
MINING APPROXIMATE FUNCTIONAL DEPENDENCIES AS CONDENSED

REPRESENTATIONS OF ASSOCIATION RULES

by

Aravind Krishna Kalavagattu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

August 2008

MINING APPROXIMATE FUNCTIONAL DEPENDENCIES AS CONDENSED

REPRESENTATIONS OF ASSOCIATION RULES

by

Aravind Krishna Kalavagattu

has been approved

July 2008

Graduate Supervisory Committee:

Subbarao Kambhampati, Chair
Yi Chen
Huan Liu

ACCEPTED BY THE GRADUATE COLLEGE

ABSTRACT

Approximate Functional Dependencies (AFD) mined from database relations represent

potentially interesting patterns and have proven to be useful for various tasks like feature

selection for classification, query optimization and query rewriting. Though the discovery

of Functional Dependencies (FDs) from a relational database is a well studied problem, the

discovery of AFDs still remains under explored, posing a special set of challenges. Such

challenges include defining right interestingness measures for AFDs, employing effective

pruning strategies and performing an efficient traversal in the search space of the attribute

lattice.

This thesis presents a novel perspective for AFDs as condensed representations of associ-

ation rules; for example, an AFD (Model determines Make) is a condensation of various as-

sociation rules like, (Model:Accord determines Make:Honda), (Model:Camry determines

Make:Toyota). In this regard, this thesis describes two metrics, namely Confidence and

Specificity analogous to the standard metrics confidence and support used in association

rules respectively. This thesis presents an algorithm called AFDMiner for efficiently min-

ing high quality AFDs by employing effective pruning strategies. AFDMiner performs a

bottom-up search in the attribute lattice to find all AFDs and FDs that fall within the

given Confidence and Specificity thresholds. Experiments on real data sets show the ef-

fectiveness of the approach both in terms of performance as well as the quality of AFDs

generated.

iii

To amma and taata

iv

ACKNOWLEDGMENTS

I would be restating the obvious when I say Prof. Subbarao Kambhampati is a great

advisor. I consider myself truly fortunate to have him as my advisor and would like to

thank him sincerely for the opportunity to work under his guidance and support. I am

deeply grateful to him for showing immense patience during the long and frustrating phase

of research problem identification. I am also thankful to his constructive criticism during

one-on-one meetings as well as discussions at the weekly group meetings. I wish to thank

him for giving me an opportunity to work on this topic and for persevering with me as my

advisor throughout the time it took me to complete this research. I remain highly obliged

to Dr. Yi Chen and Dr. Huan Liu for the useful ideas and feedback they gave as part of

my thesis committee.

I am thankful to my colleagues at DB-Yochan, Raju Balakrishnan, Garrett Wolf and

Bhaumik Chokshi for their constructive criticism, discussions and friendship. I am greatly

thankful to Ravi Gummadi for helping me with experiments and draft during the con-

ference submission. I would also like to thank the entire Planning Group at Yochan for

their support and friendship. My special thanks to Kartik Talamadupula for being a great

friend and roommate.

I would like to thank my managers at Yahoo! Mail group (Yahoo! Inc) and Digital

Home Group (Intel Corp.) for providing me industrial exposure to enhance my experi-

ence and also financial support to help me fund part of my Master’s studies. My special

thanks to colleagues at my internship from ASU, Trunal Bhanse and Sushma Dittakavi

for their collaboration, friendship and sharing their lunch generously many a times. Also,

I wish to thank my friends Bala Krishna Chennupati, Sumanth Kolar, Anil Dutt, Kranthi

Nekkalapudi, Keerthi Valathoru, Pranav Vasishta, Srujan Kanumuri, Arvind Ramachan-

v

der, Srinath Bodala, Snehith Cherukuri, Prashant Kommireddi, Ravi Palla, Lakshmi Gade,

Shreyasee Das, Krupa Navalkar for their friendship, and the juniors from my hometown

Yasovardhan, Sreevatsava and Hareesha Tamatam for helping me stay responsible and

inspired.

I am highly indebted to my uncle and aunt in Phoenix, Lakshminarayan, Sudha and

my little sisters Deepika and Archana for making my stay here comfortable and enjoyable

and forget the feeling that I am staying away from my family. I am as ever, especially

indebted to my parents Muni Nagulu and Naga Jyothi and brother Anil Kishore, and Anu

aunty for their love, encouragement and support throughout my life. Special thanks to

Pallavi Daggumati for being a great sister. I am grateful to my uncles Dr. Viswanath

Poosala (Vichen mama) and Dr. Suresh Poosala (Seenu mama) for constantly inspiring

me since childhood and setting examples to follow their path. I am highly indebted to my

grand parents Anjaneyulu Poosala and Venkata Ratnam for treating me as if I am their

third son, and providing their love and encouragement. With due respect, I would like to

dedicate this thesis to them.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER 1 INTRODUCTION . 1

Rule Mining from Databases . 1

Approximate Functional Dependencies . 1

Overview of the challenges in AFD mining 4

Overview of the approach . 5

Thesis Contributions . 7

Outline . 7

CHAPTER 2 RELATED WORK . 8

CHAPTER 3 DEFINITIONS AND CONVENTIONS 11

CHAPTER 4 CONDENSING ASSOCIATION RULES INTO AFDS 14

Confidence . 15

Specificity . 17

CHAPTER 5 AFDMINER: DESCRIPTION OF THE MINING ALGORITHM . 20

Pruning the search space . 22

Pruning based on Specificity . 22

Pruning applicable to FDs . 22

Pruning keys and superkeys . 23

Traversal in the search space . 23

Computing Confidence . 24

vii

Page

Algorithms . 25

CHAPTER 6 EMPIRICAL EVALUATION . 28

Experimental Settings . 28

Evaluation of Quality . 29

Evaluating Query Throughput . 31

Choosing a good maxSpecificity threshold 32

Comparison with TANE . 33

Evaluation of Performance . 34

Varying number of tuples and attributes 35

Varying length of the determining set 36

Other performance-related experiments 36

Sample AFDs from different domains: . 38

CHAPTER 7 CONCLUSION . 40

REFERENCES . 42

viii

LIST OF TABLES

Table Page

I. Fragment of a Car Database . 3

ix

LIST OF FIGURES

Figure Page

1. A simple logistics example . 14

2. Set containment lattice of 4 attributes . 20

3. CensusDB: Comparing quality of AFDs between AFDMiner and NoSpeci-

ficity . 30

4. CensusDB: Comparing the query throughput of top-10 queries using

BestAFD (AFDMiner Vs NoSpecificity 31

5. CensusDB: Time taken with varying maxSpecificity thresholds 32

6. CensusDB: Quality of AFDs with varying maxSpecificity thresholds 32

7. CensusDB: Comparing quality of AFDs between TANE, TANENoMinP

and AFDMiner . 34

8. CensusDB: Varying size of the dataset . 35

9. CensusDB: Varying number of attributes in the data set 35

10. CensusDB: Varying the length of the determining set 36

11. MushroomDB: Varying the size of the dataset 37

12. MushroomDB: Varying the number of attributes 37

13. CensusDB: No. of candidates visited at each level of search 38

14. best AFDs from carDB . 38

15. best AFDs from mushroomDB . 39

x

1 INTRODUCTION

1.1 Rule Mining from Databases

Knowledge discovery from databases has proven to be a useful process with a variety of

applications and has received tremendous attention across the knowledge management,

information retrieval and database communities. Rule mining[13, 26, 1, 16] is a knowledge

discovery process that aims to discover a small set of rules in the database and use them for

various purposes like classification, prediction, market-basket analysis etc. Especially rules

discovered from relational databases have proven to be effective in database design, missing-

value prediction, query optimization, information-retrieval style answering in relational

DBs etc. Rule mining process is guided by a set of interestingness measures to guide

the quality of rules required for the task at hand. In addition to the measures, efficient

search strategies and algorithms are a primary need for learning the rules in a cost-effective

manner.

