OBJECT)
(blockF OBJECT)
(blockG OBJECT)
(blockH OBJECT)
(blockI OBJECT)
(blockJ OBJECT)
(rob8 ROBOT)

(rob9 ROBOT)

(rob10 ROBOT)

(preconds

(on-table blockA)
(on blockB blockA)
(on blockC blockB)
(on-table blockD)
(on blockE blockD)
(on blockF blockE)
(on-table blockG)
(on blockH blockG)

(on blockI blockH)

Hugefact problem with 3 robots

(clear blockC)

(clear block])

(clear blockF)

(on blockJ blockI)

(arm-empty rob8)

(arm-empty rob9)

(arm-empty rob10))

(effects

(on-table blockA)
(on blockD blockA)
(on blockG blockD)
(on-table blockJ)
(on blockF blockJ)
(on blockI blockC)
(on-table blockC)
(on blockH blockE)
(on blockE blockB)

(on-table blockB))

99

C.1.4 BW-large-a problem with 3 robots

(blockA OBJECT)
(blockB 0BJECT)
(blockC OBJECT)
(blockD OBJECT)
(blockE OBJECT)
(blockF OBJECT)
(blockG OBJECT)
(blockH OBJECT)
(blockI OBJECT)
(rob8 ROBOT)

(rob9 ROBOT)

(rob10 ROBOT)

(preconds

(arm-empty rob8)
(arm-empty rob9)

(arm-empty rob10)

(on blockC blockB)
(on blockB blockA)
(on-table blockA)
(on blockE blockD)
(on-table blockD)
(on blockI blockH)
(on blockH blockG)
(on blockG blockF)

(on-table blockF)

(clear blockC)
(clear blockE)

(clear blockI))

(effects

(on blockA blockE)
(on-table blockE)
(on blockH blockI)
(on blockI blockD)
(on-table blockD)
(on blockB blockC)
(on blockC blockG)
(on blockG blockF)

(on-table blockF)

100

(clear blockA)
(clear blockH)

(clear blockB))

C.2 Logistics domain

C.2.1 Domain operator file

#old-style
(resource la-TRUCK shares
(free
(means
(effects (at <la-truck> <loc-to>))
(params (<la-truck> 1a-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(plans
(p1 1
(s1 (1a-DRIVE-TRUCK <la-truck>
<loc-from>
<loc-to>
<city>))))))
(unfree
(means
(effects (at <la-truck> <loc-from>))
(params (<la-truck> la-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(plans
(p1 1
(s1 (1a-DRIVE-TRUCK <la-truck>
<loc-from>
<loc-to>

<city>)))))))

(resource bos-TRUCK shares
(free
(means

(effects (at <bos-truck> <loc-to>))

101

(params (<bos-truck> bos-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))

(plans
(p1 1

(s1 (bos-DRIVE-TRUCK <bos-truck>

<loc-from>
<loc-to>
<city>))))))
(unfree
(means

(effects (at <bos-truck> <loc-from>))
(params (<bos-truck> bos-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(plans
(p1 1
(s1 (bos-DRIVE-TRUCK <bos-truck>
<loc-from>
<loc-to>

<city>)))))))

(resource pgh-TRUCK shares
(free
(means
(effects (at <pgh-truck> <loc-to>))
(params (<pgh-truck> pgh-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(plans
(p1 1
(s1 (pgh-DRIVE-TRUCK <pgh-truck>
<loc-from>
<loc-to>
<city>))))))
(unfree
(means
(effects (at <pgh-truck> <loc-from>))
(params (<pgh-truck> pgh-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)

(<city> CITY))

102

103

(plans
(p1 1
(s1 (pgh-DRIVE-TRUCK <pgh-truck>
<loc-from>
<loc-to>

<city>)))))))

(operator la-LOAD-TRUCK
(params (<obj> OBJECT)
(<la-truck> la-TRUCK)
(<loc> LOCATION)
(<city> CITY))
(preconds
(at <la-truck> <loc>)
(at <obj> <loc>)
(loc-at <loc> <city>))
(effects
(la-in <obj> <la-truck>)
(at <la-truck> <loc>)