1.2 Approximate Functional Dependencies

Over the last ten years, a new research direction has emerged involving rules between at-

tributes, namely, Approximate Functional Dependencies (AFDs). Approximate Functional

Dependencies [6, 26, 8, 7] (AFDs) are rules that represent approximate determinations at

attribute level. AFDs are of the form (X Y), where X and Y are sets of attributes. A

classic example of an AFD is, (Nationality Language), which shows we can approximately

determine the language of a person if we know which country he is from. AFDs represent

knowledge of the dependencies between columns in a table. For example, paraphrasing

from [8]: an AFD in a table of chemical compounds relating various structural attributes

to carcinogenicity could provide valuable hints to biochemists for potential causes of can-

cer. AFDs discovered from relational databases have proven to be effective in database

2

design [3], missing-value prediction [24], query optimization [9], information-retrieval style

answering on relational databases etc [17, 23].

Functional Dependencies (FDs) were prevalent in database literature and the discovery

of functional dependencies from a relational database is a well studied problem. But, the

discovery of AFDs still remains under explored, posing a special set of challenges. AFDs

were initially introduced as an extension to FDs (precisely, as FDs that hold true when the

error tuples that fail to be satisfy the dependency are removed). But, with advances in data

mining, AFDs expanded their reach into applications demanding a data mining lens. The

fundamental challenges in this regard are defining right interestingness measures for AFDs

and coming up with scalable algorithms to efficiently mine the AFDs. The interestingness

measures affect the quality of the task for which AFDs are used, and scalable algorithms

are necessary to achieve a good performance in the learning component for AFDs. Current

best approach to mine AFDs [8, 7] uses a standard error measure defined for AFDs (namely,

g3) and tries to adapt the FD mining algorithm with modifications for generating AFDs.

The search process for AFDs is exponential in terms of the number of attributes in the

dataset, thus facing a combinatoric cost of searching the rule space. FD mining algorithms

fundamentally search for a minimal cover for FDs from the data (as they can generate all

other FDs that hold true directly the minimal cover, without revisiting the data again).

So they could employ effective pruning strategies. For example, if A → B is an FD, then,

(A, C → B) is considered redundant and in fact all FDs of the form (Z→ B) such that

(Z⊃A) can be eliminated during search. But, a minimal cover for AFDs is not defined.

Previous approach [8, 7] substitutes this by generating only minimal dependencies in case

of AFDs. For example, if the algorithm discovers that A → B is a valid AFD according to

3

TABLE I
Fragment of a Car Database

ID Make Model Year Body Style

1 Honda Accord 2001 Sedan

2 Honda Accord 2002 Sedan

3 Honda Accord 2005 Coupe

4 Honda Civic 2003 Coupe

5 Honda Civic 1999 Sedan

6 Toyota Sequoia 2007 SUV

7 Toyota Camry 2001 Sedan

8 Toyota Camry 2002 Sedan

the allowed error threshold, it does not check for AFDs of the form (Z B) where (Z⊃A).

But, such AFDs may be interesting for the application and we may prefer them instead of

A B. In fact, our experience with using AFDs for AIMQ [17], QPIAD [24], QUIC [23]

have shown that those rules are more useful than just considering minimal dependencies.1

Thus, now the search process becomes much more costlier compared to that for FDs and

we need additional pruning techniques for AFDs.

Before algorithms for discovering AFDs can be developed, interestingness measures for

AFDs must be defined. Consider a sample task of using AFDs as a feature selection step

for predicting values for an attribute. We expect the AFD used for this to give us a high

prediction accuracy. Also, as there are several AFDs possible with the same attribute on

the RHS (dependent attribute), we prefer choosing a best one among them for prediction.

We want the interestingness measure for the AFDs to denote this so that we can pick the

AFD for which the value is high. One choice for us is to use the error measure as the

interestingness measure. But, the problem with just choosing this metric is that, AFDs

1Another implication of restricting to only minimal dependencies is that, though FDs
are special cases of AFDs (with error zero), we need separate runs to generate AFDs and
FDs.

4

with keys or approximate keys (attributes that become keys when a small fraction of the

tuples are removed) as their LHS (determining set) now qualify as good rules (because

they require less number of tuples to removed to become FDs). For example, though

(VIN Make) looks like a better AFD compared to (Model Make) using the error metric

as the interestingness measure, intuitively (as well as practically) (Model Make) is a

better AFD. Thus, the distribution of values for the determining set is also important. As

another example, consider AFDs being used to rewrite queries based on the values of the

attributes in the determining set to retrieve tuples. (QPIAD [24] system uses this approach

to retrieve tuples with missing values on the dependent attribute, as autonomous databases

do not allow to directly retrieve tuples with null values on specified attributes.) To optimize

querying costs, we expect a good throughput per each query posed. Among AFDs with

close values for their approximation measure, we prefer ones with lesser number of distinct

values for its determining set compared to the ones with more number of distinct values.

Thus, the distribution of values in the LHS are considerably important. A performance

implication of this is to eliminate such rules early during the search process to make the

algorithm run faster.2

1.2.1 Overview of the challenges in AFD mining

In the context of the problem of AFD mining, three broad challenges (sub-problems) are

identified.

1.2.1.1 Approximation measure: The problem of defining an FD approximation

measure is interesting and difficult. The determination of the reasonability of such a mea-

2In applications [17], [24] this is partly done as a post-processing step after generating
AFDs using TANE, which makes the learning of AFDs even slower

5

sure is subjective. (like the determination of the interestingness of rules in KDD) The issue

is how to measure the degree to which a functional dependency (FD) is approximate. Be-

fore algorithms can be developed, measures must be defined quantifying the interestingness

of the rule for the application in which they are intended to be used.

1.2.1.2 Pruning Strategies: Pruning involves cutting down the cost of visiting the

space of uninteresting rules, based on the rules already visited during search. In case of

FDs, minimal dependencies help us pruning a lot of the search space. But, pruning in case

of AFDs is not straightforward unless we could possibly exploit the monotonicity of the

interestingness measures used.

1.2.1.3 Efficient Traversal of the search space: Rule mining processes usually

adopt either a top-down or a bottom-up approach in the lattice[26] of possible combina-

tions. In practise, traversal is tied up with the type of pruning rules applicable and also

the cost involved in computing the measures. Especially in the case of AFDs the challenge

of deciding whether Bottom-up is better or Top-down is better is tricky, because all the

pruning strategies applicable for FDs do not work for AFDs.

1.3 Overview of the approach

Association rules share similar motivations and can be considered as approximate

determinations at value-level. For example, (Nationality:USA Language:English),

(Make:Honda Model:Accord) etc are association rules. Association rules have well-

defined interestingness measures namely Confidence and Support to solve the above

challenges. Support of an itemset denotes the fraction of transactions it occurs (which

in our case is nothing but the fraction of database tuples where the set of attribute-value

pairs occurs in). Confidence of an association rule is a measure that denotes how likely

6

the head of a rule occurs, given its body. Rules with reasonable values for Confidence

and Support together perform better compared to the rules with high value for only one

of them.

The notion of an AFD is to provide us valuable hints at an attribute level to pick the

right attributes so that it works well for a dominant number of underlying values of these

attributes. Thus treating the AFDs as condensed roll-ups of many such association rules

corresponding to each value combination in the attribute sets will solve our problems.

For example, an AFD (Model Make) is a condensation of various association rules like,

(Model:Accord Make:Honda), (Model:Camry Make:Toyota). Analogous to association

rules, for an AFD, we need Confidence to denote how well we can predict most if not all the

values of the dependent attribute, given values of the attributes in the determining set. In

addition to this, we define a metric called Specificity to denote how good the distribution

of values for the attributes forming the determining set is. We also show how confidence

is related to the standard error measures of the AFDs, namely g2 and g3 which helps us in

adapting the existing efficient algorithm to compute them for calculating confidence. We

present an algorithm AFDMiner that takes user-specified thresholds on the minimum

value for the Confidence and maximum value for the Specificity metric. Also, through

experimental observations, we comment on setting a good threshold value for Specificity

metric.

Assumption: Our aim is to learn AFDs of the type (X A), where X is a set of

attributes and A is a single attribute.

7

1.4 Thesis Contributions

This thesis presents an approach for mining AFDs from a relational database table. The

major contributions of this thesis are as follows:

• Insight into the way of treating AFDs roll-ups of association rules, supported by

derivation of two standard metrics g2 and g3 from association rules

• Two-metric notion for AFDs Confidence and Specificity with derivations

• An approach, AFDMiner, to compute high quality AFDs efficiently from a relational

table

• Empirical observations on choosing a good threshold value for Specificity

1.5 Outline

Related work is given in Chapter 2. Basic notations, necessary definitions plus certain

conventions used in the rest of the paper are presented in Chapter 3. In Chapter 4 we lay-

out the intuition behind treating AFDs as condensed representations of association rules,

explain and derive the metrics for the AFDs. The types of pruning strategies applicable,

principles of traversing the search space and the detailed AFDMiner algorithm are pre-

sented in Chapter 5. Chapter 6 reports the empirical evaluation of AFDMiner in terms of

performance and quality, and a discussion on comparing it to TANE algorithm. We con-

clude with a brief discussion on Conditional Functional Dependencies (CFD) in Chapter

7.

2 RELATED WORK

As AFDs represent knowledge of dependencies between columns in a table, their discovery

is potentially valuable to domain experts and knowledge engineers. CORDS [9] is an

efficient and scalable tool for automatically discovering statistical correlations and soft

functional dependencies (soft FDs) between columns. These dependency statistics are used

by the optimizer to compute correct selectivity estimates. CORDS system only mines rules

of the form C1⇒C2, where C1 and C2 are attributes, where as our system aims to detect

rules with multiple attributes in the determining set. Additionally, CORDS works from

a sample, and thus can never assert with complete certainty that discovered soft FD is

a functional dependency or not. QPIAD [24] uses AFDs for query rewriting to retrieve

tuples with missing values on the queried attribute, and in predicting the values for these

attributes in those tuples. QUIC [23], a system to handle imprecision and incompleteness

together over autonomous databases, also uses AFDs to rewrite (expand) an input user

query into a set of queries to get retrieve relevant tuples. AIMQ is a domain and user

independent approach for answering imprecise queries over autonomous Web databases.

It uses AFDs to determine the importance of an attribute to decide the relaxation order

of attributes in sending more selection queries to the database. All the three systems use

TANE’s algorithm for detecting approximate dependencies with additional post-processing

to remove approximate keys.

FDs have a well-defined minimal cover, and the research on algorithms to mine the FDs

concentrated on learning this minimal cover faster. [26] states that existing algorithms can

be classified into three categories: the candidate generate-and-test approach, the minimal

cover approach [14, 25], and the formal concept analysis approach. In [15], the authors

conclude that the qualitative comparison between these approaches is difficult because the

approaches widely differ. The size of the search space is exponential to the number of

9

variables in the data. One main issue in the discovery of FDs or AFDs is to prune the

search space as much as possible. As we do not want to restrict ourselves to minimal

dependencies, and also the Specificity metric is most effective for a level-wise search, we

opted for a BFS strategy that falls under the category of candidate-generate-and-test

approach. The candidate generate-and-test approach uses level wise search to explore the

search space. It reduces the search space by eliminating candidates using pruning rules.

[7] and [18] both are examples of such levelwise methods. A theory on pruning strategies

is well presented in [19].

[20] introduces a problem of discovering functional determinations that result from rolling

up the data to a higher abstraction level, which they call roll-up dependencies (RUDs).

RUDs allow attributes to be compared for equality at different levels (similar to OLAP).

But, they do not consider the problem of defining quality measures for AFDs, or treating

them as condensed association rules as we do.

Fast algorithms for mining association rules from transactions of itemsets are presented

in [1]. The pruning we use based on the monotonicity of Specificity can be considered

similar to the property in Support for frequent item sets. In the latter, the apriori property

says no itemset can be frequent if any of its subset is infrequent. In our case, if an attribute-

set is a failAttrSet all of its supersets are failAttrSets.

There has been some work on grouping [2] and clustering [12] association rules. But,

neither of them considers the task of grouping a set of association rules as AFDs. Kivinen

and Mannila [10] defined several measures for the error of a dependency. [6] examines

the issue of how to measure the degree to which the functional dependency (FD) is ap-

proximate. They define a measure based on information theory and compare the behavior

10

with two other standard measures, g3 and Tau. Though they show theoretical differences

between these measures, in practice these differences do not bear themselves out. Also,

they do not devise any algorithm that uses the measure to generate AFDs. We feel either

of these measures can be treated as alternatives to our confidence measure, but we still

need the Specificity in addition to it to get good quality AFDs.

To the best of our knowledge, ours is the first approach that both defines measures for

AFD (derived from association rules) and also presents the algorithm on generating AFDs

according to those measures.

3 DEFINITIONS AND CONVENTIONS

R(A1, A2, · · · , An) be a relation schema, and r is a relation (single relational table) over

R, where n is the number of attributes. t, u denote rows in r (t, u ∈ r). X, Y, Z are sets of

attributes. A, B, C are individual attributes of R. vik denotes the kth value of an attribute

Ai in r, and 1 ≤ k ≤ Ni, where Ni is the number of distinct values for the attribute Ai in

r. Thus, Ai:vik indicates an attribute:value pair.

Association rules were initially introduced in the context of itemsets in transactions.

Tuples in a database relation can be viewed as transactions where itemsets are noth-

ing but the attribute-value pairs. Thus, in our case, Support of an itemset denotes

the fraction of database tuples where the set of attribute-value pairs occurs in. And,

Confidence of an association rule has the same interpretation that denotes how likely

the head of a rule occurs, given its body. For example, applying the definitions on the

database snapshot showed in Table I, Confidence(Model:Accord Make:Honda) = 3
3

= 1,

where as Confidence(Make:Honda Model:Accord) = 3
5
, and the itemset (Make:Honda,

Model:Accord) has a support of 3
8
.

Association Rule: (α β) denotes an association rule such that, α denotes a set of

such attribute value pairs, such that each pair is from a different attribute (i.e., no two

pairs have the same attribute). And consider β to be a singleton set of an attribute:value

pair Aj : vjy
such that they are all different from ones in α.

Association Rule Mining Problem: Given a relation r, the problem of mining

association rules [1] is to generate all association rules of the form (α β) that have

support and confidence greater than the user-specified minimum support (called minsupp)

and the minimum confidence (called minconf) respectively.

Determining Set and Dependent Attribute: In an AFD (X A), X is called the

determining set and A is called the dependent attribute.

12

ϕ(X A) denotes the error measure for the dependency (X A) in a relation. Three

such standard measures defined in [10] are as follows:

A pair (u, v) of tuples of r violates the dependency, or is a violating pair for it, if u[X]

= v[X] but u[Y] 6= v[Y]. Hence, a dependency holds in a relation if the relation does not

contain violating pairs for it. A single tuple ’u’ is called violating, if it is a component in

some violating pair. G1 denotes the number of violation pairs of tuples in the relation,

G2 denotes the number of violating tuples in the relation, and G3 denotes the number of

tuples one has to delete to obtain a relation that satisfies the dependency.

The corresponding normalized measures are denoted by g1, g2 and g3 so that the error

lies between 0 and 1.

G1(X → Y, r) = |{(u, v) | u, v ∈ r, u[X] = v[X],

u[Y] 6= v[Y]}|

g1(X → Y, r) = G1(X → Y)/|r|2

G2(X → Y, r) = |{u | u ∈ r, ∃v ∈ r : u[X] = v[X],

u[Y] 6= v[Y]}|

g2(X → Y, r) = G2(X → Y)/|r|

G3(X → Y, r) = |r| − max{|s| | s ⊆ r, s |= X → Y }

g3(X → Y, r) = G3(X → Y)/|r|

In terms of error measure, Approximate Dependency can be defined as follows:

Approximate Dependency: According to [7], given an error threshold ε, 0 ≤ ε ≤ 1,

we say that X A is an approximate dependency if and only if ϕ(X A) is at most ε.