(loc-at <loc> <city>)))

(operator bos-LOAD-TRUCK
(params (<obj> OBJECT)
(<bos-truck> bos-TRUCK)
(<loc> LOCATION)
(<city> CITY))
(preconds
(at <bos-truck> <loc>)
(at <obj> <loc>)
(loc-at <loc> <city>))
(effects
(bos-in <obj> <bos-truck>)
(at <bos-truck> <loc>)

(loc-at <loc> <city>)))

(operator pgh-LOAD-TRUCK
(params (<obj> OBJECT)
(<pgh-truck> pgh-TRUCK)
(<loc> LOCATION)
(<city> CITY))
(preconds
(at <pgh-truck> <loc>)
(at <obj> <loc>)

(loc-at <loc> <city>))

104

(effects
(pgh-in <obj> <pgh-truck>)
(at <pgh-truck> <loc>)

(loc-at <loc> <city>)))

(operator LOAD-AIRPLANE
(params (<obj> OBJECT)
(<airplane> AIRPLANE)
(<loc> LOCATION))
(preconds
(at <obj> <loc>)
(at <airplane> <loc>))
(effects
(in <obj> <airplane>)

(at <airplane> <loc>)))

(operator la-UNLOAD-TRUCK
(params (<obj> OBJECT)
(<la-truck> la-TRUCK)
(<loc> LOCATION)
(<city> CITY))
(preconds
(at <la-truck> <loc>)
(la-in <obj> <la-truck>)
(loc-at <loc> <city>))
(effects
(at <obj> <loc>)
(at <la-truck> <loc>)

(Lloc-at <loc> <city>)))

(operator bos-UNLOAD-TRUCK
(params (<obj> OBJECT)
(<bos-truck> bos-TRUCK)
(<loc> LOCATION)
(<eity> CITY))
(preconds
(at <bos-truck> <loc>)
(bos-in <obj> <bos-truck>)
(loc-at <loc> <city>))
(effects
(at <obj> <loc>)
(at <bos-truck> <loc>)

(loc-at <loc> <city>)))

(operator pgh-UNLOAD-TRUCK

(params (<obj> OBJECT)
(<pgh-truck> pgh-TRUCK)
(<loc> LOCATION)
(<city> CITY))
(preconds
(at <pgh-truck> <loc>)
(pgh-in <obj> <pgh-truck>)
(loc-at <loc> <city>))
(effects
(at <obj> <loc>)
(at <pgh-truck> <loc>)

(loc-at <loc> <city>)))

(operator UNLOAD-AIRPLANE
(params (<obj> OBJECT)
(<airplane> AIRPLANE)
(<loc> LOCATION))
(preconds
(in <obj> <airplane>)
(at <airplane> <loc>))
(effects
(at <obj> <loc>)

(at <airplane> <loc>)))

(operator la-DRIVE-TRUCK
(params (<la-truck> la-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(preconds
(at <la-truck> <loc-from>)
(loc-at <loc-from> <city>)
(loc-at <loc-to> <city>))
(effects
(at <la-truck> <loc-to>)
(loc-at <loc-from> <city>)

(loc-at <loc-to> <city>)))

(operator bos-DRIVE-TRUCK
(params (<bos-truck> bos-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(preconds

(at <bos-truck> <loc-from>)

105

106

(loc-at <loc-from> <city>)

(loc-at <loc-to> <city>))
(effects

(at <bos-truck> <loc-to>)

(loc-at <loc-from> <city>)

(loc-at <loc-to> <city>)))

(operator pgh-DRIVE-TRUCK
(params (<pgh-truck> pgh-TRUCK)
(<loc-from> LOCATION)
(<loc-to> LOCATION)
(<city> CITY))
(preconds
(at <pgh-truck> <loc-from>)
(loc-at <loc-from> <city>)
(loc-at <loc-to> <city>))
(effects
(at <pgh-truck> <loc-to>)
(loc-at <loc-from> <city>)