13

Minimal Pass Rule: X C is a minimal pass rule (written minP) provided that

ϕ(X C) ≤ ε and for all Y, Y ⊂ X, ϕ(Y C) ≤ ε does not hold.

4 CONDENSING ASSOCIATION RULES INTO AFDS

In this section, we show how AFDs mined from a relational table are condensed represen-

tations of association rules, define the metrics and explain them.

Camry
Toyota

Camry
Toyota

Sequoia
Toyota

Civic
Honda

Civic
Honda

Accord
Honda

Accord
Honda

Accord
Honda

Model
Make

Camry
Toyota

Camry
Toyota

Sequoia
Toyota

Civic
Honda

Civic
Honda

Accord
Honda

Accord
Honda

Accord
Honda

Model
Make

}

}

}

}

Fig. 1. A simple logistics example

Using the notations defined in Chapter 3 ({Ai1, Ai2 . . . Aim} Aim+1
) denotes an AFD,

where 1 ≤ i1, i2 . . . im+1 ≤ n. For simplicity, let us first consider singleton set as the

determining set of the AFD. It would be of the form {Ai} Aj.

Consider the attribute-value pairs corresponding to this AFD. Let Ai:vik correspond

to attribute-value pairs of attribute Ai, and Aj :vjl correspond to attribute-value pairs of

attribute Aj , where 1 ≤ k ≤ Ni and 1 ≤ l ≤ Nj.

Association rules derived from a database relation are a set of attribute-value

pairs determining another; (Ai:vik Aj:vjl) denotes an association rule. For example,

(Make:Honda Model:Accord) is an association rule.

For simplicity, let us denote the body of the association rule to be αx and the head of

the rule to be βy (here x varies from 1 to Ni, where as y varies from 1 to Nj. An example of

this is shown in the Figure 1 by applying the above principle on the car database fragment

in table I. In Figure 1, α1 = Honda, α2 = Toyota, and values of β1, β2, β3 and β4 are

’Accord’, ’Civic’, ’Sequoia’ and ’Camry’ respectively.

15

The AFD ({Ai} Aj) thus is a condensation of many such association rules. For

example, Make Model is the AFD condensed from all association rules of the type

(Make : valueOfMake Model : valueOfModel), where valueOfMake and valueOfModel

are possible values for Make and Model respectively. (Attribute Ai is Make and the

attribute Aj is Model). Different association rules (α1 β1), (α1 β2) . . . (α1 βNj
, (α2

β1), (α2 β2) . . . (α2 βNj
), . . . (αNi

 β1), (αNi
 β2) . . . (αNi

 βNj
) make up the AFD

({Ai} Aj).

This notion and similar notation can be extended even for AFDs with more than one

attribute in the determining set of the rule. In case of multiple attributes in the determining

set, αx denotes each distinct combination of the corresponding attribute-value pairs on the

LHS, and βy stays the same.

4.1 Confidence

If an Association rule is of the form (α β), it means that if we find all of α in a

row, then we have a good chance of finding β. The probability of finding β for us to

accept this rule is called the confidence of the rule. Confidence denotes the conditional

probability of head given the body of the rule. To define confidence of an AFD, we would

expect a similar definition, that it should denote the chance of finding the value for the

dependent attribute, given the values of the attributes in the determining set. Thus, we

define Confidence of an AFD, Confidence in terms of the confidences of the underlying

association rules. Specifically, we define it in terms of picking the best association rule

for every distinct value-combination of the body of the association rules. For example, if

there are two association rules (Honda Accord) and (Honda Civic), given Honda, the

16

probability of occurrence of Accord is greater than the probability of occurrence of Civic.

Thus, (Honda Accord) is the best association rule, for (Make = Honda) as the body.

Confidence (X Aj) =

N
′

∑

x

arg max
y∈[1,Nj]

(support (αx) ×

confidence(αx βy)) (1)

Here, N
′

denotes the number of distinct values for the determining set X in the relation

r.

The above equation can also be written as,

Confidence (X Aj) =

N
′

∑

x

arg max
y∈[1,Nj]

(support (αx βy))

Example: For the database relation displayed in Table I, Confidence of the AFD

(Make Model) = Support (Make : Honda Model : Accord) + Support (Make :

Toyota Model : Camry) = 3
8

+ 2
8

= 5
8
.

It is interesting to see that, this turns out to be equal to (1 - g3), where g3 is one

of the standard error measures for defining AFDs, and also used by previous algorithms

(cite TANE, HLS etc). The g3 error measure has a natural interpretation as the fraction

of tuples with exceptions or errors affecting the dependency. Applying this on the same

example table displayed in Table I, the error tuples are the ones numbered 4, 5 and 6.

Thus, g3 = 3
8
, and (1 - g3) = 5

8
.

Another measure similar to g3 is g2, which defines error tuples as all the violating pairs

of rows in r. Interestingly, if we define AFD’s confidence measure in terms of picking the

association rules strictly deterministic (confidence of 1), then Confidence turns out to be

equals to (1-g2).

17

Confidence (X A) =
N

′

∑

x

(support (αx) ×

confidence(αx βy)) (2)

such that, confidence({αx} βy) = 1

Confidence (X A) = (1 − g2(T)) (3)

Thus, Confidence for an AFD is defined in terms of the confidences and supports of

the underlying association rules. And we also showed the connections to other standard

measures for AFDs.

4.2 Specificity

In this section, we show how in addition to confidence, the supports of underlying associ-

ation rules forming the AFD play an important role in determining the qualify of an AFD

and define the Specificity metric. In the definition of support for the underlying association

rules, we consider only left-hand sides of them (this way, the support and confidence are

independent). For an association rule α β, confidence denotes the conditional probabil-

ity that two distinct tuples are β-equivalent provided that they are already α-equivalent,

where as the support is the probability that the conditioning event occurs [20].

Even if the confidence value is high, low support for an association rule makes it less

interesting. Presence of a lot of association rules with low supports makes the AFD bad.

For example, in using AFDs as feature selection for classification, if the support is less, it

means the probability of the conditioning event is less. This makes it less likely for the value

18

to occur in the test set, thus affecting the prediction accuracy. Also, less support means,

the number of tuples returned when we query on this value is less. Thus, throughput

(number of tuples returned) per query is less and we need more queries to achieve a high

recall. Thus, in addition to confidence, the distribution of supports plays an important

role in the quality of an AFD.

We illustrate this further by analyzing some cases how supports of the association rules

forming the AFD can have different distributions.

1. Model Make

• Few Branches - Uniform Distribution

• Good, and might hold good universally

2. V IN Make

• Many Branches - Uniform Distribution

• Bad - Confidence of these rules are high, but the L.H.S attribute sets are ap-

proximate keys.

3. Model, P rice Color

• Many Branches - Skewed Distribution

• Good, and probable case for dominating association rules1

We need a measure to denote how supports of the bodies of individual association rules

are distributed into various branches. For this, we take ideas from the way information gain

1It means the AFD is composed of a few association rules with high confidence and
many association rules with low confidence

19

ratio is computed in decision trees. In classification using decision trees, a metric called

SplitInfo is used to reflect the distribution of probabilities among the branches while

defining the information gain ratio [22]. Both the problems share similar motivations; in

decision trees, the idea of using SplitInfo is to avoid splitting the tree with an attribute

that leads to too many branches. This is because, then, the chance for the values in the

training set to repeat in the testing set is less. (For example, if the split attribute is SSN

of a person, though the classification is accurate, no SSN in the training set will be seen

in the testing set later, because it is unique.) Similarly, in our case, more branches for an

AFD formation-tree indicates that the supports are less for may of the association rules.

Such AFDs are not of high interest, as motivated in the Chapter 1.

Specificity (X A) =

∑N
′

x support(αx) × log2(support(αx))

log2(Numtuplesr)

The value is normalized with the maximum possible value for Specificity which is nothing

but the case when the determining set is a key, i.e., there are there are Numtuplesr distinct

values for the attribute combination. The Specificity measure captures our intuition about

the three types of AFDs explained above.

Monotonicity of Specificity : For any attribute sets X and Y such that (Y⊃X),

Specificity (Y) ≥ Specificity (X). This property is well exploited in pruning AFDs with

bad determining sets. This is explained while describing all pruning strategies during AFD

search process in Chapter 5.

5 AFDMINER: DESCRIPTION OF THE MINING ALGORITHM

Having defined the necessary metrics for AFDs in the Chapter 4 above, next we describe

the algorithmic details of mining the set of AFDs from a relational table. Formally, the

problem of mining the set of AFDs is defined as follows:

Definition 5.0.1 (AFD Mining Problem). Given a database relation r, and user-

specified thresholds minConf (minimum confidence) and maxSpecificity (maximum Speci-

ficity), generate all the Approximate Functional Dependencies (AFDs) of the form

(X A) from r for which Confidence (X A) ≥ minConf and Specificity (X) ≤

maxSpecificity

Fig. 2. Set containment lattice of 4 attributes

To find all dependencies according to the definition above, we search through the space of

non-trivial dependencies and test the validity of each dependency. Algorithms for mining

AFDs face two costs: the combinatoric cost of searching the rule space and the cost of

visiting the data to calculate the required metrics for the rules. The first dominant factor

is the combinatoric complexity of searching a space related to the power set lattice of the

21

set of attributes. An example for such a lattice for a dataset with four attributes is shown

in Figure 2.

We follow a breadth first search strategy and perform a level-wise search in the lattice

for all the required AFDs. Bottom-up search in the lattice starts with singleton sets and

proceeds upwards level-wise in the lattice, searching bigger sets. Top-down search starts

with the biggest possible set and moves down the lattice in a level-wise manner. The

choice of doing a bottom-up or top-down search in the lattice depends on what types of

pruning strategies are applicable in case of searching the rules we are interested in. In case

of AFDs, the level-wise bottom-up algorithm has a powerful mechanism for pruning the

search space.

Search starts from singleton sets of attributes and works its way to larger attribute sets

through the set containment lattice level by level. When the algorithm is processing a set

X, it tests AFDs of the form X \A A, where A ∈ X. In case of FDs, the small-to-large

direction of the algorithm can be used to guarantee that only minimal dependencies are

generated.

To test minimality of a dependency X \ A → A, we need to know whether Y \ A → A

holds for some proper subset Y of X. We store this information in the set C(Y) of right-

hand side candidates of Y. If A∈ C(X) for a given set X, then A has not been found

to depend on any proper subset of X. To find minimal dependencies, it suffices to test

dependencies X \A → A, where A∈X and A∈C(X \B) for all B∈X. While the initial rhs

candidates are sufficient to guarantee the minimality of discovered dependencies, we will

use improved RHS+ candidates C+(X) that prune the search space more effectively:

C+(X) = {A ∈R|∀B ∈X:X\{A, B} →{B} doesnot hold }

22

The search strategy helps in effective pruning, and also helps in improving the efficiency

of the level-wise algorithm. The algorithm calculates the C+(Y) values from all its subsets

X (X⊂Y). Thus, the information from previous levels is used in reducing the computations

at the higher levels and efficiency is achieved. Also, when the algorithm is processing the

level of the lattice that contains a set X, we can with one stroke cut off all supersets of X

from the lattice simply by deleting X. If some property of X tells us that no superset of is

interesting to us, we just delete X. We illustrate some such properties below for effectively

pruning the search space:

5.1 Pruning the search space

5.1.1 Pruning based on Specificity

Definition 5.1.1 (failAttrbSet). An attribute set X is called a failAttrbSet if Specificity

(X) > maxSpecificity where maxSpecificity is the user-specified threshold on the value

of Specificity

An AFD with a failAttrbSet as its determining set is not of interest to us. Also, for any

attribute set Y, such that Y ⊃ X, Specificity (Y) ≥ Specificity (X). And, if Specificity

(X) > maxSpecificity , then Specificity (Y) > maxSpecificity which means Y becomes a

failAttrbSet. Thus, at any point in the search, if we come across a failAttrbSet X, we can

eliminate all AFDs having X or any superset of X as their determining set.

5.1.2 Pruning applicable to FDs

In case of FDs, generating minimal cover is enough because using Armstrong axioms we

can generate the entire set of FDs with out visiting the data explicitly to check if they

23

hold good or not. Thus, it is enough to generate only minimal pass rules in case of FDs

[7].

In case of FDs, empty RHS+ candidate set has a similar property as that of Specificity

metric. That is, if C+(X)=∅, then C+(Y)=∅ for all supersets Y of X, and no dependency

of the form Y A can be minimal FD. Thus the set Y need not be processed at all. Thus

we can prune all the supersets if we encounter an empty RHS+ candidate set for an AFD.

5.1.3 Pruning keys and superkeys

An attribute set X is a superkey if no two tuples agree on X. X is a key if it is superkey

and no proper subset of it is a superkey.

Since no two tuples agree on X, when we consider an AFD (X A), the confidence is

’1’. This is because for each distinct value of X, there is only one value of A. Thus, there

are N association rules each with a confidence of ’1’, and support 1/N. By the definition

of confidence for AFD, adding them up will give us ’1’ as the confidence of the AFD. If

X is a superkey then (X→ A) is always valid and we do not need to check for any of the

supersets of X exclusively. Hence, we can prune all keys1 and their supersets.

5.2 Traversal in the search space

We are interested in looking for AFDs with a confidence greater than the given threshold,

such that the Specificity value of the determining set of the AFD is within the constrained

value. Consider that we are analyzing an AFD (X A) for computing its metrics. The

confidence value can only increase or stays the same if the determining set is expanded. If

1This pruning is subsumed by Specificity because keys have the highest Specificity value
possible. But we use this in addition to the Specificity pruning to handle the case when
the user chooses not to input any maxSpecificity value for the algorithm

24

we find that confidence of an AFD is less than the given threshold, we have to move up

in the lattice because we are interested in not just minimal pass rules, but all AFDs with

good confidence values. Thus, unless the confidence is ’1’ (which means the AFD becomes

an FD), we cannot stop expanding the determining set of the AFD for the same dependent

attribute. For example, if the confidence threshold is 0.7 (say) and Confidence(X A) is

0.75, we still need to look for rules of the form (Y A) where Y⊃X, because the confidence

value can only increase in an expanded determining set.

The only stopping criteria at a node for the level-wise search are:

1. The AFD confidence becomes 1, and thus it is an FD. In this case, it is trivial that

all AFDs Y A where Y ⊃ X are FDs, and can be generated without visiting the

data again.

2. The Specificity value of the X is greater than the max value given.

5.3 Computing Confidence

As explained in the derivation of Confidence in Chapter 4, Confidence turns out to be equal

to (1-g3). TANE presented a partition based approach to efficiently compute the minimum

number of error tuples to be removed for the approximate dependency to become an FD.

We reuse the same error function to compute the confidence as (1 - e(X A)). We briefly

explain the idea below (The detailed algorithm 5 is presented below).

Any attribute set X partitions the tuples of the relation into equivalence classes. We

denote the equivalence class of a tuple t ∈ r with respect to a given set X ⊆R by [t]X , i.e.

[t]X = {u ∈ r | t[A] = u[A] for all A∈ X}. The set πX= {[t]X |t ∈ r} of equivalence classes

is a partition of r under X. That is, πX is a collection of disjoint sets (equivalence classes)

25

of tuples, such that each set has a unique value for the attribute set X and the union of

the sets equals the relation r.

Example: For the carDB example in Table I,

πMake = {{1, 2, 3, 4, 5}, {6, 7, 8}}

πModel = {{1, 2, 3}, {4, 5}, {6}, {7, 8}}

A functional dependency (X→A) holds if and only if |πX |=|πX∪A|. For AFDs,

G3(X A) = 1 −
∑

c∈πX

max{|c
′

| | c
′

∈ πX∪Aandc
′

⊆ c}

g3(X A)) = G3(X A)/|r|

5.4 Algorithms

Algorithm 1 presents the main AFDMiner algorithm.