(loc-at <loc-to> <city>)))

(operator FLY-AIRPLANE
(params (<airplane> AIRPLANE)
(<loc-from> AIRPORT)
(<loc-to> AIRPORT))
(preconds
(at <airplane> <loc-from>))
(effects

(at <airplane> <loc-to>)))

C.2.2 Logistics problem

(packagel DBJECT)
(package2 OBJECT)
(package3 OBJECT)
(pgh-truckl pgh-TRUCK)
(pgh-truck2 pgh-TRUCK)
(pgh-truck3 pgh-TRUCK)
(bos-truckl bos-TRUCK)
(bos-truck2 bos-TRUCK)
(bos-truck3 bos-TRUCK)
(la-truckl la-TRUCK)

(la-truck2 la-TRUCK)

(la-truck3 la-TRUCK)
(airplanel AIRPLANE)
(airplane2 AIRPLANE)
(bos-po LOCATION)
(la-po LOCATION)

(pgh-po LOCATION)

(bos-airport AIRPORT)

(bos-airport LOCATION)

(pgh-airport AIRPORT)

(pgh-airport LOCATION)

(la-airport AIRPORT)

(la-airport LOCATION)

(pgh CITY)

(bos CITY)

(la CITY)

(preconds

(at packagel pgh—po)

(at package2 bos-po)

(at package3 la-po)

(at airplanel pgh-airport)

(at airplane2 pgh-airport)

(at bos-truckl bos-po)

(at bos-truck2 bos-po)

(at bos-truck3 bos-po)

(at pgh-truckl pgh-po)

(at pgh-truck2 pgh-po)

(at pgh-truck3 pgh-po)

(at la-truckl la-po)

(at la-truck2 la-po)

(at la-truck3 la-po)

(loc-at
(loc-at
(loc-at
(loc-at
(loc-at

(loc-at

(effects

pgh-po pgh)
pgh-airport pgh)
bos-po bos)
bos-airport bos)
la-po la)

la-airport la))

(at packagel bos-po)

(at package2 la-po)

(at package3 bos-po))

107

C.3 Shuttle domain

C.3.1 Domain operator

#old-style
(resource CRANE
(free
(means
(effects (arm-empty <crane>))
(params (<crane> CRANE)
(<ob> OBJECT)
(<underob> OBJECT))
(plans
(p1 1
(s1 (PUT-DOWN <crane> <ob>)))
(p2 4
(s1 (STACK <crane> <ob>
<underob>))))))
(unfree
(means
(effects (holding <crame> <ob>))
(params (<crane> CRANE)
(<ob> 0OBJECT)

(<underob> OBJECT))

(plans
(p1 1
(s1 (PICK-UP <crame> <ob>)))
(p2 4

(s1 (UNSTACK <crane> <ob>

<underob>)))))))

(resource SHUTTLE shares nofree
(free
(means
(effects (at <ob> <place>))
(params (<ob> OBJECT)
(<shuttle> SHUTTLE)
(<place> PLACE))
(plans
(p1 1
(s1 (UNLOAD <ob> <shuttle>

<place>))))))

file

108

(unfree

(means

(effects (in <ob> <place>))

(params (<ob> OBJECT)

(<shuttle> SHUTTLE)

(<place> PLACE))

(plans
(p1 1
(s1 (LOAD <ob> <shuttle>
<place>)))))))
(operator

PICK-UP

(params (<crane> CRANE) (<ob> OBJECT))

(preconds

(clear <ob>) (on-ground <ob>)

(arm-empty <crane>))

(effects

(holding <crane> <ob>)))

(operator
PICK-FROM-CONVEYOR

(params (<crane> CRANE) (<ob> OBJECT)

(<place> PLACE))

(preconds
(clear <ob>)

(on-conveyor <ob> <place>)

(arm-empty <crane>))
(effects

(holding <crane> <ob>)

(at <ob> <place>)))

(operator

PUT-DOWN

(params (<crane> CRANE) (<ob> OBJECT))