Algorithm 1 AFDMiner: Levelwise search of dependencies

1: L0 := {∅}
2: C+(∅) := R
3: L1 := {{A} | A ∈ R}
4: ` := 1
5: while L` 6= ∅ do
6: ComputeDependenciesAtALevel(L`)
7: PRUNE(L`)
8: L`+1 := GenerateNextLevel(L`)
9: ` := ` + 1

GenerateNextLevel computes the level L`+1 from L`. The level L`+1 will contain only

those attribute sets of size ` + 1 which have their subsets of size ` in L`, i.e.

L`+1 = {X | |X| = ` + 1 and for all Y with Y ⊂ X and |Y | = ` we have Y ∈ L` }.

Algorithm 2 (ComputeDependenciesAtALevel(L`)) computes all the AFDs and FDs that

hold true at the given level of the lattice. It also updates the RHS+ candidate sets. Line

26

Algorithm 2 ComputeDependenciesAtALevel(L`)

1: for all X ∈ L` do
2: C+(X) :=

⋂
A∈X C+(X\{A})

3: for all X ∈ L` do
4: for all A ∈ X ∩ C+(X) do
5: if Confidence(X \ {A} → A) ≥ minConf then
6: if (X \{A} → A) holds exactly then
7: output X → A as an FD
8: remove A from C+(X)
9: remove all B in R\X from C+(X)

10: else
11: output X A as an AFD with Confidence(X A) = (1 − g3(X A))

6 checks if the dependency is an FD and removes the candidates A and all B (B∈R\ X)

from C+(X).

Algorithm 3 PRUNE(L`): Pruning dependencies

1: for all X ∈ L` do
2: if C+(X) = ∅ then
3: delete X from L`

4: if CalculateSpecificity (X) ≥ maxSpecificity then
5: delete X from L`

Algorithm 3 implements the different pruning strategies explained above. Lines 2

and 3 correspond to the pruning of empty RHS+ candidate sets. Pruning based on

maxSpecificity threshold is reflected by the lines 4 and 5.

Algorithm 4 Calculating Specificity for a given attribute set X

1: sumInfoX := 0
2: for i = 1 to numPartitionsX do
3: sumInfoX := sumInfoX + (|πXi

| × log2(|πXi
|)

4: InfoSuppX := sumInfoX / (log2N)

In the Algorithm 4, πXi
corresponds to the ith the ith equivalence class for the partition

of tuples corresponding to the attribute set X.

27

Algorithm 5 Calculating Confidence for an AFD (X A)

Require: stripped partitions π̂X and π̂X
⋃
{A}

1: e := 0
2: for all c ∈ π̂X∪{A} do
3: choose (arbitrary) t ∈ c
4: T [t] := |c|
5: for all c ∈ π̂X do
6: m := 1
7: for all t ∈ c do m := max{m, T [t]} do
8: e := e + |c| − m
9: for all c ∈ π̂X∪{A} do

10: do t ∈ c (same t as on line 3)
11: T [t] := 0
12: return (1-e/|r|)

Algorithm 6 PRUNE(L`): Pruning dependencies in TANE

1: for all X ∈ L` do
2: if C+(X) = ∅ then
3: delete X from L`

4: if X is a (super)key then
5: for all A ∈ C+(X) \ X do
6: if A ∈

⋂
B∈X C+(X

⋃
{A}\{B} then

7: output X → A
8: delete X from L`

Algorithm 6 is the pruning used by TANE. It uses pruning based on empty RHS+

candidate set and pruning based on Superkey (which AFDMiner doesnot need because it

is subsumesd by the pruning based on Specificity). Next, we describe the evaluation of

our algorithm and the metrics.

6 EMPIRICAL EVALUATION

In this chapter, we describe the implementation and empirical evaluation of AFDMiner for

efficiency as well as quality of the rules generated. By taking a sample application for using

AFDs – feature selection for classification, we show how the quality of AFDs generated by

AFDMiner are better. By varying Specificity and analyzing the behavior of quality and

time taken, we demonstrate what could be a reasonable value for maxSpecificity threshold.

We present a discussion on comparing AFDMiner with TANE as well as an extended

approach to TANE called TANENoMinP (by removing the constraint on stopping at

only minimal pass rules). We evaluate the effectiveness of using Specificity metric along

with confidence through performance experiments by varying several parameters of the

algorithm.

6.1 Experimental Settings

The algorithms were implemented in C with necessary optimizations. The programs were

compiled with GNU C compiler. All experiments were run on the same 2.67 GHz Pentium

4 PC with 1 GB of memory running Linux operating system. The following are the input

parameters for the AFD mining algorithm:

1. number of tuples in the data set

2. number of attributes in the data set

3. minConf

4. maxSpecificity

5. length of the determining set of each AFD

29

We performed evaluations over two data sets. The datasets are CensusDB and Mush-

roomDB, and were taken from UCI Machine Learning repository. The description of each

dataset is given below:

1. CensusDB (US Census data 1990) has a total of 199523 tuples, and 30 attributes

2. CarDB has 5526 tuples and 9 attributes

3. MushroomDB has 8124 tuples, and 23 attributes

NoSpecificity : To show the effectiveness of Specificity we compare AFDMiner with

an approach NoSpecificity which is a modified version of AFDMiner. NoSpecificity

varies from AFDMiner, in using only Confidence but not Specificity for AFDs. Thus, it

generates all AFDs (X A) with (Confidence(X A)>minConf).

6.2 Evaluation of Quality

To evaluate and compare the quality of the AFDs generated, we choose a sample task

of using AFDs. AFDs were proven to be very effective in a system called QPIAD [24],

a query processing framework over incomplete autonomous databases. AFDs are used to

rewrite queries using the values of the attributes in the determining set to retrieve tuples

with missing values for the dependent attribute. Also, predicting the missing value for the

attribute is treated as a classification problem, where AFDs are used as feature selectors

(this technique is termed as AFD-enhanced-classification).

For example, if a query is Q(Bodystyle=’convt’), and value for the attribute Bodystyle

is missing in some tuples, an AFD (Model Bodystyle) is used in retrieving the tuples –

using values of Model. Then, using Model as a feature, coupled with a classifier, values for

the attribute Bodystyle are predicted.

30

BestAFD: Since there are many AFDs with the same dependent attribute, we pick

a single best AFD for the attribute (say, A) whose values are being predicted. Thus,

termed BestAFD is the AFD having the highest confidence among all the AFDs having

the attribute A as the dependent attribute.

Once BestAFD is chosen, a classifier is run using the attributes in the determining set of

the BestAFD as the set of features for classification. We used 10-fold cross-validation and

computed the classification accuracy of the classifier. For various classifiers, we used the

implementation provided in Weka [21], a machine learning tool-kit for our experiments.

We experimented over the CensusDB described above in the previous section. The number

of tuples and number of attributes, are taken to be 10000 and 25 respectively. BestAFD

for each attribute in the table as the dependent attribute was picked by running through

all the AFDs generated by each approach AFDMiner and NoSpecificity separately .

80

82

84

86

88

90

92

94

NBC
 OneR
 Decision Table

Classifier Name

C
l
a
s
s
i
f
i
c
a
t
i
o
n

A
c
c
u
r
a
c
y

No_Specificity

AFDMiner

Fig. 3. CensusDB: Comparing quality of AFDs between AFDMiner and NoSpecificity

We considered average classification accuracy as the quality measure, and defined it as

the average of all accuracies of classification, using each AFD in the BestAFDs set for fea-

ture selection. Figure 7 shows the comparison between the average classification accuracies

31

of using the BestAFDs by AFDMiner and NoSpecificity for feature selection followed

by classification. We performed the experiment over various classifiers, Naive Bayes Clas-

sifier (NBC), OneR and DecisionTable provided in Weka. These experiments show that

the quality of AFDs generated by AFDMiner is better than those by NoSpecificity ap-

proach, which shows that Specificity is effective in generating better quality AFDs. The

minConf threshold in these experiments was set to 0.8, where as for the maxSpecificity

value, we set a threshold of 0.4, based on the following experiment.