(preconds

(holding <crane> <ob>))
(effects

(clear <ob>) (arm-empty <crane>)

(on-ground <ob>)))

(operator
PUT-0N-CONVEYOR

(params (<crane> CRANE) (<ob> OBJECT)

(<place> PLACE))

109

(preconds
(holding <crane> <ob>)
(at <ob> <place>))
(effects
(clear <ob>) (arm-empty <crane>)

(on-conveyor <ob> <place>)))

(operator
STACK
(params (<crane> CRANE) (<ob> OBJECT)
(<underob> O0BJECT))
(preconds
(clear <underob>)
(holding <crane> <ob>))
(effects
(arm-empty <crane>) (clear <ob>)

(on <ob> <underob>)))

(operator

UNSTACK

(params (<crane> CRANE) (<ob> OBJECT)

(<underob> O0BJECT))

(preconds
(on <ob> <undercb>) (clear <ob>)
(arm-empty <crane>))

(effects
(holding <crane> <ob>)

(clear <underob>)))

(operator

LOAD-IN-SHUTTLE

(params (<ob> DBJECT) (<shuttle> SHUTTLE)

(<place> PLACE))
(preconds
(at <shuttle> <place>)
(on-conveyor <ob> <place>)
(clear <ob>))
(effects
(in <ob> <shuttle>)

(at <shuttle> <place>)))

(operator

UNLOAD-FROM-SHUTTLE

(params (<ob> OBJECT) (<shuttle> SHUTTLE)

(<place> PLACE))

110

(preconds

(at <shuttle> <place>)

(in <ob> <shuttle>))

(effects

(on-conveyor <ob> <place>)
(at <shuttle> <place>)

(clear <ob>)))

(operator

MOVE

(params (<shuttle> SHUTTLE) (<from> PLACE)

(<to> PLACE))

(preconds

(has-fuel <shuttle>)

(at <shuttle> <from>))

(effects

(at <shuttle> <to>)))

C.3.2

Shuttle problem with 4 cranes and 6 shuttles

(boxA 0BJECT)

(boxB 0BJECT)

(boxC O0BJECT)

(boxD OBJECT)

(cranel CRANE)

(crane2 CRANE)

(crane3 CRANE)

(crane4 CRANE)

(Earth PLACE)

(Moon PLACE)

(shuttlel SHUTTLE)

(shuttle2 SHUTTLE)

(shuttle3 SHUTTLE)

(shuttle4 SHUTTLE)

(shuttle5 SHUTTLE)

(shuttle6 SHUTTLE)

(preconds
(at
(at
(at
(at

(at

shuttlel

shuttle2

shuttle3

shuttled

shuttleb

Earth)
Earth)
Earth)
Earth)

Earth)

111

112

(at shuttle6 Earth)
(has-fuel shuttlel)
(has-fuel shuttle2)
(has-fuel shuttle3)
(has-fuel shuttle4)
(has-fuel shuttle5)
(has-fuel shuttle6)
(at boxA Earth)
(at boxB Earth)
(at boxC Earth)
(at boxD Earth)
(on-ground boxA)
(on boxB boxA)
(on boxC boxB)
(on boxD boxC)
(clear boxD)
(arm-empty cranel)
(arm-empty crane2)
(arm-empty crane3)

(arm-empty crane4))

(effects
(at boxA Moon)
(at boxB Moon)
(at boxC Moon)
(at boxD Moon)

(on boxD boxA)

(on boxA boxB)

(on boxB boxC))

C.4 Rocket domain

C.4.1 Domain operator file (PRODIGY style)

(resource ROCKET shares nofree
(free
(means
(effects (at <object> <place>))
(params (<object> CARGO)
(<rocket> ROCKET)

(<place> PLACE))

(plans
(p1 1
(s1 (UNLOAD <object> <rocket>
<place>))))))
(unfree
(means
(effects (in <object> <place>))
(params (<object> CARGO)
(<rocket> ROCKET)
(<place> PLACE))
(plans
(p1 1
(s1 (LOAD <object> <rocket>