The average classification accuracy by AFDMiner is 93% which signify that they are of

very good quality.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2
 3
 4
 6
 7
 8
 9
 10
 11
 12
 14
 15
 17
 18
 19
 20
 21
 22
 23
 24

Attributes

N
o

o
f

T
u
p
l
e
s

R
e
t
r
i
e
v
e
d

AFDMiner

No_Specificity

Fig. 4. CensusDB: Comparing the query throughput of top-10 queries using BestAFD
(AFDMiner Vs NoSpecificity

6.2.1 Evaluating Query Throughput

We evaluated the query throughput by sending the top-10 queries to the censusDB table.

These queries were based on values in the determining set of the BestAFD used. (the same

AFD used in the previous experiments). This experiment demonstrates that the number

of tuples returned by the queries based on BestAFD of AFDMiner outperforms those by

the queries based on BestAFD of NoSpecificity. Thus, our approach gives not only

better classification accuracy, but also better query throughput.

32

6.2.2 Choosing a good maxSpecificity threshold

0

1000

2000

3000

4000

5000

6000

0
 0.2
 0.4
 0.6
 0.8

maxSpecificity

T
im

e
 T

a
k
e
n

 (
m

s
)

Fig. 5. CensusDB: Time taken with varying maxSpecificity thresholds

88.5

89

89.5

90

90.5

91

91.5

92

92.5

93

93.5

0
 0.2
 0.4
 0.6
 0.8
 1

MaxSpecificity

A
c
c
u

ra
c
y

Fig. 6. CensusDB: Quality of AFDs with varying maxSpecificity thresholds

We plotted the graphs showed in Figures 5 and 6 by varying the maxSpecificity thresh-

olds for various runs of AFDMiner. This is performed over the CensusDB. The curve in

Figure 5 shows the time taken by AFDMiner where as the curve in Figure 6 represents the

classification accuracy.

This showed that when the threshold is very low, though the algorithm runs faster, it

skips many good rules having good confidence values. Thus, the BestAFDs set picked here

may not give us a good classification accuracy. Also, when the maxSpecificity threshold

33

is very high, rules which we consider bad are not being pruned. Thus the accuracy goes

down as well as the time taken to generate them is very high. If we analyze the behavior

of the curve in Figure 6 closely, the accuracy keeps increasing till a certain point, and

then there is a region in the middle with reasonable maxSpecificity values where the

classification accuracy does not vary much. This is because, there is not much change in

the set of BestAFDs chosen. For example, if the number of attributes is 25, which means

the number of BestAFDs is 25, only 2 or 3 of them keep changing for every maxSpecificity

in this region. Then again, the accuracy starts to drop for higher values of maxSpecificity

threshold. Thus, the behavior of classification accuracy by varying the maxSpecificity

approximately forms a double elbow shaped curve.

Increasing the maxSpecificity value will increase the time taken for computing AFDs

because the number of rules pruned would be less for higher maxSpecificity thresholds.

Interestingly, though the time taken keeps increasing, the rate of increase beyond a certain

interval is less. This approximately corresponds to the first elbow in the plot above for

accuracy.

A good value for maxSpecificity is the value at the first elbow in the graph on quality,

because it is the point for which the quality is very good as well as the time taken is

less. Thus, good AFDs are the ones with a reasonable maxSpecificity threshold and high

confidence.

6.3 Comparison with TANE

In this section we compare the AFDs generated by AFDMiner with those by TANE.

TANE is mainly designed to generate the minimal cover for functional dependencies. For

34

78

80

82

84

86

88

90

92

94

TANE
 TANE_No_Minp
 AFDMiner

Fig. 7. CensusDB: Comparing quality of AFDs between TANE, TANENoMinP and
AFDMiner

approximate dependencies, TANE uses g3 as the error metric. It performs a breadth first

search in the set containment lattice of attributes and generates minimal pass rules.

TANENoMinP : TANENoMinP is a modified version of TANE that generates all

AFDs within the error threshold of g3, and does not just stop with just minimal pass rules.

As the minConf was 0.8, we set the g3 to be 0.2. For the similar experimental setup for

quality as explained above, we compare the set of AFDs generated by TANE with those

of TANENoMinP and AFDMiner. Figure 7 shows the comparison. Firstly it shows that

AFDs with high confidence and longer determining sets are better than just minimal pass

rules. And also it shows that AFDMiner outperforms both the metrics – thus strengthening

the argument that AFDs with high confidence and with reasonable Specificity are the best.

Next, we show the evaluation of the performance of AFDs generated (by using the same

maxSpecificity value we obtained from the quality curves).

6.4 Evaluation of Performance

We ran experiments varying each parameter of AFDMiner and computed the time taken to

generate the AFDs. For all the performance experiments over the CensusDB dataset, the

35

minConf was set to be 0.8. The number of tuples and number of attributes, if unspecified,

are taken to be 10000 and 25 respectively. The length of the determining set of the AFD

is 4 for all experiments except the ones shown in Figures 10 and 13.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0
 2000
 4000
 6000
 8000
 10000
 12000

Number of Tuples

T
im

e
 T

a
k
e
n

 (
m

s
)

No_Specificity

AFDMiner

Fig. 8. CensusDB: Varying size of the dataset

6.4.1 Varying number of tuples and attributes

Experiment in Figure 8 shows that time taken by both AFDMiner and NoSpecificity

varies linearly with the number of tuples. But AFDMiner takes less time compared to

that of NoSpecificity. Similarly, the experiment in Figure 9 shows that – time taken

by both the approaches varies exponentially on the number of attributes, but AFDMiner

completes much faster than NoSpecificity.

0

5000

10000

15000

20000

25000

30000

35000

40000

0
 5
 10
 15
 20
 25
 30
 35

No. of attributes

T
im

e
 t

a
k
e
n

 (
m

s
)

No_Specificity

AFDMiner

Fig. 9. CensusDB: Varying number of attributes in the data set

36

0

5000

10000

15000

20000

25000

30000

0
 1
 2
 3
 4
 5
 6

Length of determining set in each AFD

T
im

e
 t

a
k
e
n

 (
m

s
)

No_Specificity

AFD Miner

Fig. 10. CensusDB: Varying the length of the determining set

6.4.2 Varying length of the determining set

Since both AFDMiner and NoSpecificity do a level-wise search in a breadth first manner,

we evaluated the time taken, by putting a constraint on the level till which they should

search for AFDs. This means, a constraint on the maximum length of the determining

set of the AFDs is enforced. Through the experiment in Figure 10 we showed that similar

behavior as observed in varying the number of attributes is noticed. The time taken

during the search varies exponentially on the length of the determining set, but AFDMiner

outperforms NoSpecificity by a large margin.

6.4.3 Other performance-related experiments

We ran similar experiments on a different dataset, i.e., MushroomDB mentioned above.

The experiments shown in the Figures 11 and 12 indicate that the performance of AFD-

Miner compared to NoSpecificity shows similar behavior as it did in case of CensusDB.

Also, the experiment showed in Figure 13 shows that the number of candidates (AFDs)

visited during the search for the type of AFDs desired, by AFDMiner is less than those

37

0

1000

2000

3000

4000

5000

6000

0
 2000
 4000
 6000
 8000
 10000

No. of Tuples

T
im

e
 T

a
k
e
n

(m
s
)

No_Specificity

AFDMiner

Fig. 11. MushroomDB: Varying the size of the dataset

0

1000

2000

3000

4000

5000

6000

0
 5
 10
 15
 20
 25

No of attributes

T
im

e
 t

a
k

e
n

(m
s

)

No_Specificity

AFDMiner (ms)

Fig. 12. MushroomDB: Varying the number of attributes

traversed by NoSpecificity . This demonstrates that a good amount of search space

containing bad rules is effectively pruned by AFDMiner.

Intuitively, if we decrease the maxSpecificity further, the time taken would be less, but at

the same time the quality goes down. This is the reason why we fixed it to the reasonable

value as explained in the previous section 6.2. Above experiments show that for a good

quality of the generated AFDs, the time taken is less and Specificity is effective.

38

0

20000

40000

60000

80000

100000

120000

140000

160000

2
 3
 4
 5
 6

MaxLength of determining set

N
o

.
o

f
c

a
n

d
id

a
te

s
 v

is
it

e
d

No_Specificity

AFDMiner

Fig. 13. CensusDB: No. of candidates visited at each level of search

Fig. 14. best AFDs from carDB

6.5 Sample AFDs from different domains:

The set of AFDs mined from the carDB and mushDB are displayed in Figures 14 and 15

respectively.

39

Fig. 15. best AFDs from mushroomDB

7 CONCLUSION

We introduced a novel perspective for Approximate Functional Dependencies (AFDs),

treating them as condensed roll-ups of association rules. Based on this view, we devised two

metrics for AFDs namely Confidence and Specificity derived from the metrics Confidence

and Support of the underlying association rules that form the AFD. We also showed how

Confidence is connected to two other standard approximation measures for AFDs. We

presented an algorithm AFDMiner that generates all AFDs within the user-specified

thresholds on the values of the metrics. AFDMiner performs a bottom-up search in a

breadth first manner in the set containment lattice of attributes. In addition to pruning

techniques applicable for FDs, we showed how the monotonicity of Specificity can be

exploited to effectively prune the search space of AFDs. Through empirical studies on

real datasets, we showed that the AFDs are generated faster by AFDMiner and also that

they are of high quality (by using them for a sample classification task). We analyzed

the behavior in quality and time by varying the maxSpecificityand concluded that the

most useful AFDs (and can be generated faster) are the ones with high Confidence and a

reasonable Specificity value.

A possible future extension for the proposed approach of moving from association rules

to AFDs is an efficient mining algorithm for Conditional Functional Dependencies (CFD)

and Conditional Approximate Functional Dependencies (CAFD). CFDs are dependencies

of the form (Make→Model if country =“England”). More formally, CFDs are deterministic

dependencies holding true only for certain values of one or more of other attributes [4].

CAFD’s are the probabilistic counter part of CFDs—CFDs holding with a probability—

similar to AFDs are probabilistic counter part of FDs. CFDs and CAFDs are applied in

data cleaning and value prediction recently [5], but mining these conditional rules is largely

unexplored. Intuitively, CFDs are intermediate rules between association rules (value level)

41

and FD (attribute level). Hence the proposed approach of condensing association rules is

likely to enable efficient discovery of interesting CFDs and CAFDs.

[11] suggests determinations as a representation of knowledge that should be easy to

understand. It presents ConDet, an algorithm that uses feature selection to construct

determinations from training data, augmented by a condensation process that collapses

rows to produce simpler structures. This is related to how decision table classifier works.

Current work on mining AFDs for all attributes can be considered as—finding the best

feature set for each and every attribute in the dataset. (while decision table has a specified

attribute as the class attribute). But, AFDMiner doesnot save the probability distributions

of the values in the training set and relies on just suggesting the feature set for the AFD-

enhanced classifier. An interesting future direction is to combine the two approaches—in

saving the association rules generated during the process to learn the value distribution

and build a complete AFD-enhanced classifier.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In VLDB ’94: Proceedings of the 20th International Con-
ference on Very Large Data Bases, pages 487–499, San Francisco, CA, USA, 1994.
Morgan Kaufmann Publishers Inc.

[2] Aijun An, Shakil Khan, and Xiangji Huang. Objective and subjective algorithms for
grouping association rules. In ICDM ’03: Proceedings of the Third IEEE International
Conference on Data Mining, page 477, Washington, DC, USA, 2003. IEEE Computer
Society.

[3] F. Berzal, J. C. Cubero, F. Cuenca, and J. M. Medina. Relational decomposition
through partial functional dependencies. Data Knowl. Eng., 43(2):207–234, 2002.

[4] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsiet-
sidis. Conditional functional dependencies for data cleaning. In ICDE, pages 746–755.
IEEE, 2007.

[5] Wenfei Fan. Dependencies revisited for improving data quality. In PODS, pages
159–170, 2008.

[6] Chris Giannella and Edward Robertson. On approximation measures for functional
dependencies. Inf. Syst., 29(6):483–507, 2004.

[7] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An effi-
cient algorithm for discovering functional and approximate dependencies. The Com-
puter Journal, 42(2):100–111, 1999.

[8] Yka Huhtala, Juha Kinen, Pasi Porkka, and Hannu Toivonen. Efficient discovery of
functional and approximate dependencies using partitions. In ICDE, pages 392–401,
1998.

[9] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. Cords:
automatic discovery of correlations and soft functional dependencies. In SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international conference on Management of
data, pages 647–658, New York, NY, USA, 2004. ACM.

[10] Jyrki Kivinen and Heikki Mannila. Approximate dependency inference from relations.
In ICDT, pages 86–98, 1992.

[11] Pat Langley. Induction of condensed determinations. In In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96, pages
327–330. AAAI Press, 1996.

43

[12] Brian Lent, Arun N. Swami, and Jennifer Widom. Clustering association rules. In
ICDE ’97: Proceedings of the Thirteenth International Conference on Data Engineer-
ing, pages 220–231, Washington, DC, USA, 1997. IEEE Computer Society.

[13] Bing Liu. Integrating classification and association rule mining. In Knowledge Dis-
covery and Data Mining, pages 80–87, 1998.

[14] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of functional
dependencies and armstrong relations. In EDBT ’00: Proceedings of the 7th Inter-
national Conference on Extending Database Technology, pages 350–364, London, UK,
2000. Springer-Verlag.

[15] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Functional and approximate
dependency mining: database and fca points of view. J. Exp. Theor. Artif. Intell.,
14(2-3):93–114, 2002.

[16] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algorithms for
discovering association rules. In Usama M. Fayyad and Ramasamy Uthurusamy,
editors, AAAI Workshop on Knowledge Discovery in Databases (KDD-94), pages
181–192, Seattle, Washington, 1994. AAAI Press.

[17] Ullas Nambiar and Subbarao Kambhampati. Answering imprecise queries over au-
tonomous web databases. In ICDE, page 45, 2006.

[18] Noel Novelli and Rosine Cicchetti. Fun: An efficient algorithm for mining functional
and embedded dependencies. In ICDT ’01: Proceedings of the 8th International Con-
ference on Database Theory, pages 189–203, London, UK, 2001. Springer-Verlag.

[19] Jeffrey C. Schlimmer. Efficiently inducing determinations: A complete and systematic
search algorithm that uses optimal pruning. In International Conference on Machine
Learning, pages 284–290, 1993.

[20] Jef Wijsen, Raymond T. Ng, and Toon Calders. Discovering roll-up dependencies. In
Knowledge Discovery and Data Mining, pages 213–222, 1999.

[21] I. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. Cunningham. Weka:
Practical machine learning tools and techniques with java implementations, 1999.

[22] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2 edition, 2005.

44

[23] Garrett Wolf, Hemal Khatri, Yi Chen, and Subbarao Kambhampati. Quic: A system
for handling imprecision & incompleteness in autonomous databases (demo). In CIDR,
pages 263–268, 2007.

[24] Garrett Wolf, Hemal Khatri, Bhaumik Chokshi, Jianchun Fan, Yi Chen, and Subbarao
Kambhampati. Query processing over incomplete autonomous databases. In VLDB
’07: Proceedings of the 33rd international conference on Very large data bases, pages
651–662. VLDB Endowment, 2007.

[25] Catharine Wyss, Chris Giannella, and Edward Robertson. Fastfds: A heuristic-driven,
depth-first algorithm for mining functional dependencies from relation instances.

[26] Hong Yao and Howard J. Hamilton. Mining functional dependencies from data. Data
Min. Knowl. Discov., 16(2):197–219, 2008.