<place>)))))))

(operator
LOAD
(params (<object> CARGO)
(<rocket> ROCKET)
(<place> PLACE))
(preconds
(at <rocket> <place>)
(at <object> <place>))
(effects
(in <object> <rocket>)

(del at <object> <place>)))

(operator
UNLOAD
(params (<object> CARGD)
(<rocket> ROCKET)
(<place> PLACE))
(preconds
(at <rocket> <place>)
(in <object> <rocket>))
(effects
(at <object> <place>)

(del in <object> <rocket>)))

(operator
MOVE
(params (<rocket> ROCKET)
(<from> PLACE) (<to> PLACE))
(preconds

(has-fuel <rocket>)

113

(at <rocket> <from>))

(effects

C.4.2

(at <rocket> <to>)
(del has-fuel <rocket>)

(del at <rocket> <from>)))

(London PLACE)

(Paris PLACE)

(JFK PLACE)

(OHARE PLACE)

(r1
(r2

(r3

ROCKET)
ROCKET)

ROCKET)

(mxf CARGO)

(avrim CARGO)

(alex CARGO)

(jason CARGO)

(pencil CARGO)

(paper CARGO)

(april CARGO)

(michelle CARGO)

(betty CARGO)

(lisa CARGO)

(preconds

(has-fuel rl)

(has-fuel r2)

(has-fuel r3)

(at
(at
(at
(at
(at
(at
(at
(at
(at
(at
(at
(at

(at

rl London)

r2 OHARE)

r3 London)

mxf London)
avrim London)
alex London)
jason London)
pencil London)
paper OHARE)
michelle OHARE)
april OHARE)
betty OHARE)

lisa OHARE))

Rocket problem with 3 rockets

114

115

(effects

(at mxf Paris)
(at avrim Paris)
(at alex Paris)
(at jason Paris)

(at pencil Paris)

(at paper JFK)
(at michelle JFK)
(at april JFK)
(at betty JFK)

(at lisa JFK))

C.5 Gripper domain

C.5.1 Domain operator file

#old-style
(resource GRIPPER
(free
(means
(effects (free <grip>))
(params (<grip> GRIPPER)
(<ob> OBJECT)
(<room> ROOM))
(plans
(p1 1
(s1 (DROP <grip> <ob>
<room>))))))
(unfree
(means
(effects (carry <grip> <ob>))
(params (<grip> GRIPPER)
(<ob> OBJECT)
(<room> ROOM)
(<from-room> ROOM)
(<to-room> ROOM))
(plans
(p1 1

(s1 (MOVE <to-room>

116

<from-room>))
(s2 (PICK <grip> <ob>
<room>))
(s3 (MOVE <from-room>

<to-room>)))))))

(operator
PICK
(params (<grip> GRIPPER)
(<ob> 0BJECT)
(<room> ROOM))
(preconds
(at <ob> <room>)
(at-robby <room>)
(free <grip>))
(effects
(carry <grip> <ob>)

(at-robby <room>)))

(operator
DROP
(params (<grip> GRIPPER)
(<ob> 0OBJECT)
(<room> ROOM))
(preconds
(carry <grip> <ob>)
(at-robby <room>))
(effects
(free <grip>) (at <ob> <room>)

(at-robby <room>)))

(operator
MOVE
(params (<from-room> ROOM)
(<to-room> ROOM))
(preconds
(at-robby <from-room>))
(effects

(at-robby <to-room>)))

C.5.2 Gripper problem with 2 grips

(roomA ROOM)

(roomB ROOM)

(balll OBJECT)

(ball2 OBJECT)

(ball3 0BJECT)

(ball4 OBJECT)

(left GRIPPER)

(right GRIPPER)

(preconds
(at-robby
(at balll
(at ball2
(at ball3

(at ball4

roomA)
roomA)
roomA)
roomA)

roomA)

(free left)

(free right))

(effects

(at ballt
(at ball2
(at ball3

(at balld

roomB)
roomB)
roomB)

roomB))

117

